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INTRODUCTION

The Payette National Forest, located in central Idaho (fig. 1), includes 2.3 million
acres. Boundaries of the Payette National Forest and Ranger Districts in relation to geographic
features of the area are shown in a diagrammatic map (fig. 2). This report presents an
interpretation of reconnaissance geochemical data from the Payette National Forest (usually
referred to as the PNF, or the Forest, in this report). This geochemical study was made to assist
the U.S. Forest Service in fulfilling requirements of Title 36, Chapter 2, part 219.22, Code of
Federal Regulations, and to supply resource information and interpretations so that the mineral
resources of this Forest can be considered with other resources in land use planning. A report
consisting of description and probabilistic estimation of potential mineral resources of the
Payette National Forest has been previously released (Bookstrom and others, 1998).

Geochemical data are used to identify areas that may contain concealed or subsurface
mineral deposits, to determine metallogenic controls and solution pathways, and to characterize
deposits that are known. Metal abundances from samples collected in unmineralized terrane,
often referrred to as baseline data, provide comparative information for environmental
assessments. During the formation of host rocks and their enclosed mineral deposits, element
mobilities were usually controlled by high temperature solutions. During weathering, element
mobilities are based on surficial chemical and physical processes. Known mineral deposits in
any given mineral district often constitute only a small part of the total metal endowment. Many
of these deposits were discovered because they were exposed at the surface. Concealed mineral
deposits with subtle surface characteristics and related dispersions of characteristic suites of
elements can be identified using geochemistry.

GEOCHEMICAL SURVEYS
Data Compilation and Sample Collection

Prior to any field work, we compiled all existing geochemical data from the PNF area.
These data chiefly consisted of geochemical analyses from: (1) past geologic and geochemical
studies of wilderness areas in the vicinity of the study area, (2) the Conterminous United States
Mineral Appraisal Program (CUSMAP) of the USGS and (3) the National Uranium Resource
Evaluation (NURE) program of the Department of Energy.

The initial data compilation produced a large file of all available geochemical analyses in
the region that included both the Payette National Forest and surrounding areas. For the present
PNF assessment, these pre-existing data were further augmented by re-analyses of samples from
the NURE program using USGS analytical methods, and by new field sampling and analysis by
the USGS (table 1). Data used in the present study of the PNF have been released as U.S.
Geological Survey Open-File Reports numbers 93-527 (McHugh and others, 1993) and 96-535
(Hopkins and others, 1996).

Data from previous USGS investigations were derived from: (1) stream sediment samples
and rock chip samples from the Hells Canyon and Rapid River Wilderness study (Simmons and
others, 1983); (2) stream sediment and heavy-mineral concentrate samples collected from USGS









Table 1. Sources of data and analytical methods used.

[E-Spec, Emission Spectrography; F-AA, Flameless Atomic Absorption; GF-AA, Graphite Furnace; Inst, Instrumental; [CP-
AES, Inductively-Coupled Plasma-Atomic Emission Spectrography; NAA, Neutron Activation; XRF, X-Ray Fluorescence; RX,
Rock; SS, Stream Sediment; HM, Heavy-Mineral Concentrate]

