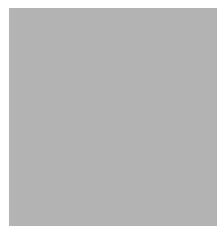


LEVEL II SCOUR ANALYSIS FOR
BRIDGE 15 (BURKTH00580015) on
TOWN HIGHWAY 58, crossing the
WEST BRANCH PASSUMPSIC RIVER,
BURKE, VERMONT

Open-File Report 98-380

Prepared in cooperation with
VERMONT AGENCY OF TRANSPORTATION
and
FEDERAL HIGHWAY ADMINISTRATION


LEVEL II SCOUR ANALYSIS FOR
BRIDGE 15 (BURKTH00580015) on
TOWN HIGHWAY 58, crossing the
WEST BRANCH PASSUMPSIC RIVER,
BURKE, VERMONT

By ERICK M. BOEHMLER AND TIMOTHY SEVERANCE

U.S. Geological Survey
Open-File Report 98-380

Prepared in cooperation with
VERMONT AGENCY OF TRANSPORTATION
and
FEDERAL HIGHWAY ADMINISTRATION

Pembroke, New Hampshire

1998

U.S. DEPARTMENT OF THE INTERIOR
BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY
Thomas J. Casadevall, Acting Director

For additional information
write to:

District Chief
U.S. Geological Survey
361 Commerce Way
Pembroke, NH 03275-3718

Copies of this report may be
purchased from:

U.S. Geological Survey
Branch of Information Services
Open-File Reports Unit
Box 25286
Denver, CO 80225-0286

CONTENTS

Conversion Factors, Abbreviations, and Vertical Datum	iv
Introduction and Summary of Results	1
Level II summary	7
Description of Bridge	7
Description of the Geomorphic Setting	8
Description of the Channel	8
Hydrology	9
Calculated Discharges	9
Description of the Water-Surface Profile Model (WSPRO) Analysis	10
Cross-Sections Used in WSPRO Analysis	10
Data and Assumptions Used in WSPRO Model	11
Bridge Hydraulics Summary	12
Scour Analysis Summary	13
Special Conditions or Assumptions Made in Scour Analysis	13
Scour Results	14
Riprap Sizing	14
Selected References	18
Appendices:	
A. WSPRO input file	19
B. WSPRO output file	22
C. Bed-material particle-size distribution	29
D. Historical data form	31
E. Level I data form	37
F. Scour computations	47

FIGURES

1. Map showing location of study area on USGS 1:24,000 scale map	3
2. Map showing location of study area on Vermont Agency of Transportation town highway map	4
3. Structure BURKTH00580015 viewed from upstream (August 9, 1995)	5
4. Downstream channel viewed from structure BURKTH00580015 (August 9, 1995)	5
5. Upstream channel viewed from structure BURKTH00580015 (August 9, 1995)	6
6. Structure BURKTH00580015 viewed from downstream (August 9, 1995)	6
7. Water-surface profiles for the 100- and 500-year discharges at structure BURKTH00580015 on Town Highway 58, crossing the West Branch Passumpsic River, Burke, Vermont	15
8. Scour elevations for the 100- and 500-year discharges at structure BURKTH00580015 on Town Highway 58, crossing the West Branch Passumpsic River, Burke, Vermont	16

TABLES

1. Remaining footing/pile depth at abutments for the 100-year discharge at structure BURKTH00580015 on Town Highway 58, crossing the West Branch Passumpsic River, Burke, Vermont	17
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure BURKTH00580015 on Town Highway 58, crossing the West Branch Passumpsic River, Burke, Vermont	17

Multiply	By	To obtain
Length		
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
Slope		
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km)
Area		
square mile (mi ²)	2.590	square kilometer (km ²)
Volume		
cubic foot (ft ³)	0.02832	cubic meter (m ³)
Velocity and Flow		
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m ³ /s)
cubic foot per second per square mile [(ft ³ /s)/mi ²]	0.01093	cubic meter per second per square kilometer [(m ³ /s)/km ²]

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	Max	maximum
D ₅₀	median diameter of bed material	MC	main channel
DS	downstream	RAB	right abutment
elev.	elevation	RABUT	face of right abutment
f/p	flood plain	RB	right bank
ft ²	square feet	ROB	right overbank
ft/ft	feet per foot	RWW	right wingwall
FEMA	Federal Emergency Management Agency	TH	town highway
FHWA	Federal Highway Administration	UB	under bridge
JCT	junction	US	upstream
LAB	left abutment	USGS	United States Geological Survey
LABUT	face of left abutment	VTAOT	Vermont Agency of Transportation
LB	left bank	WSPRO	water-surface profile model
LOB	left overbank	yr	year

In this report, the words “right” and “left” refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, “sea level” refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 15 (BURKTH00580015) ON TOWN HIGHWAY 58, CROSSING THE WEST BRANCH PASSUMPSIC RIVER, BURKE, VERMONT

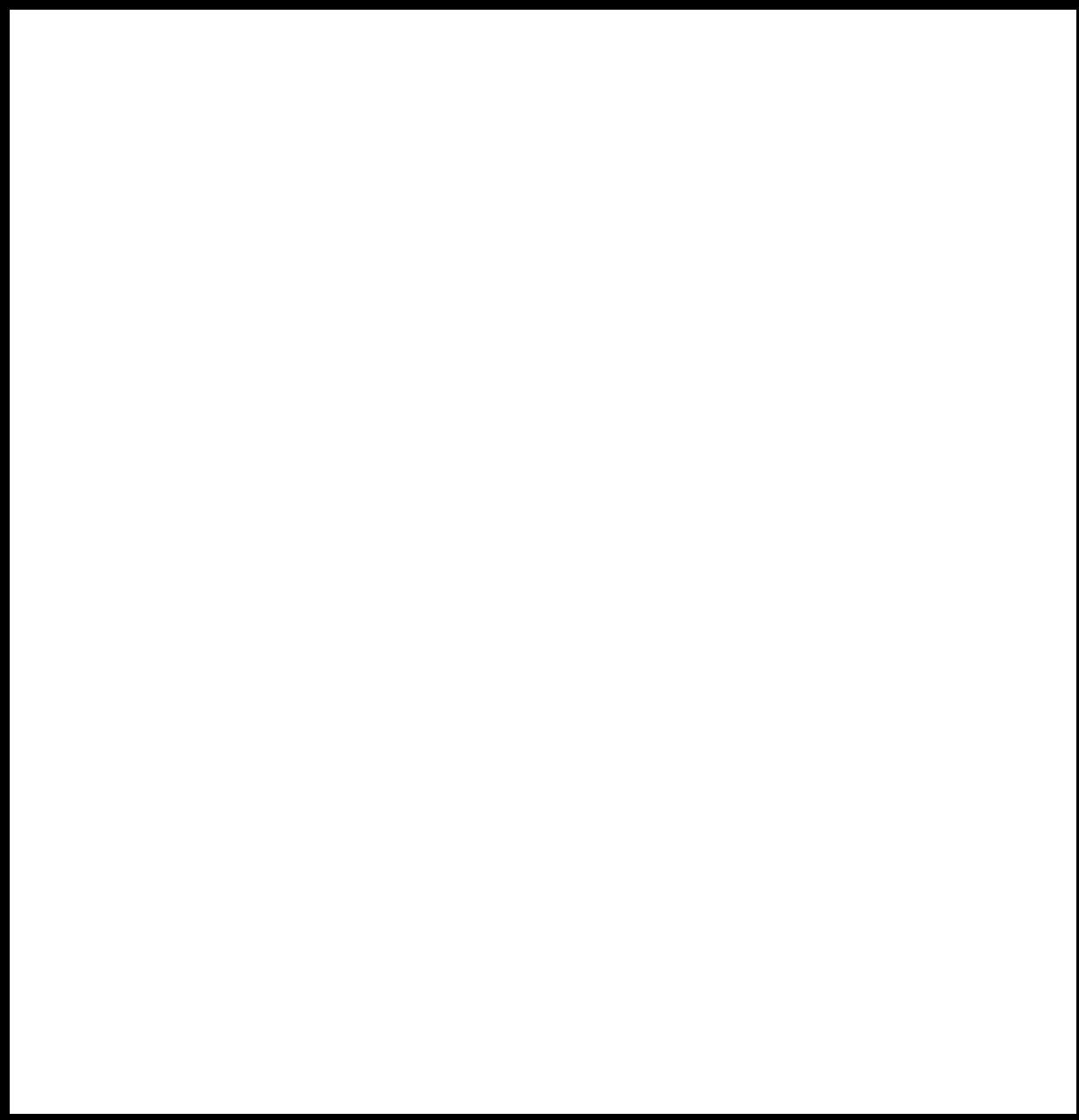
By Erick M. Boehmler and Timothy Severance

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure BURKTH00580015 on Town Highway 58 crossing the West Branch Passumpsic River, Burke, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D.

