Revised grade and tonnage model of carbonatite deposits

by

Donald A. Singer

Open-File Report 98–235

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

1U.S. Geological Survey, 345 Middlefield Rd, Menlo Park, CA 94025

1998
COMMENTS This model applies to the descriptive model of carbonatite deposits (No. 10) by Singer (1986a) and should replace the grade and tonnage model in that volume (Singer, 1986b). Data used in this model are presented in Table 1. In some cases, other estimates of grades or tonnages were available, but their quality was questionable and so they were not used here.

Figure 1 presents a plot of the tonnages of these deposits. Figures 2 and 3 present plots of the niobium and rare-earth grades respectively. In each figure the cumulative proportion of deposits versus the tonnage or grade of the deposits is plotted. Individual symbols represent the deposits. In Figure 4 tonnage is plotted against both niobium and rare-earth grades. This plot demonstrates the lack of correlations among these variables and the lack of any distinct groupings of these deposits. Locally these carbonatite complexes may contain economically interesting grades of uranium, thorium, titanium, iron, copper, vermiculite, zirconium or phosphorus; frequently, these other commodities are in different zones than the niobium or rare-earth-rich parts of the complex. In addition, adjacent deposits can be either niobium or rare-earth rich, such as at Catalao I and Catalao II.

References used for data sources

Schobbenhaus, Carlos, and Silva Coelho, Eduardo, eds., 1986, Principais depositos minerais do Brazil: Vol. II: Ferro e metais da industria do aco: Ministério das Minas e Energia, Brazil, 501 p. (in Portuguese)

Table 1. Grades and tonnages of carbonatite deposits.
(Tonnages in millions of metric tons, niobium, rare-earth, and phosphate grades in percent of X_2O_3. Zero indicates no grade reported. Location codes: BRZL Brazil, BURN Burnai, CINA China, CNON Canada British Colombia, CNON Canada Ontario, CNQU Canada Quebec, INDA India, KNYA Kenya, MLWI Malawi, MNGI Mongolia, NAMBI Namibia, NRWY Norway, SAFR South Africa, TNZN Tanzania, UGND Uganda, USCA United States California, USCO United States Colorado, ZIRE Zaire)

<table>
<thead>
<tr>
<th>DEPOSIT</th>
<th>LOCATION</th>
<th>Tonnes/10^6</th>
<th>Nb_2O_5 grade%</th>
<th>RE_2O_5 grade %</th>
<th>P2O_5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amma Dongar</td>
<td>INDA</td>
<td>105</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Araxa</td>
<td>BRZL</td>
<td>462</td>
<td>2.48</td>
<td>0.033</td>
<td>15</td>
</tr>
<tr>
<td>Argo</td>
<td>CNON</td>
<td>62.5</td>
<td>0.52</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bayan Obo</td>
<td>CINA</td>
<td>750</td>
<td>0.1</td>
<td>4.1</td>
<td>0</td>
</tr>
<tr>
<td>Bingo</td>
<td>ZIRE</td>
<td>7.1</td>
<td>2.86</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Catalao I</td>
<td>BRZL</td>
<td>21</td>
<td>0.98</td>
<td>1.02</td>
<td>8.9</td>
</tr>
<tr>
<td>Catalao II</td>
<td>BRZL</td>
<td>2</td>
<td>2.18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dominion Gulf</td>
<td>CNON</td>
<td>33</td>
<td>0.39</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Iron Hill</td>
<td>USCO</td>
<td>36.3</td>
<td>0.25</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>James Bay</td>
<td>CNON</td>
<td>36.3</td>
<td>0.52</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kangankunde</td>
<td>MALI</td>
<td>11</td>
<td>0</td>
<td>0.62</td>
<td>0</td>
</tr>
<tr>
<td>Lueshe</td>
<td>ZIRE</td>
<td>30</td>
<td>0.35</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Manitou Island</td>
<td>CNON</td>
<td>4.85</td>
<td>0.756</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Martison Lake</td>
<td>CNON</td>
<td>145</td>
<td>0.35</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Mountain Pass</td>
<td>USCA</td>
<td>90</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Mrima Hill</td>
<td>KNYA</td>
<td>50.8</td>
<td>0.67</td>
<td>0.59</td>
<td>0</td>
</tr>
<tr>
<td>Mushgia Khudag</td>
<td>MONG</td>
<td>6.1</td>
<td>0</td>
<td>1.37</td>
<td>0</td>
</tr>
<tr>
<td>Nemogos (Lackner Lake)</td>
<td>CNON</td>
<td>10</td>
<td>0.23</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Nemogosenda Lake</td>
<td>CNON</td>
<td>20</td>
<td>0.47</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oka</td>
<td>CNQU</td>
<td>221</td>
<td>0.23</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>Ondurukurme</td>
<td>NAMBI</td>
<td>8</td>
<td>0.3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Panda Hill</td>
<td>TNZN</td>
<td>272</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Palabora</td>
<td>SAFR</td>
<td>652</td>
<td>0</td>
<td>0.15</td>
<td>9</td>
</tr>
<tr>
<td>Pocos de Caldas</td>
<td>BRZL</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Salitre II</td>
<td>BRZL</td>
<td>200</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sandkopsdrif</td>
<td>SAFR</td>
<td>57</td>
<td>0.15</td>
<td>1</td>
<td>3.2</td>
</tr>
<tr>
<td>Seis Lagos</td>
<td>BRZL</td>
<td>2890</td>
<td>2.81</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Serra Negra</td>
<td>BRZL</td>
<td>60</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sove</td>
<td>NRWY</td>
<td>55.3</td>
<td>0.23</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>St. Honore (Soquem)</td>
<td>CNQU</td>
<td>16</td>
<td>0.69</td>
<td>0.0088</td>
<td>0</td>
</tr>
<tr>
<td>Sukula</td>
<td>UGND</td>
<td>118</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tapira</td>
<td>BRZL</td>
<td>166</td>
<td>1.18</td>
<td>0.03</td>
<td>8.3</td>
</tr>
</tbody>
</table>
Figure 1--Tonnages of carbonatite deposits.
Figure 2--Niobium grades of carbonatite deposits.
Figure 3--Rare-earth grades of carbonatite deposits.
Figure 4--Niobium and rare-earth grades versus tonnages of carbonatite deposits.