Method Sample Elements Number of Source
Type Samples
E-Spec RX Fe, Mg, Ca, Ti, Mn, Ag, B, Ba, Be, Bi, Cd, Co, Cr, 1307 Hells Canyon
Cu, La, Mo, Nb, Ni, Pb, Sc, Sn, Sr, V, W, Y, Zn, Zr Wilderness Study
F-AA RX Au 196 Hells Canyon
Wildemness Study
Inst RX Hg 788 Hells Canyon
Wildemess Study
E-Spec SS Fe, Mg, Ca, Ti, Mn, Ag, B, Ba, Be, Bi, Cd, Co, Cr, 577 Hells Canyon
Cu, La, Mo, Nb, Ni, Pb, Sc, Sn, Sr, V, W, Y, Zn, Zr Wilderness Study
F-AA SS Au 577 Hells Canyon
Wilderness Study
Inst SS Hg 571 Hells Canyon
Wilderness Study
NAA SS Ag, Al, As, Ba, Be, Ca, Ce, Co, Cr, Cu, Dy, Eu, Fe, 488 Baker Quad
K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Sc, (NURE)
Se, Sm, Sn, Th, Ti, U, V, W, Y, Yb, Zn
XRF SS Ag, As, Bi, Cd, Cu, Nb, Ni, Pb, Se, Sn, W, Zr 247 Baker Quad
(NURE)
"E-Spec SS Ca, Fe, Mg, Na, P, Ti, Ag, As, Au, B, Ba, Be, Bi, 980 Baker Quad
Cd, Co, Cr, Cu, Ga, Ge, La, Mn, Mo, Nb, Ni, Pb, (reanalysis)
Sb, Sc, Sr, Th, V, W, Y, Zn, Zr
GF-AA SS Au 1118 Baker Quad
’ (reanalysis)
ICP-AES SS Ag, As, Ay, Bi, Cd, Cu, Mo, Pb, Sb, Zn 634 Baker Quad
(reanalysis)
ICP-AES SS Ag, As, Au, Bi, Cd, Cu, Mo, Pb, Sb, Zn 449 USGS Collection
E-Spec HM Ca, Fe, Mg, Na, P, Ti, Ag, As, Au, B, Ba, Be, Bi, 631 USGS Collection

Cd, Co, Cr, Cu, Ga, Ge, La, Mn, Mo, Nb, Ni, Pb,
Sb, S¢, Sr, Th, V, W, Y, Zn, Zr

NAA SS Al, Au, Ba, Be, Ca, Ce, Co, Cr, Cs, Dy, Eu, Fe, 1122 Elk City (NURE)
Hf, K, La, Lu, Mg, Mn, Na, Rb, Sb, Sc, Sm, Sr,
Ta, Tb, Th, Ti, U, V, Yb, Zn

XRF SS Ag, As, Bi, Cd, Cu, Nb, Ni, Pb, Se, Sn, W, Zr 1122 Elk City (NURE)
Se, Sn, W, Zr




studies of additions to the River of No Return Wilderness (Adrian and others, 1984; Hopkins and
others, 1985 a-d), and (3) stream sediment and heavy-mineral concentrate samples from the
French Creek/ Patrick Butte and South Fork Salmon River Special Management Areas and the
Payette Crest (Needles) and Secesh Proposed Wilderness areas (Barton and King, unpublished
data; Bullock and others, 1991). Data on stream sediment, soil, and rock samples collected in the
Idaho Primitive area study (Cater and others, 1973) were examined but they were not used in the
data compilation, because they were not in digital form.

The methods of sample collection used in the NURE program are described by Price and
Jones (1979). The NURE data for this report included 1,122 stream sediment samples from the
PNF part of the Elk City (Broxton and Beyth, 1980) National Topographic Map Series (NTMS)
1° x 2° quadrangle. A preassessment of the Elk City quadrangle by the USGS used some of
these same NURE geochemical data (Lund and others, 1990). These data are the main source of
geochemical information for the part of Payette National Forest east of longitude 115° 15'. In
addition, data from spring water and stream water samples from the NURE study of the Elk City
NTMS quadrangle were examined for areas of the quadrangle within the forest.

Stream sediment samples were collected from the Baker NTMS quadrangle and analyzed
during the NURE program (Bernardi and Robins, 1982; Cook, 1981), but few of these samples
were analyzed for elements of interest in this study.

Analyses of a few samples from the Challis NTMS quadrangle (Thayer and Cook, 1980)
were included in our data base for the area south of latitude 45 degrees in the eastern part of the
Forest, but elements analyzed by NURE did not include many of interest for this study, and
hence were of limited value.

No samples were collected during the NURE program in the Grangeville NTMS
quadrangle, in the northwestern part of the forest.

Several areas lacking geochemical data were sampled by the USGS in the summer of
1992. The principle focus of this supplemental sampling was the western part of the PNF where
there was little existing geochemical data. In total, 247 stream sediment samples and an equal
number of heavy mineral samples were collected. Compilation of data from sources cited above
resulted in a total data set containing analyses for 631 heavy mineral concentrates collected from
the PNF and contiguous areas. The chemistry and mineralogy of these heavy-mineral-
concentrate samples were used chiefly as a supplement to the stream sediment data.