The site is in the White Mountain section of the New England physiographic province in northeastern Vermont. The 39.1-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover consists of shrubs and brush on the downstream banks and the upstream left bank. The surface cover is forest on the upstream right bank.

In the study area, the West Branch Passumpsic River has an incised, sinuous channel with a slope of approximately 0.006 ft/ft, an average channel top width of 42 ft and an average bank height of 3 ft. The channel bed material ranges from sand to cobbles with a median grain size (D_{50}) of 65.3 mm (0.214 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 9, 1995, indicated that the reach was stable.


The Town Highway 58 crossing of the West Branch Passumpsic River is a 30-ft-long, two-lane bridge consisting of one 26-foot concrete tee-beam span (Vermont Agency of Transportation, written communication, March 24, 1995). The opening length of the structure parallel to the bridge face is 25.3 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 15 degrees to the opening while the opening-skew-to-roadway is zero degrees.

Scour holes 0.75 to 1.0 ft deeper than the mean thalweg depth were observed along both abutment walls. The abutment footings were exposed for 2 ft above the streambed and the left abutment footing was undermined at the time of the Level I assessment. The only scour protection measure at the site was stone fill. Type-1 stone fill (less than 12 inches diameter) was observed along the upstream right bank and the upstream end of the upstream right wingwall. Type-2 stone fill (less than 36 inches diameter) was observed at the downstream end of the downstream right wingwall and along the downstream left bank. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E.

Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 2.2 to 5.9 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 13.7 to 25.5 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

Plymouth, VT. Quadrangle, 1:24,000, 1966
Photoinspected 1983

Figure 1. Location of study area on USGS 1:24,000 scale map.

Figure 2. Location of study area on Vermont Agency of Transportation town highway map.

LEVEL II SUMMARY

Structure Number BURKTH00580015 **Stream** West Branch Passumpsic River
County Caledonia **Road** TH 58 **District** 7

Description of Bridge

Bridge length 30 ft **Bridge width** 20.2 ft **Max span length** 26 ft
Alignment of bridge to road (on curve or straight) Curved on left and straight on right

Abutment type Vertical, concrete **Embankment type** Sloping

Stone fill on abutment? No **Date of inspection** 8/9/95

Description of stone fill Type-1 on the upstream end of the upstream right wingwall and type-2

Description of stone fill on the downstream end of the downstream right wingwall.

Abutments and wingwalls are concrete. Exposed
 footings were observed at each abutment for as much as 2 feet above the streambed and the left
 abutment was slightly undermined on 8/9/95.

Yes 15

Is bridge skewed to flood flow according to survey? Yes **Angle**

Description of bridge skew There is a mild channel bend in the upstream reach, which directs flow toward the right abutment.

Date of inspection 8/9/95

Debris accumulation on bridge at time of Level I or Level II site visit:

Level I Date of inspection 0	Percent of channel blocked horizontally 0	Percent of channel blocked vertically 8/9/95 Low.
--	---	--

Level II
Description of debris accumulation A railroad bridge crosses the river about 100 feet downstream of this bridge (8/9/95).

Potential for debris

Description of features near or at the bridge that may affect flow (include observation date)

Description of the Geomorphic Setting

General topography The channel is located in a moderate relief valley setting with little to no flood plain and steep valley walls on both sides.

Geomorphic conditions at bridge site: downstream (DS), upstream (US)

Date of inspection 8/9/95

DS left: Steep bank and a narrow, flat overbank (railroad).

DS right: Moderately sloped bank.

US left: Moderately sloped bank and a narrow, irregular overbank.

US right: Steep bank and valley wall.

Description of the Channel

Average top width	42	Average depth	3
	Gravel / Cobbles		Sand to Cobbles
Predominant bed material		Bank material	Perennial but flashy,
			and sinuous with semi-alluvial channel boundaries and narrow point bars.

8/9/95

Vegetative cover: Brush with some shrubs.

DS left: Brush with some shrubs and small trees.

DS right: Shrubs and small trees with some brush.

US left: Trees.

US right: Yes

Do banks appear stable? Yes

date of observation: 8/9/95

None were observed on

8/9/95.
Describe any obstructions in channel and date of observation.

Hydrology

Drainage area 39.1 mi^2

Percentage of drainage area in physiographic provinces: (approximate)

Physiographic province/section	Percent of drainage area
New England / White Mountain	<u>100</u>

Is drainage area considered rural or urban? Rural Describe any significant urbanization: _____

Is there a USGS gage on the stream of interest? No
--
USGS gage description --
USGS gage number --
Gage drainage area mi² No

Is there a lake/p _____

3,650 Calculated Discharges 5,100
Q100 ft^3/s Q500 ft^3/s
The 100- and 500-year discharges are the same as

those discharges selected and modeled in the Flood Insurance Study for the Town of Burke (FEMA, December, 1979) at this site. These discharge values are within the range defined by flood frequency curves derived from several empirical methods (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1957a&b; Talbot, 1887). Each curve was extended graphically to the 500-year event.

Description of the Water-Surface Profile Model (WSPRO) Analysis

<i>Datum for WSPRO analysis (USGS survey, sea level, VTAOT plans)</i>	<u>NGVD</u>
<i>Datum tie between USGS survey and VTAOT plans</i>	<u>None. The USGS surveyed points were increased by 289.8 feet to obtain the National Geodetic Vertical Datum of 1929.</u>
<i>Description of reference marks used to determine USGS datum.</i>	<u>RM1 is the center point of a chiseled “X” on top of the upstream concrete guard rail at the right end (elev. 504.40 ft, arbitrary survey datum). RM2 is the center point of a chiseled “X” on top of the downstream guard rail at the left end (elev. 504.05 ft, arbitrary survey datum). RM9 (FEMA, 1979) is a U.S. Coastal and Geodetic Survey Benchmark set in the downstream end of the left abutment concrete of the railroad bridge about 100 feet downstream of this site (elev. 500.71 feet, arbitrary survey datum).</u>

Cross Sections Used in WSPRO Analysis

¹ <i>Cross-section</i>	<i>Section Reference Distance (SRD) in feet</i>	² <i>Cross-section development</i>	<i>Comments</i>
SEC-C	0	5	Flood Insurance Study section “C”
EXITX	41	1	Exit section
FULLV	59	2	Downstream Full-valley section (Templated from EXITX)
BRIDG	59	1	Bridge section
RDWAY	69	1	Road Grade section
APPRO	107	1	Approach section

¹ For location of cross-sections see plan-view sketch included with Level I field form, Appendix E.
For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.038 to 0.050, and overbank "n" values ranged from 0.050 to 0.1.

The starting water surface elevation for the 100- and 500-year discharges was the water surface computed at cross section "C" (SEC-C) from the Flood Insurance Study model output for the Town of Burke (FEMA, 1979). For the incipient roadway-overtopping discharge, the starting water surface elevation was obtained based on a rating of the discharges and water surface elevations computed at SEC-C.

The approach section (APPRO) was surveyed one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This location provides a consistent method for determining scour variables.