Analytical Techniques

All USGS stream sediment and heavy-mineral concentrate samples used in this study
were analyzed for 30 elements by a direct-current arc-emission spectrographic (E-Spec) method
(Grimes and Marranzino, 1968). Samples were analyzed for gold by a flameless graphite furnace
(GF-AA) method (O'Leary and Meier, 1986). Some of the older gold analyses, such as those for
the Hells Canyon area, were done by a flame atomic absorption (AA) method modified from
Thompson and others (1968). A partial extraction, inductively coupled plasma-atomic emission
spectroscopy (ICP-AES) method (Motooka, 1988) was used to analyze samples for this study,
and most of the recent wilderness studies whose data are used here. The method gives analyses
for ten elements (Ag, As, Au, Bi, Cd, Cu, Mo, Pb, Sb, and Zn), provides lower limits of
determination for these elements than are obtained using E-Spec, and is particularily useful for
mineral resource and environmental investigations. This is because this method chiefly extracts



metals held in non-silicate lattice positions in minerals, which are the positions where metal-rich
products usually accumulate when weathering from mineral deposits.

Relevant stream sediment samples from the NURE program in the Baker quadrangle
were selected from USGS archives and reanalyzed using E-Spec, GF-AA, and ICP-AES (table
1). Data from these reanalyzed samples were then combined with data collected by the USGS to
form separate data sets for E-Spec, GF-AA, and ICP-AES analyses.

GEOCHEMICAL SIGNIFICANCE OF SAMPLE MATERIALS

Each material sampled and method of analysis has specific interpretational significance
relative to the primary and secondary geochemical environment. Proper interpretation of the data
requires that the geochemical and mineralogical significance of the reported analytical values be
considered in the context of the sample media and analytical method used, as well as the
geologic processes controlling the element distributions in the bedrock, soil, water, and stream
sediment.

Stream Sediments

Stream sediment samples are collected in broad regional geochemical surveys because
large areas can be covered in a short time based on the assumption that the stream sediment
sample represents the overall chemistry of the drainage basin above the point where the sample
was collected. However, the ideal representative sample is rarely achieved because of numerous
factors that enter into element dispersion processes. Some of the considerations made during this
study include differences in procedures used during the NURE program and by the USGS. As
one example, the stream sediment material collected during the NURE program was sieved to
less than 149 microns and thus consisted of very fine sand to clay-sized material. Materials of
this size range are commonly collected with the assumption that any metals dispersed in ground
and surface waters might be measured as a result of their concentration in the stream bed through
direct coprecipitation and sorption on the fine sediment grains. Metals that have moved
mechanically in discrete mineral grains, other than zircon and sometimes scheelite, are not
commonly a significant component of these fine-grained sediments. The XRF and NAA
analyses produced by the NURE program have high sensitivity and precision, and, in many
cases, provide analyses for a number of elements not normally determined in geochemical
surveys. For the geochemical and mineralogical considerations just stated, the reported
concentrations of elements in the sediments should not be taken as a direct indication of mineral
endowment within the drainage basin.

In contrast to the fine size fraction of sediment collected by the NURE program, the
USGS routinely collects and analyzes a slightly coarser-grained stream sediment material. Thus,
the USGS samples commonly include both sorbed metals and some discrete mineral grains
dispersed mechanically. However, the E-spec method used to analyze the USGS samples is not
very precise, but is a quick and inexpensive method of recognizing orders of magnitude
differences in element concentrations. The NURE samples were reanalyzed by E-spec only
because it helped to compare similar data from other USGS samples, not because it is a superior
analytical method to those employed by NURE. Samples analyzed by E-spec are total analyses,
however, in that the method attacks the lattice of silicate minerals and requires no chemical



predigestion.

The partial-extraction ICP-AES analyses of stream sediments is a useful analytical
method because the metal content of each sample consists of only the loosely-held, labile metals
and excludes the metals found in the silicate lattices of common rock-forming minerals. Thus,
metals that were liberated by the decomposition of mineral deposits can be measured by this
method. Moreover, very subtle metal dispersion, such as that of cadmium, an element often
enriched in hydrothermally mineralized rocks, can be determined.

Stream Sediment Concentrates

Heavy mineral concentrates processed from stream sediment often indicate the type of
minerals being shed into a given drainage basin. The removal of barren clay as a diluent often
results in an increase in contrast between anomalous element concentrations and normal
background concentrations in stream alluvium. As a consequence, minerals rich in Sn, W, rare
earth elements, Cr, and other elements, that might otherwise go undetected, can be identified.
The large orders of magnitude in variation between background and anomalous values and the
"total" analyses provided by E-Spec make it an appropriate analytical method for these samples.
This type of sample media also provides direct mineralogical information.

Rocks

If the sampling is sufficiently systematic and detailed, rock samples can provide some of
the most direct information on mineral deposit processes. The geochemical assessment of Payette
National Forest was so tightly time-constrained that extensive rock geochemical surveys were
not feasible. The Hells Canyon area in the northwest corner of the Forest had been extensively
surveyed using rock samples in a previous investigation (Simmons and others, 1983). The data
from that survey were used extensively in this areal evaluation for that part of the present study
area. E-Spec analyses were well suited to analyses of the rock samples.

Data Reduction and Software

Statistical reductions of the data were accomplished using several USGS software
programs called STATPAC (Statistical Package) (VanTrump and Miesch, 1977). Means,
standard deviations, correlation coefficients, histograms, and percentiles were calculated for a
number of data sets. Statistics were used to establish regional background values for a large
number of chemical elements. These background values were then compared to reported
concentrations within areas of the PNF. Data subsets were used to evaluate individual
geochemical tracts. Data summaries are shown on tables 2-5.

The data were further examined by R-mode factor analysis. The purpose of R-mode
factor analysis is to determine suites of elements that group together based on underlying
mineralogic or geochemical associations. The method reduces a large number of chemical
. variables to fewer, more readily explainable groups of variables. Details of the mathematical
theory can be found in standard textbooks, such as Harmon (1960). Although the associations of
elements can be determined from R-mode factor analysis, the results are of little use if they make
no sound geochemical, mineralogic, or geologic sense. In the Payette National Forest, the results
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of R-mode analysis were quite useful.

A USGS computer program called Relative Element Magnitude (REM) (VanTrump and
Alminas, 1978) was also used extensively in these studies to assist in our evaluations. The REM
program is designed as an aid in characterizing geochemical anomalies. The program ranks the
magnitudes of anomalies of individual elements within a multielement geochemical anomaly.

Maps

Element concentrations in rock and sediment samples were plotted on maps in order to
identify spatial distributions, and to relate these distributions to geologic and environmental
factors. These plots were produced using standard USGS plotting programs (VanTrump and
Miesch, 1977; Selner and Taylor, 1993). Key elements were selected for plotting on the basis of
the statistical data and on the relevance each element may have to mineral-deposit-forming
processes. Data were then plotted on the maps as site-specific symbols. Where the range of data
allowed, the plots used classes of data based on the 50th, 75th, 90th, 95th, and 99th percentiles of
the statistical distribution. These percentiles were used as a general guide to class selection, but
there was no strict adherence where the data range did not allow such values to be used. For
example, the E-Spec data give censored or truncated data for certain elements. Censored
distributions occur for elements such as Bi, Cd, W, and Zn, which could not be determined in
their entirety because of poor instrumental sensitivity or calibration. Truncated distributions for
some elements (Ti, Mn, and Ba) exist where concentrations exceed the upper limits of
determination for the analytical method.

The limitations of data compilation precluded using a single analytical method for stream
sediments in the entire PNF. It was decided that the ICP-AES analyses for stream sediment
samples provided data on key elements that were highly pertinent to mineral resource
assessment. These data were used in the regional map plots. Because this type of analysis was
not run on most samples from the extreme eastern PNF, a combined data set of the key elements
was made with data available from the XRF analyses in the Elk City NURE data base. The
regional point-plot maps on Figures 4-6, and 8 are therefore derived from this combined file.
With respect to the elements plotted on these maps, the data for this combined file are
summarized in table 3. Molybdenum was not analyzed in the NURE Elk City samples and,
therefore, the map for Mo (fig. 7) shows only results for analyses by ICP-AES.