Bridge Hydraulics Summary

Average bridge embankment elevation 791.9 ft
Average low steel elevation 787.7 ft

100-year discharge 3,650 ft³/s
Water-surface elevation in bridge opening 783.8 ft
Road overtopping? No *Discharge over road* -- ft³/s
Area of flow in bridge opening 268 ft²
Average velocity in bridge opening 13.6 ft/s
Maximum WSPRO tube velocity at bridge 20.0 ft/s

Water-surface elevation at Approach section with bridge 786.8
Water-surface elevation at Approach section without bridge 785.6
Amount of backwater caused by bridge 1.2 ft

500-year discharge 5,100 ft³/s
Water-surface elevation in bridge opening 787.8 ft
Road overtopping? Yes *Discharge over road* 147 ft³/s
Area of flow in bridge opening 366 ft²
Average velocity in bridge opening 13.6 ft/s
Maximum WSPRO tube velocity at bridge 18.3 ft/s

Water-surface elevation at Approach section with bridge 792.5
Water-surface elevation at Approach section without bridge 788.5
Amount of backwater caused by bridge 4.0 ft

Incipient overtopping discharge 4,520 ft³/s
Water-surface elevation in bridge opening 787.8 ft
Area of flow in bridge opening 366 ft²
Average velocity in bridge opening 12.4 ft/s
Maximum WSPRO tube velocity at bridge 16.7 ft/s

Water-surface elevation at Approach section with bridge 791.3
Water-surface elevation at Approach section without bridge 787.4
Amount of backwater caused by bridge 3.9 ft

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analyses for the 100- and 500-year discharges are presented in tables 1 and 2 and the scour depths are shown graphically in figure 8.

Contraction scour for the 100-year discharge was computed by use of the Laursen clear-water contraction scour equation (Richardson and Davis, 1995, p. 32, equation 20). At this site, the 500-year discharge and the incipient roadway-overtopping discharge resulted in orifice flow. Contraction scour at bridges with orifice flow is best estimated by use of the Chang pressure-flow scour equation (oral communication, J. Sterling Jones, October 4, 1996). Thus, contraction scour for these discharges was computed by use of the Chang equation (Richardson and Davis, 1995, p. 145-146). The streambed armoring depths computed suggest that armoring will not limit the depth of contraction scour.

For comparison, contraction scour for the 500-year discharge and the incipient roadway-overtopping discharge also was computed by use of the Laursen clear-water contraction scour equation and the Umbrell pressure-flow equation (Richardson and Davis, 1995, p. 144). Furthermore, contraction scour for these discharges was computed by substituting estimates for the depth of flow at the downstream bridge face in the contraction scour equations. Results with respect to these alternative computations are provided in appendix F.

Abutment scour was computed by use of the Froehlich equation (Richardson and Davis, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour Results

<i>Contraction scour:</i>	<i>100-year discharge</i>	<i>500-year discharge</i>	<i>Incipient overtopping discharge</i>
	<i>(Scour depths in feet)</i>		
<i>Main channel</i>			
<i>Live-bed scour</i>	--	--	--
<i>Clear-water scour</i>	2.2	5.9	4.0
<i>Depth to armoring</i>	N/A	20.8	12.5
<i>Left overbank</i>	--	--	--
<i>Right overbank</i>	—	—	—
<i>Local scour:</i>			
<i>Abutment scour</i>	13.7	14.5	14.3
<i>Left abutment</i>	22.4	25.5	24.4
<i>Right abutment</i>	—	—	—
<i>Pier scour</i>	--	--	--
<i>Pier 1</i>	—	—	—
<i>Pier 2</i>	—	—	—
<i>Pier 3</i>	—	—	—

Riprap Sizing

<i>Abutments:</i>	<i>100-year discharge</i>	<i>500-year discharge</i>	<i>Incipient overtopping discharge</i>
	<i>(D_{50} in feet)</i>		
<i>Left abutment</i>	3.5	3.6	3.1
<i>Right abutment</i>	3.5	3.6	3.1
<i>Piers:</i>	--	--	--
<i>Pier 1</i>	—	—	—
<i>Pier 2</i>	—	—	—

SI

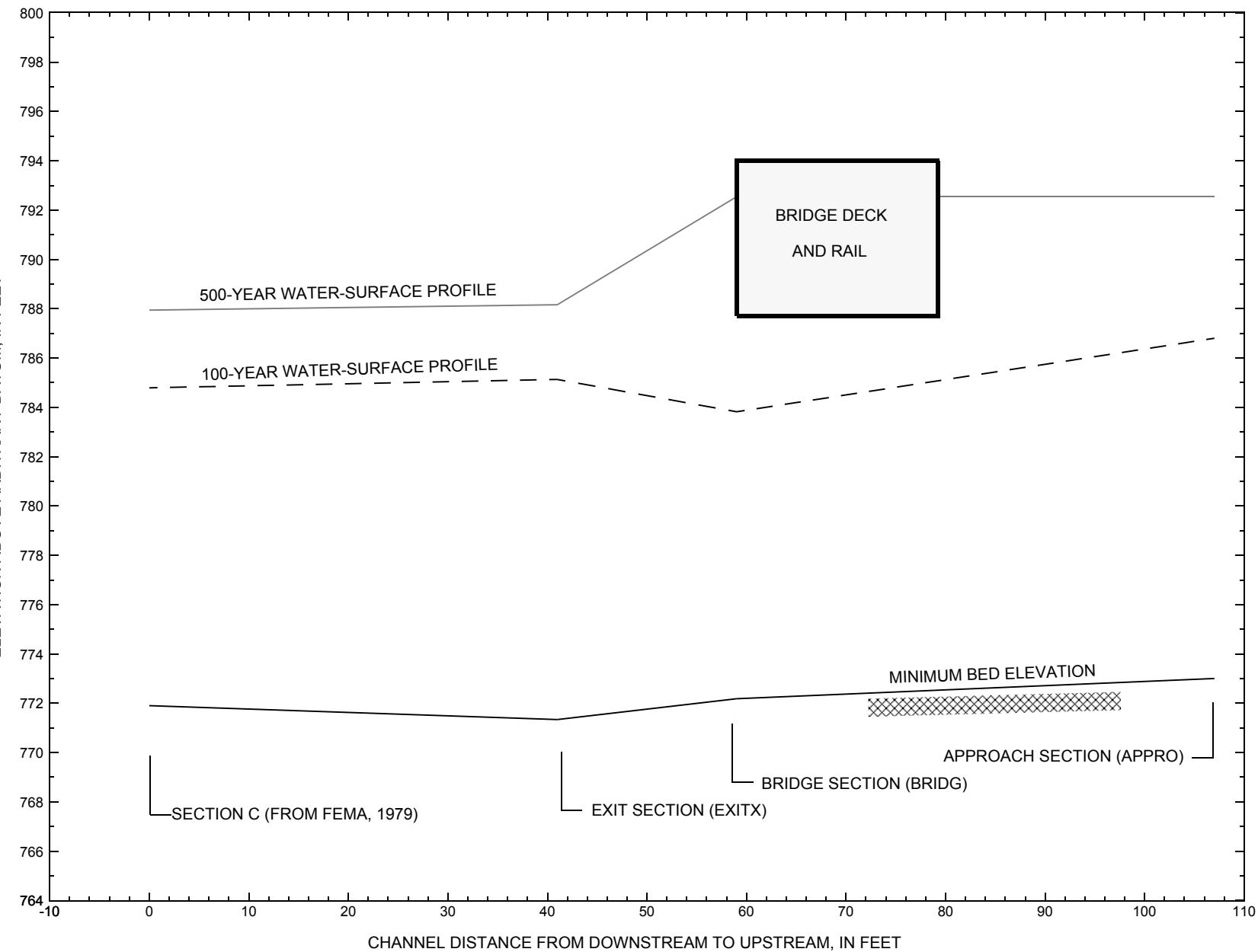


Figure 7. Water-surface profiles for the 100- and 500-year discharges at structure BURKTH00580015 on Town Highway 58, crossing the West Branch Passumpsic River, Burke, Vermont.