A derivative map for titanium-related elements (fig. 10) was generated from the
combined distributions of above-median values (>50th percentile) of Ti-Cr-Mg-Nb
(NURE-NAA, E-Spec) in stream sediments. This derivative map for the titanium suite was
manually compiled using a set of transparent overlays with plots of the individual elements in the
titanium suite. In order to plot the full range of titanium, which frequently is reported in
concentration ranges above the highest reporting level for E-Spec analyses, a replacement value
was assigned that corresponds to the next analytical reporting interval above the upper limit of
determination (table 2).

REGIONAL GEOCHEMICAL ANOMALIES

The maps (figs. 4-10) show the regional distributions of geochemical anomalies for the
Forest and surrounding areas. A simplified geologic map of the area of the PNF (fig. 3) redrawn
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Other relevant key elements that were plotted on figures 15-19 include: Ag, Mo, Pb, Sr,
and Zn. Tungsten and gold, both elements of interest in the area, were not found in a sufficient
number of samples to warrant map plots. Mafic to intermediate composition plutons (shown on
the geochemical maps, figures 12-19; after Gaston and Bennett, 1979) and the wall rocks
surrounding these plutons are the focus for many of the geochemical anomalies. A northeast
trending mylonite zone, located near the center of tract A, probably represents a major shear or
fracture zone and seems also to control a northeasterly trend of sporadic rock geochemical
anomalies (for example, zinc). Copper-nickel-cobalt distributions delineate specific lithologic
units that could host volcanogenic massive sulfide deposits. Zinc, silver, and lead appear to be
skarn-related. Barium and strontium probably delineate zones of sulfate-rich metasedimentary
rocks, specifically evaporite deposits. Strontium can be a particularly useful pathfinder element
for evaporites because it is a measure of marine salinity at the time the sedimentary rocks were
deposited.

Multi-element anomalies, usually dominated by copper, are associated with the following
nearby geographic features: (1) Pepperbox Hill, (2) Echols Mt., (3) Ant Butte-Cold Springs
Saddle, (4) the town of Cuprum, (5) Allison-Eckels Creek, (6) Monument Peak, (7)
Boulder-Huntley Creek, and (8) adjacent to the Snake River.

Tract B-Cuddy Mt.
Mineral deposits

Known deposits include magmatic Fe and Cu in Permian and Triassic island arc gabbro,
epigenetic porphyry Cu-Mo, Cu-Mo-tourmaline breccia pipe, Fe-skarn, and epithermal veins in
volcanic rocks of island-arc terrane (Bookstrom and others, 1998; Bruce, 1971). This tract has
similar mineral deposit environments to tract A.

Geochemical signature

Statistical analyses of stream-sediment concentrate data (table 6) using the REM
program (VanTrump and Alminas, 1978) show that the dominant associations are: (1) Fe, Cu,
Ni, and As dispersed in clay-silt-size materials, (2) Cr, Co, Ni, and Fe in coarser silt-sand-size
materials, (3) Cu-Zn and Cd, that precipitated either from groundwater seepages or directly from
stream water, and dominating the more readily available metals in such materials as amorphous
Fe-Mn oxyhydroxides in stream sediment, and (4) Pb, Ag, Ni, Co, and Ba dispersed in the heavy
detrital fraction of stream sediments, probably as relatively unweathered Pb-Ag minerals, pyrite,
and barite.

The Cu-Mo tourmaline breccia pipe near Cuddy Mt. (Bruce, 1971) is small and would be
expected to produce a very limited geochemical signal. The most diagnostic geochemical signal
from a deposit of this type is boron, which indicates the presence of tourmaline. As discussed
under the regional geochemistry section, some of the plumbing system for these pipes may have
been delineated by Zn-Mo anomalies along a north-trending linear zone east of Cuddy Mt.
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Tract C-Sturgill Peak
Mineral deposits

Known deposits include island-arc sedimentary-volcanic and plutonic associations as in
tracts A and B. Skarn mineralization associated with plutons is the principle type of deposit in
this area and most of these deposits are on the western edge of the PNF. The skarn is developed
in marble of the Martins Bridge limestone-marble unit of the Permian and Triassic Seven Devils
Group. Iron skarn deposits formed where the host-rock consists of mafic volcanic rocks.

Geochemical signatures

Statistical tests of stream sediment and stream-sediment concentrate data (table 6), using
the REM program (VanTrump and Alminas, 1978) provide the following inferences: (1) the fine-
silt and clay size materials contain dominant amounts of Fe, Mn, and As, suggesting that these
elements were deposited from solution onto the surface of the stream sediments of the area, (2)
the E-spec analyses show a similar signature to that of tract B; (3) the readily extractable metals
in the area are dominated by Cd, followed by Mo, Zn, Cu, and As (mobilization of Cd, to the
extent that it is scavenged in amorphous iron sites, generally requires the breakdown of
sphalerite); (4) Ba, B, Pb, Sr, and Mo in the heavy detrital minerals is a direct reflection of the
known mineral deposits and indicates that barite and (or) Ba-Sr carbonate minerals are important
constituents along with tourmaline, galena, and probably molybdenite, or possibly secondary
minerals of Pb and Mo, such as wulfenite.

Tract D-Council Mtn.
Mineral deposits

Metallic mineral deposits are not reported from this area. However, this tract contains
anomalies of some of the same elements that characterize tracts B and C. Thus, undiscovered
mineral deposits similar to those in tracts B and C could be present. Deposits typical of the
suture zone might be expected (see tract E below).

Geochemical signature

The following inferences are based on statistical (REM) analysis of the stream sediment
and heavy-mineral concentrate data sets (table 6) from tract D: (1) Fe, Cu, As, and Ni similar to
tract B probably represent a mafic rock-massive sulfide association, (The signature differs in also
containing rare earth elements and P related to monazite deposited in the suture zone.); (2) Cr,
As, Co, and Ni in E-Spec data are probably a signature similar to (1), ( The presence of arsenic in
the first assemblages indicate they are not strictly lithologic but include sulfide and arsenic-rich
phases.); (3) Cd, Cu, Pb, and Zn is another mineralization signature, (Dominance of Cd suggests
breakdown of sphalerite.); (4) Pb, Co, Ni, Cu, and Zn in heavy detrital minerals is due to the
dispersion of ore minerals into the drainage basin; (5) Similar to tract B, zinc is dispersed in
stream water, probably as a result of sphalerite breakdown, as suggested by the association in (3)
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above.
Tract E-Suture Zone
Mineral deposits

Known deposits in this tract include chromite pods related to ultramafic rocks, diamond
placers related to lamproite pipes, and gold, garnet, and monazite placers (Bookstrom and others,
1998).

Geochemical Signature

(1) Statistical (REM) analysis of the NURE stream sediment data (table 6) suggests a
REE-phosphate association, that is probably related to the REE-enriched placers known within
the suture zone. (2) The association Sr>Fe>Y>Mn>Cr>Ni>La>Co>Ba may be related to
carbonate minerals and suggests carbonatite-lamproite-ultramafic sources. (3) Gold is present in
this tract, reflecting the widespread distribution of weakly anomalous levels of gold in several
stream samples from the area. (4) The heavy mineral association of Nb>Mo>Ti>Zr supports the
premise mentioned above in (2) of a carbonatite source for these geochemical signatures.
Niobium is often diagnostic because of its frequent enrichment in lamproites and carbonatite
complexes.

Tract F-Warren District
Mineral deposits

Quartz vein deposits in dilatant Proterozoic metasedimentary roof pendants of the
Yellowjacket Formation lie above the syenite of the Ramey Ridge plutonic complex. These
veins provided gold for placer deposits, which were exploited in the Warren district (Reed, 1937,
p. 26).