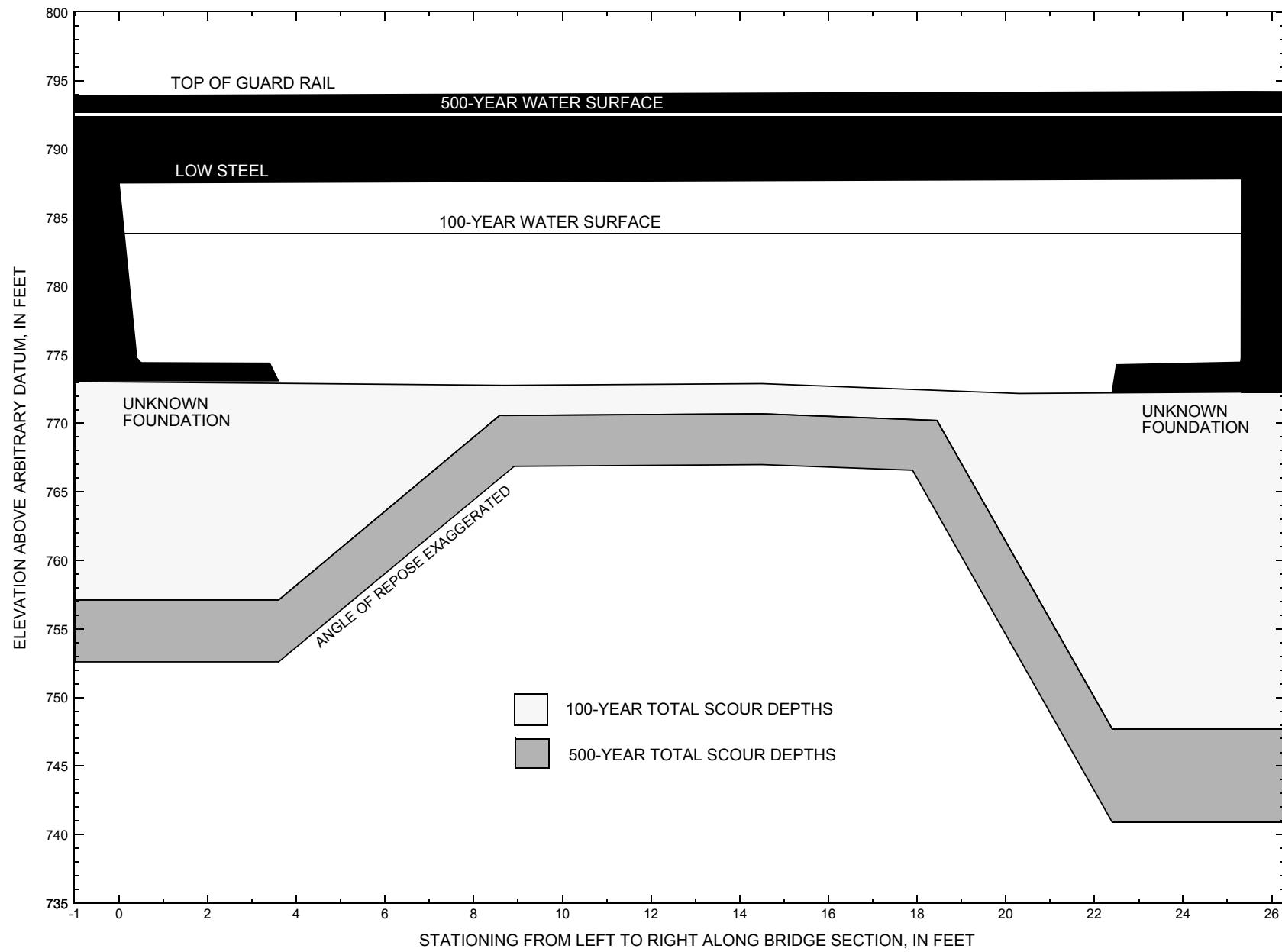


Figure 8. Scour elevations for the 100- and 500-year discharges at structure BURKTH00580015 on Town Highway 58, crossing the West Branch Passumpsic River, Burke, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure BURKTH00580015 on Town Highway 58, crossing the West Branch Passumpsic River, Burke, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing/pile elevation ² (feet)	Channel elevation at abutment/pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
100-year discharge is 3,650 cubic-feet per second											
Left abutment	0.0	--	787.5	--	773.0	2.2	13.7	--	15.9	757.1	--
Right abutment	25.3	--	787.8	--	772.3	2.2	22.4	--	24.6	747.7	--

1. Measured along the face of the most constricting side of the bridge.

2. Arbitrary datum for this study.

17

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure BURKTH00580015 on Town Highway 58, crossing the West Branch Passumpsic River, Burke, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing/pile elevation ² (feet)	Channel elevation at abutment/pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
500-year discharge is 5,100 cubic-feet per second											
Left abutment	0.0	--	787.5	--	773.0	5.9	14.5	--	20.4	752.6	--
Right abutment	25.3	--	787.8	--	772.3	5.9	25.5	--	31.4	740.9	--

1. Measured along the face of the most constricting side of the bridge.

2. Arbitrary datum for this study.

SELECTED REFERENCES

Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.

Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.

Benson, M. A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.

Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.

Federal Emergency Management Agency, 1979, Flood Insurance Study, Town of Burke, Caledonia County, Vermont: Washington, D.C., December 1979.

Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158.

Federal Highway Administration, 1993, Stream Stability and Scour at Highway Bridges: Participant Workbook: Federal Highway Administration Report FHWA-HI-91-011.

Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.

Hayes, D.C., 1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.

Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.

Johnson, C.G. and Tasker, G.D., 1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.

Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.

Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.

Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads

Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads

Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.

Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.

Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.

Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.

Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.

Talbot, A.N., 1887, The determination of water-way for bridges and culverts.

U.S. Geological Survey, 1988, Burke Mountain, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Contour Interval, 20 feet, Scale 1:24,000.

APPENDIX A:
WSPRO INPUT FILE

WSPRO INPUT FILE

T1 U.S. Geological Survey WSPRO Input File burk015.wsp
 T2 Hydraulic analysis for structure BURKTH00580015 Date: 22-JAN-98
 T3 Town Highway 58 over the West Branch Passumpsic River, Burke, VT EMB
 *
 J1 * * 0.002
 J3 6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
 *
 Q 3650.0 5100.0 4520.0
 WS 784.79 787.94 786.79
 *
 XS SEC-C 0
 GR -119.0, 800.10 -98.0, 791.20 -78.0, 788.50 -50.0, 792.00
 GR -43.0, 791.70 -29.0, 790.40 -16.0, 784.50 0.0, 776.00
 GR 3.0, 773.00 6.0, 771.90 21.0, 774.00 26.0, 776.00
 GR 67.0, 798.10
 *
 N 0.050 0.040
 SA -29.0
 *
 *
 XS EXITX 41 0.
 GR -148.6, 815.20 -117.0, 798.43 -79.9, 790.18 -70.4, 789.52
 GR -62.9, 789.48 -45.6, 791.72 -38.3, 791.30 -25.4, 789.50
 GR -7.8, 779.29 -4.3, 778.38 0.0, 774.79 3.7, 772.30
 GR 8.6, 771.34 10.7, 771.76 18.2, 772.62 23.0, 774.75
 GR 28.4, 776.94 31.8, 778.76 43.7, 785.38 51.6, 790.96
 GR 75.7, 797.38
 *
 N 0.050 0.040
 SA -25.4
 *
 *
 XS FULLV 59
 GR -259.0, 806.00 -184.0, 798.50 -169.0, 799.70 -159.0, 797.00
 GR -151.0, 794.00 -134.0, 793.80 -116.0, 791.70 -67.0, 791.00
 GR -31.0, 779.20 -16.0, 779.20 -11.0, 776.30 -3.1, 776.00
 GR -3.0, 776.00 -2.9, 774.80 0.0, 774.80 0.1, 772.90
 GR 8.0, 773.20 20.0, 772.70 20.1, 774.90 22.9, 774.90
 GR 23.0, 776.00 23.1, 793.10 65.0, 796.10 97.0, 802.00
 *
 N 0.040 0.038 0.040
 SA 0.0 20.1
 *
 * SRD LSEL XSSKEW
 BR BRIDG 59 787.68 0.0
 GR 0.0, 787.53 0.4, 774.77 0.5, 774.42 3.4, 774.39
 GR 3.6, 773.05 8.7, 772.76 14.5, 772.89 20.3, 772.18
 GR 22.4, 772.28 22.5, 774.27 25.3, 774.45 25.3, 787.83
 GR 0.0, 787.53
 *
 * BRTYPE BRWDTH WWANGL WWWID
 CD 1 30.7 * * 43.7 10.5
 N 0.042
 *
 * SRD EMBWID IPAVE
 XR RDWAY 69 20.2 1
 GR -150.2, 812.30 -115.0, 800.05 -108.1, 793.05 -77.1, 792.86