Geochemical signature

(1) Stream-sediment data show Ag>Au>Ce for the placers of the tract (table 6). (2) The
dominant elements are W>Ag>Y>La>B>Sr>Ba>Nb. From this we infer that possible sources
may include: tungsten skarn and vein deposits, REE veins, quartz-tourmaline veins, veins with
carbonate and (or) barite gangue, and possible carbonatite (Nb). (3) Some results suggest that a
significant amount of arsenic is being sequestered by hydrous Fe-Mn oxides in this part of the
PNF. Map plots of arsenic in stream sediments show it to be very widespread in anomalous
concentrations within this tract. (4) Silver dominates the metals enriched in heavy mineral
concentrates, followed by titanium (probably as sphene or rutile from veins and as accessories in
the Ti-rich Ramey Ridge syenite). A pegmatitic or peralkaline granite (syenite) source is also
suggested for the suite Zr, Ni, La, Nb, Th, and Be that also characterizes the heavy mineral suite
in the tract.
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Tract G-Yellow Pine-Stibnite
Mineral deposits

This tract contains veins and skarns related to the Idaho batholith, to the Ramey Ridge
syenite pluton, and to shear-zone related deposits, skarn deposits, and antimony veins.

Geochemical signature

(1) Statistical analysis (table 6) of NURE stream sediment data shows a geochemical
signature that might be expected for some of the known deposits in the tract. Lithium is clearly
anomalous and appears high up in the ranking of elements. Speculatively, the source of this
lithium is sheet silicates (micas) associated with pegmatites, granites, or greisens. (2) The E-spec
association suggests carbonate-REE vein sources (indicated by Y, Sr, Fe, and La) along with
barite, tourmaline, and Be and Nb minerals. (3) As also found in tract F, arsenic is very
widespread in the stream sediments of tract G and is probably concentrated in the Fe-Mn
hyroxides where it is readily available for extraction and detection by the ICP-AES method.
Unlike tract F however, Pb and Mo are closely associated with the arsenic in this tract, whereas
in tract F, arsenic is part of the Ag-Au suite. (4) The heavy mineral concentrate signature from
this area suggests a mineral association typically found in high temperature veins and associated
skarn. The high ranking of Bi in the suite suggests the possibility that bismuthinite is present in
the samples, along with arsenopyrite, cassiterite, scheelite, and tourmaline. The close association
of these veins to peraluminous granite or the syenite of Ramey Ridge is suggested by the
presence of Ti, Nb, and Mo in the heavy mineral association.

Tract H-Big Creek-Edwardsburg
Mineral deposits

Deposits types in this tract include Au-Ag-Cu quartz veins and mineralized shear zones
and skarns related to the Proterozoic Ramey Ridge syenite complex (Leonard, 1963) and
overlying roof pendants of metasedimentary rocks of the Precambrian Yellowjacket Formation.

Geochemical signature

Geochemical signatures in this tract (table 6 ) reflect the composition of the Ramey Ridge
syenite pluton and the associated hydrothermal mineralization and skarn. There appears to be a
zonal distribution of metals between the Yellow Pine area, also associated with the Ramey
Ridge complex, and the Big Creek area.

(1) Statistical study of the NURE stream sediment geochemistry indicates the association
Ag>Cu>Au>As>Co which reflects the association of gold-chalcopyrite-arsenopyrite-pyrite in the
mineral deposits (Cater and others, 1973). (2) Hydrothermal carbonate (Sr-Y-Mn), barite (Ba),
and tourmaline (B) are reflected in the E-Spec fraction of the stream-sediment samples. (3)
Arsenic again is the dominant element in the readily extractable fraction (Fe-Mn hydroxides) of
the stream-sediment samples consistant with the other tracts within the Idaho batholith portion of
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the PNF. Antimony is a significant part of the anomalous suite in this tract, in contrast to the
other tracts in the PNF, probably reflecting antimony veins in the area. (4) The elements of
prominence in the heavy- mineral-concentrate samples (W>Sn>Be>Cr>Nb>B>Ti) directly
indicate the mineralogical composition of the Ramey Ridge syenite pluton and the mineralized
zones surrounding it. Minerals in the heavy mineral concentrates from the area include scheelite
(W), cassiterite (Sn), a beryllium mineral of probable skarn origin (possibly helvite, a common
skarn mineral containing Be and Mn), tourmaline (B), rutile (Nb, T1), zircon, and a bismuth
mineral (bismuthinite?).
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