WSPRO INPUT FILE (continued)

GR	-3.8, 791.31	-3.5, 793.90	26.5, 794.20	26.6, 792.51
GR	77.7, 797.77	230.8, 820.09	327.9, 829.70	
*				
AS	APPRO 107	0.		
GR	-212.4, 820.53	-183.5, 804.59	-164.3, 799.80	-159.3, 796.11
GR	-131.8, 796.22	-115.5, 794.68	-110.5, 793.44	-96.6, 792.92
GR	-77.6, 791.40	-44.9, 790.50	-21.5, 788.62	-10.1, 779.69
GR	-5.7, 778.43	0.0, 775.87	5.3, 774.76	7.2, 773.90
GR	8.1, 773.98	11.8, 774.08	17.8, 774.17	23.5, 773.98
GR	30.1, 773.00	33.3, 774.21	38.1, 774.62	38.5, 775.08
GR	43.3, 776.26	45.5, 780.86	51.9, 786.11	63.1, 793.29
GR	92.7, 797.62			
*				
N	0.100	0.050		
SA		-21.5		
*				
HP 1	BRIDG 783.82	1 783.82		
HP 2	BRIDG 783.82	* * 3650		
HP 1	APPRO 786.81	1 786.81		
HP 2	APPRO 786.81	* * 3650		
*				
HP 1	BRIDG 787.83	1 787.83		
HP 2	BRIDG 787.83	* * 4962		
HP 2	RDWAY 792.54	* * 147		
HP 1	APPRO 792.54	1 792.54		
HP 2	APPRO 792.54	* * 5100		
*				
HP 1	BRIDG 787.83	1 787.83		
HP 2	BRIDG 787.83	* * 4520		
HP 1	BRIDG 787.17	1 787.17		
HP 1	APPRO 791.37	1 791.37		
HP 2	APPRO 791.37	* * 4520		
*				
EX				
ER				

APPENDIX B:

WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

WSPRO
V060188 FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY
MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS

U.S. Geological Survey WSPRO Input File burk015.wsp
Hydraulic analysis for structure BURKTH00580015 Date: 22-JAN-98
Town Highway 58 over the West Branch Passumpsic River, Burke, VT EMB
*** RUN DATE & TIME: 05-13-98 09:13

CROSS-SECTION PROPERTIES: ISEQ = 4; SECID = BRIDG; SRD = 59.

WSEL	SA#	AREA	K	TOPW	WETP	ALPH	LEW	REW	QCR
783.82	1	268.	30534.	25.	47.				4969.
		268.	30534.	25.	47.	1.00	0.	25.	4969.

VELOCITY DISTRIBUTION: ISEQ = 4; SECID = BRIDG; SRD = 59.

WSEL	LEW	REW	AREA	K	Q	VEL
783.82	0.1	25.3	268.3	30534.	3650.	13.60

X STA.	0.1	4.9	5.8	6.6	7.5	8.4
A(I)	45.3	9.5	9.7	9.6	9.5	
V(I)	4.03	19.19	18.76	18.97	19.30	

X STA.	8.4	9.3	10.1	11.0	12.0	12.9
A(I)	9.7	9.8	9.9	10.1	10.1	
V(I)	18.78	18.55	18.49	18.09	18.13	

X STA.	12.9	13.8	14.7	15.6	16.5	17.4
A(I)	10.0	10.0	9.8	9.7	9.8	
V(I)	18.19	18.22	18.53	18.84	18.62	

X STA.	17.4	18.2	19.0	19.8	20.6	25.3
A(I)	9.4	9.6	9.4	9.1	48.2	
V(I)	19.46	19.03	19.42	19.98	3.79	

CROSS-SECTION PROPERTIES: ISEQ = 6; SECID = APPRO; SRD = 107.

WSEL	SA#	AREA	K	TOPW	WETP	ALPH	LEW	REW	QCR
786.81	2	701.	87921.	72.	81.				12408.
		701.	87921.	72.	81.	1.00	-19.	53.	12408.

VELOCITY DISTRIBUTION: ISEQ = 6; SECID = APPRO; SRD = 107.

WSEL	LEW	REW	AREA	K	Q	VEL
786.81	-19.2	53.0	701.5	87921.	3650.	5.20

X STA.	-19.2	-3.0	0.1	2.8	5.3	7.6
A(I)	90.5	32.4	30.3	29.4	29.0	
V(I)	2.02	5.63	6.02	6.21	6.28	

X STA.	7.6	9.8	12.0	14.2	16.5	18.8
A(I)	27.9	28.6	28.1	28.6	28.6	
V(I)	6.54	6.38	6.51	6.37	6.38	

X STA.	18.8	21.1	23.3	25.5	27.6	29.6
A(I)	29.0	28.3	28.5	28.4	27.7	
V(I)	6.29	6.45	6.41	6.42	6.59	

X STA.	29.6	31.7	33.9	36.1	38.6	53.0
A(I)	27.3	28.8	27.9	30.3	91.9	
V(I)	6.68	6.34	6.54	6.03	1.99	

WSPRO OUTPUT FILE (continued)

WSPRO
V060188 FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY
MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS

U.S. Geological Survey WSPRO Input File burk015.wsp
Hydraulic analysis for structure BURKTH00580015 Date: 22-JAN-98
Town Highway 58 over the West Branch Passumpsic River, Burke, VT EMB
*** RUN DATE & TIME: 05-13-98 09:13

CROSS-SECTION PROPERTIES: ISEQ = 4; SECID = BRIDG; SRD = 59.

WSEL	SA#	AREA	K	TOPW	WETP	ALPH	LEW	REW	QCR
	1	366.	35825.	0.	80.				0.
787.83		366.	35825.	0.	80.	1.00	0.	25.	0.

VELOCITY DISTRIBUTION: ISEQ = 4; SECID = BRIDG; SRD = 59.

WSEL	LEW	REW	AREA	K	Q	VEL
787.83	0.0	25.3	365.7	35825.	4962.	13.57

X STA.	0.0	4.3	5.3	6.2	7.2	8.1
A(I)	54.8	14.3	14.0	13.9	14.0	
V(I)	4.53	17.38	17.68	17.88	17.75	

X STA.	8.1	9.1	10.0	11.0	11.9	12.9
A(I)	14.0	14.4	14.2	14.5	14.5	
V(I)	17.77	17.25	17.53	17.14	17.15	

X STA.	12.9	13.9	14.9	15.8	16.8	17.7
A(I)	14.5	14.5	14.3	14.0	13.8	
V(I)	17.08	17.07	17.36	17.67	17.93	

X STA.	17.7	18.6	19.5	20.4	21.2	25.3
A(I)	13.9	13.8	13.5	13.7	57.2	
V(I)	17.86	17.92	18.31	18.16	4.34	

VELOCITY DISTRIBUTION: ISEQ = 5; SECID = RDWAY; SRD = 69.

WSEL	LEW	REW	AREA	K	Q	VEL
792.54	-62.0	26.9	35.9	954.	147.	4.10

X STA.	-62.0	-31.6	-29.0	-26.7	-24.6	-22.8
A(I)	9.8	1.8	1.7	1.6	1.5	
V(I)	0.75	4.15	4.45	4.60	4.97	

X STA.	-22.8	-21.0	-19.5	-17.9	-16.6	-16.2
A(I)	1.5	1.4	1.4	1.3	0.3	
V(I)	5.00	5.30	5.32	5.59	23.77	

X STA.	-16.2	-15.6	-14.1	-12.7	-11.3	-10.0
A(I)	0.6	1.5	1.5	1.5	1.4	
V(I)	12.70	4.86	4.95	4.99	5.11	

X STA.	-10.0	-8.7	-7.5	-6.2	-5.1	26.9
A(I)	1.5	1.4	1.4	1.3	1.7	
V(I)	5.07	5.37	5.21	5.47	4.34	

CROSS-SECTION PROPERTIES: ISEQ = 6; SECID = APPRO; SRD = 107.

WSEL	SA#	AREA	K	TOPW	WETP	ALPH	LEW	REW	QCR
	1	130.	2907.	70.	70.				1001.
	2	1152.	181314.	83.	95.				24285.
792.54		1282.	184221.	154.	165.	1.18	-92.	62.	19321.

VELOCITY DISTRIBUTION: ISEQ = 6; SECID = APPRO; SRD = 107.

WSEL	LEW	REW	AREA	K	Q	VEL
792.54	-91.8	61.9	1281.7	184221.	5100.	3.98

X STA.	-91.8	-9.9	-5.8	-2.1	1.0	3.8
A(I)	227.5	56.4	53.8	50.9	48.9	
V(I)	1.12	4.52	4.74	5.01	5.22	

X STA.	3.8	6.5	9.1	11.6	14.2	16.8
A(I)	47.9	47.8	46.9	47.9	47.8	
V(I)	5.32	5.34	5.44	5.33	5.34	

X STA.	16.8	19.3	21.8	24.3	26.8	29.1
A(I)	46.4	46.6	45.7	46.2	44.2	
V(I)	5.50	5.48	5.58	5.52	5.77	

X STA.	29.1	31.5	33.9	36.5	39.2	61.9
A(I)	46.6	46.0	46.1	48.2	189.9	
V(I)	5.48	5.54	5.53	5.29	1.34	

WSPRO OUTPUT FILE (continued)

WSPRO FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY
V060188 MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS

U.S. Geological Survey WSPRO Input File burk015.wsp
Hydraulic analysis for structure BURKTH00580015 Date: 22-JAN-98
Town Highway 58 over the West Branch Passumpsic River, Burke, VT EMB
*** RUN DATE & TIME: 05-13-98 09:13

CROSS-SECTION PROPERTIES: ISEQ = 4; SECID = BRIDG; SRD = 59.

WSEL	SA#	AREA	K	TOPW	WETP	ALPH	LEW	REW	QCR
787.83	1	366.	35825.	0.	80.				0.
		366.	35825.	0.	80.	1.00	0.	25.	0.

VELOCITY DISTRIBUTION: ISEQ = 4; SECID = BRIDG; SRD = 59.

WSEL	LEW	REW	AREA	K	Q	VEL
787.83	0.0	25.3	365.7	35825.	4520.	12.36

X STA.	0.0	4.3	5.3	6.2	7.2	8.1
A(I)	54.8	14.3	14.0	13.9	14.0	
V(I)	4.12	15.83	16.10	16.29	16.17	

X STA.	8.1	9.1	10.0	11.0	11.9	12.9
A(I)	14.0	14.4	14.2	14.5	14.5	
V(I)	16.19	15.71	15.97	15.61	15.62	

X STA.	12.9	13.9	14.9	15.8	16.8	17.7
A(I)	14.5	14.5	14.3	14.0	13.8	
V(I)	15.55	15.55	15.81	16.10	16.34	

X STA.	17.7	18.6	19.5	20.4	21.2	25.3
A(I)	13.9	13.8	13.5	13.7	57.2	
V(I)	16.27	16.32	16.68	16.55	3.95	

CROSS-SECTION PROPERTIES: ISEQ = 4; SECID = BRIDG; SRD = 59.

WSEL	SA#	AREA	K	TOPW	WETP	ALPH	LEW	REW	QCR
787.17	1	353.	44078.	25.	53.				7479.
		353.	44078.	25.	53.	1.00	0.	25.	7479.

CROSS-SECTION PROPERTIES: ISEQ = 6; SECID = APPRO; SRD = 107.

WSEL	SA#	AREA	K	TOPW	WETP	ALPH	LEW	REW	QCR
791.37	1	56.	846.	55.	55.				322.
	2	1055.	159132.	82.	93.				21533.
		1111.	159978.	137.	148.	1.09	-77.	60.	17215.

VELOCITY DISTRIBUTION: ISEQ = 6; SECID = APPRO; SRD = 107.

WSEL	LEW	REW	AREA	K	Q	VEL
791.37	-76.5	60.1	1111.4	159978.	4520.	4.07

X STA.	-76.5	-8.1	-4.1	-0.8	2.1	4.8
A(I)	162.0	51.2	48.4	45.4	43.5	
V(I)	1.39	4.41	4.67	4.98	5.20	

X STA.	4.8	7.4	9.9	12.3	14.8	17.4
A(I)	44.2	42.6	42.6	43.5	43.4	
V(I)	5.12	5.31	5.30	5.19	5.20	

X STA.	17.4	19.8	22.3	24.6	27.0	29.2
A(I)	42.1	42.3	41.6	42.1	40.3	
V(I)	5.36	5.34	5.43	5.36	5.61	

X STA.	29.2	31.5	34.0	36.4	39.1	60.1
A(I)	41.2	42.9	41.8	43.7	166.4	
V(I)	5.49	5.27	5.41	5.17	1.36	

WSPRO OUTPUT FILE (continued)

WSPRO FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY
V060188 MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS

U.S. Geological Survey WSPRO Input File burk015.wsp
Hydraulic analysis for structure BURKTH00580015 Date: 22-JAN-98
Town Highway 58 over the West Branch Passumpsic River, Burke, VT EMB
*** RUN DATE & TIME: 05-13-98 09:13

XSID:CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL	

SEC-C:XS	*****	-17.	439.	1.08	*****	785.87	781.60	3650.	784.79
0.	*****	42.	58206.	1.00	*****	*****	0.54	8.32	

EXITX:XS	41.	-18.	488.	0.87	0.14	786.00	*****	3650.	785.13
41.	41.	43.	67644.	1.00	0.00	0.00	0.47	7.48	

FULLV:FV	18.	-49.	566.	0.78	0.04	786.05	*****	3650.	785.26
59.	18.	23.	81186.	1.21	0.00	0.00	0.45	6.45	

<<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>

APPRO:AS	48.	-18.	617.	0.54	0.11	786.15	*****	3650.	785.61
107.	48.	51.	73375.	1.00	0.00	0.00	0.35	5.92	

<<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>

<<<<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>

XSID:CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL	

BRIDG:BR	18.	0.	268.	2.88	0.12	786.70	781.85	3650.	783.82
59.	18.	25.	30553.	1.00	0.58	-0.01	0.73	13.60	

TYPE	PPCD	FLOW	C	P/A	LSEL	BLEN	XLAB	XRAB
1.	****	1.	1.000	*****	787.68	*****	*****	*****

XSID:CODE	SRD	FLEN	HF	VHD	EGL	ERR	Q	WSEL
RDWAY:RG	69.							

<<<<EMBANKMENT IS NOT OVERTOPPED>>>>

XSID:CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL	

APPRO:AS	17.	-19.	702.	0.42	0.10	787.23	780.31	3650.	786.81
107.	20.	53.	87963.	1.00	0.44	0.01	0.29	5.20	

M(G)	M(K)	KQ	XLKQ	XRKQ	OTEL
0.634	0.396	53054.	6.	31.	786.77

<<<<END OF BRIDGE COMPUTATIONS>>>>

FIRST USER DEFINED TABLE.

XSID:CODE	SRD	LEW	REW	Q	K	AREA	VEL	WSEL
SEC-C:XS	0.	-17.	42.	3650.	58206.	439.	8.32	784.79
EXITX:XS	41.	-18.	43.	3650.	67644.	488.	7.48	785.13
FULLV:FV	59.	-49.	23.	3650.	81186.	566.	6.45	785.26
BRIDG:BR	59.	0.	25.	3650.	30553.	268.	13.60	783.82
RDWAY:RG	69.	*****	*****	0.	*****	*****	1.00*****	*****
APPRO:AS	107.	-19.	53.	3650.	87963.	702.	5.20	786.81

XSID:CODE	XLKQ	XRKQ	KQ
APPRO:AS	6.	31.	53054.

SECOND USER DEFINED TABLE.

XSID:CODE	CRWS	FR#	YMIN	YMAX	HF	HO	VHD	EGL	WSEL
SEC-C:XS	781.60	0.54	771.90	800.10*****	1.08	785.87	784.79		
EXITX:XS	*****	0.47	771.34	815.20	0.14	0.00	0.87	786.00	785.13
FULLV:FV	*****	0.45	772.70	806.00	0.04	0.00	0.78	786.05	785.26
BRIDG:BR	781.85	0.73	772.18	787.83	0.12	0.58	2.88	786.70	783.82
RDWAY:RG	*****	*****	791.31	829.70*****	*****	*****	*****	*****	*****
APPRO:AS	780.31	0.29	773.00	820.53	0.10	0.44	0.42	787.23	786.81

WSPRO OUTPUT FILE (continued)

WSPRO FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY
V060188 MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS

U.S. Geological Survey WSPRO Input File burk015.wsp
Hydraulic analysis for structure BURKTH00580015 Date: 22-JAN-98
Town Highway 58 over the West Branch Passumpsic River, Burke, VT EMB
*** RUN DATE & TIME: 05-13-98 09:13

XSID:CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL	
SEC-C:XS	*****	-24.	645.	0.97	*****	788.91	783.21	5100.	787.94
0.	*****	48.	96863.	1.00	*****	*****	0.47	7.91	
EXITX:XS	41.	-23.	688.	0.85	0.10	789.01	*****	5100.	788.16
41.	41.	48.	108088.	1.00	0.00	0.00	0.42	7.41	
FULLV:FV	18.	-59.	799.	0.76	0.03	789.04	*****	5100.	788.29
59.	18.	23.	131923.	1.19	0.00	0.00	0.39	6.38	
<<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>									
APPRO:AS	48.	-21.	831.	0.59	0.09	789.13	*****	5100.	788.54
107.	48.	56.	111094.	1.00	0.00	0.00	0.33	6.14	
<<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>									

==255 ATTEMPTING FLOW CLASS 3 (6) SOLUTION.
WS3N, LSEL = 788.29 787.68

<<<<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>

XSID:CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL	
BRIDG:BR	18.	0.	366.	2.86	*****	790.69	783.82	4962.	787.83
59.	*****	25.	35825.	1.00	*****	*****	0.63	13.57	
TYPE PPCD FLOW	C	P/A	LSEL	BLEN	XLAB	XRAB			
1. *****	6.	0.800	*****	787.68	*****	*****	*****		
XSID:CODE	SRD	FLEN	HF	VHD	EGL	ERR	Q	WSEL	
RDWAY:RG	69.	28.	0.02	0.29	792.81	0.00	147.	792.54	
LT:	147.	58.	-62.	-4.	1.2	0.6	4.3	4.1	0.9 3.0
RT:	0.	1.	27.	27.	0.1	0.0	2.4	16.3	0.3 3.0
XSID:CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL	
APPRO:AS	17.	-92.	1281.	0.29	0.08	792.83	781.65	5100.	792.54
107.	20.	62.	184183.	1.18	0.44	0.00	0.26	3.98	
M(G)	M(K)	KQ	XLKQ	XRKQ	OTEL				
*****	*****	*****	*****	*****	*****				

<<<<END OF BRIDGE COMPUTATIONS>>>>

FIRST USER DEFINED TABLE.

XSID:CODE	SRD	LEW	REW	Q	K	AREA	VEL	WSEL
SEC-C:XS	0.	-24.	48.	5100.	96863.	645.	7.91	787.94
EXITX:XS	41.	-23.	48.	5100.	108088.	688.	7.41	788.16
FULLV:FV	59.	-59.	23.	5100.	131923.	799.	6.38	788.29
BRIDG:BR	59.	0.	25.	4962.	35825.	366.	13.57	787.83
RDWAY:RG	69.*****	147.	*****	*****	*****	0.	1.00	792.54
APPRO:AS	107.	-92.	62.	5100.	184183.	1281.	3.98	792.54
XSID:CODE	XLKQ	XRKQ	KQ					
APPRO:AS	*****	*****	*****					

SECOND USER DEFINED TABLE.

XSID:CODE	CRWS	FR#	YMIN	YMAX	HF	HO	VHD	EGL	WSEL
SEC-C:XS	783.21	0.47	771.90	800.10*****	*****	0.97	788.91	787.94	
EXITX:XS	*****	0.42	771.34	815.20	0.10	0.00	0.85	789.01	788.16
FULLV:FV	*****	0.39	772.70	806.00	0.03	0.00	0.76	789.04	788.29
BRIDG:BR	783.82	0.63	772.18	787.83*****	*****	2.86	790.69	787.83	
RDWAY:RG	*****	791.31	829.70	0.02*****	*****	0.29	792.81	792.54	
APPRO:AS	781.65	0.26	773.00	820.53	0.08	0.44	0.29	792.83	792.54

WSPRO OUTPUT FILE (continued)

WSPRO FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY
V060188 MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS

U.S. Geological Survey WSPRO Input File burk015.wsp
Hydraulic analysis for structure BURKTH00580015 Date: 22-JAN-98
Town Highway 58 over the West Branch Passumpsic River, Burke, VT EMB
*** RUN DATE & TIME: 05-13-98 09:13

XSID:CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL	
SEC-C:XS	*****	-21.	565.	1.00	*****	787.79	782.57	4520.	786.79
0.	*****	46.	81300.	1.00	*****	*****	0.49	8.00	
EXITX:XS	41.	-21.	611.	0.85	0.11	787.89	*****	4520.	787.04
41.	41.	46.	91941.	1.00	0.00	0.00	0.43	7.40	
FULLV:FV	18.	-55.	710.	0.76	0.04	787.93	*****	4520.	787.17
59.	18.	23.	111722.	1.20	0.00	0.00	0.41	6.37	
<<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>									
APPRO:AS	48.	-20.	748.	0.57	0.09	788.02	*****	4520.	787.45
107.	48.	54.	96162.	1.00	0.00	0.00	0.33	6.04	
<<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>									

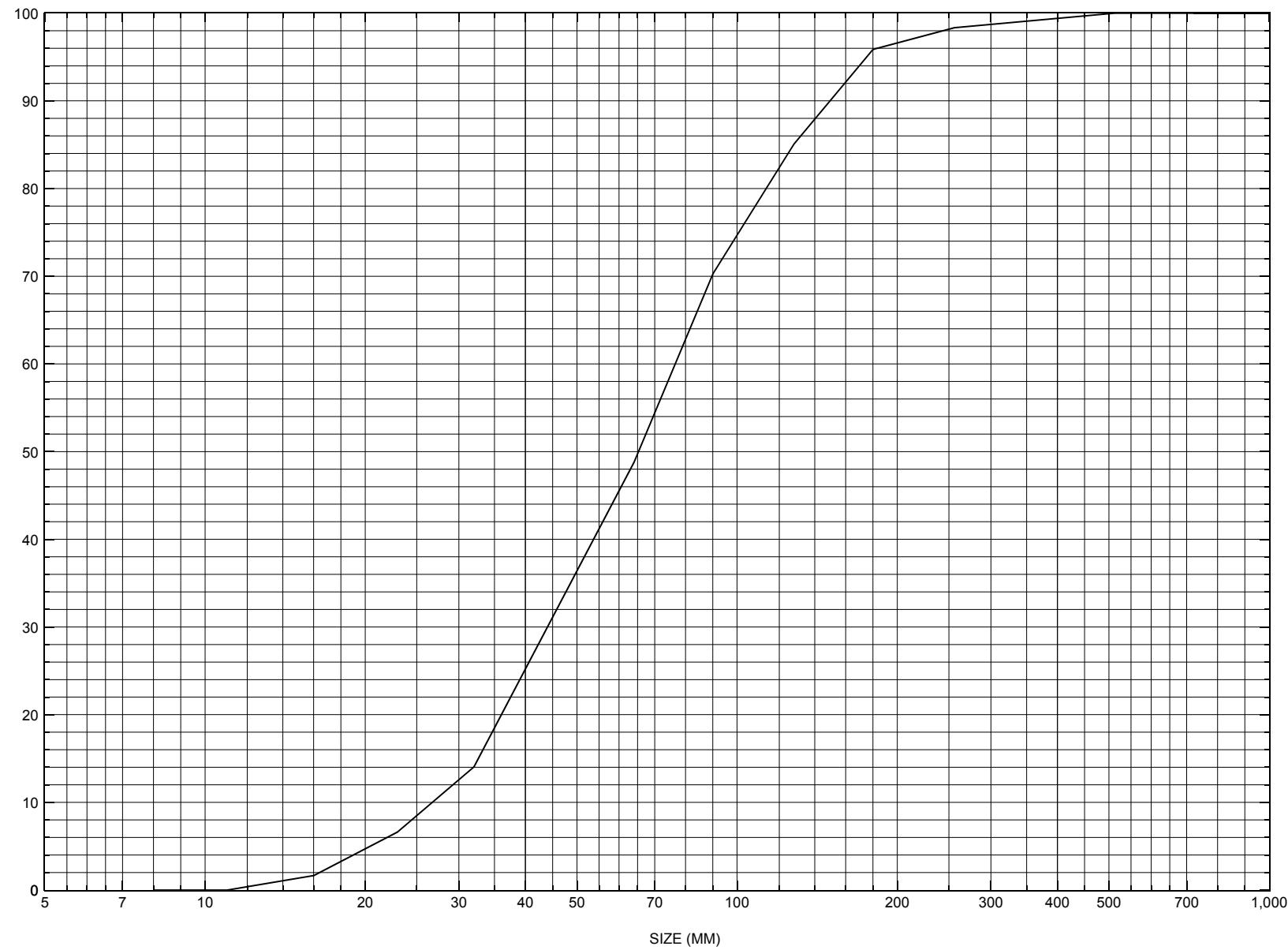
==220 FLOW CLASS 1 (4) SOLUTION INDICATES POSSIBLE PRESSURE FLOW.
WS3,WSIU,WS1,LSEL = 785.51 788.81 788.91 787.68

==245 ATTEMPTING FLOW CLASS 2 (5) SOLUTION.

<<<<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>									
XSID:CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL	
BRIDG:BR	18.	0.	366.	2.37	*****	790.20	783.17	4517.	787.83
59.	*****	25.	35825.	1.00	*****	*****	0.57	12.35	
TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB									
1.	*****	2.	0.462	*****	787.68	*****	*****	*****	
XSID:CODE	SRD	FLEN	HF	VHD	EGL	ERR	Q	WSEL	
RDWAY:RG	69.	<<<<EMBANKMENT IS NOT OVERTOPPED>>>>							
XSID:CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL	
APPRO:AS	17.	-75.	1107.	0.28	0.07	791.62	781.12	4520.	791.34
107.	20.	60.	159341.	1.09	0.45	0.00	0.26	4.08	
M(G)	M(K)	KQ	XLKQ	XRKQ	OTEL				
*****	*****	*****	*****	*****	791.31				

<<<<END OF BRIDGE COMPUTATIONS>>>>

FIRST USER DEFINED TABLE.


XSID:CODE	SRD	LEW	REW	Q	K	AREA	VEL	WSEL
SEC-C:XS	0.	-21.	46.	4520.	81300.	565.	8.00	786.79
EXITX:XS	41.	-21.	46.	4520.	91941.	611.	7.40	787.04
FULLV:FV	59.	-55.	23.	4520.	111722.	710.	6.37	787.17
BRIDG:BR	59.	0.	25.	4517.	35825.	366.	12.35	787.83
RDWAY:RG	69.	*****	0.	0.	0.	0.	1.00*****	
APPRO:AS	107.	-75.	60.	4520.	159341.	1107.	4.08	791.34
XSID:CODE	XLKQ	XRKQ	KQ					
APPRO:AS	*****	*****	*****					

SECOND USER DEFINED TABLE.

XSID:CODE	CRWS	FR#	YMIN	YMAX	HF	HO	VHD	EGL	WSEL
SEC-C:XS	782.57	0.49	771.90	800.10*****	1.00	787.79	786.79		
EXITX:XS	*****	0.43	771.34	815.20	0.11	0.00	0.85	787.89	787.04
FULLV:FV	*****	0.41	772.70	806.00	0.04	0.00	0.76	787.93	787.17
BRIDG:BR	783.17	0.57	772.18	787.83*****	2.37	790.20	787.83		
RDWAY:RG	*****	791.31	829.70*****	0.28	791.60*****				
APPRO:AS	781.12	0.26	773.00	820.53	0.07	0.45	0.28	791.62	791.34

APPENDIX C:

BED-MATERIAL PARTICLE-SIZE DISTRIBUTION

Appendix C. Bed material particle-size distribution for a pebble count in the channel approach of structure BURKTH00580015, in Burke, Vermont.

APPENDIX D:
HISTORICAL DATA FORM

Structure Number BURKTH00580015

General Location Descriptive

Data collected by (First Initial, Full last name) E. BOEHMLER

Date (MM/DD/YY) 03 / 24 / 95

Highway District Number (I - 2; nn) 07

County (FIPS county code; I - 3; nnn) 005

Town (FIPS place code; I - 4; nnnnn) 10450

Mile marker (I - 11; nnn.nnn) 000000

Waterway (I - 6) [West Branch] Passumpsic River

Road Name (I - 7): -

Route Number TH058

Vicinity (I - 9) 0.1 MI JCT TH 58 + US 5

Topographic Map Burke.Mountain

Hydrologic Unit Code: 01080102

Latitude (I - 16; nnnn.n) 44362

Longitude (I - 17; nnnnn.n) 71582

Select Federal Inventory Codes

FHWA Structure Number (I - 8) 10030200150302

Maintenance responsibility (I - 21; nn) 03 Maximum span length (I - 48; nnnn) 0026

Year built (I - 27; YYYY) 1922 Structure length (I - 49; nnnnnn) 000030

Average daily traffic, ADT (I - 29; nnnnnn) 000250 Deck Width (I - 52; nn.n) 202

Year of ADT (I - 30; YY) 92 Channel & Protection (I - 61; n) 5

Opening skew to Roadway (I - 34; nn) 00 Waterway adequacy (I - 71; n) 7

Operational status (I - 41; X) A Underwater Inspection Frequency (I - 92B; XYY) N

Structure type (I - 43; nnn) 104 Year Reconstructed (I - 106) 0000

Approach span structure type (I - 44; nnn) 000 Clear span (nnn.n ft) 022.5

Number of spans (I - 45; nnn) 001 Vertical clearance from streambed (nnn.n ft) 014.9

Number of approach spans (I - 46; nnnn) 0000 Waterway of full opening (nnn.n ft²) 335.2

Comments:

The structural inspection report of 10/31/94 indicates the structure is a concrete tee-beam type bridge. The abutment walls and wingwalls are concrete and have a few minor fine cracks and small spalls overall. The right abutment has small surface spalls along the bottom of the wall. The left abutment and its wingwalls, according to the report, have one to two foot sections of deep spalling along the bottom of the walls with reinforcement bars exposed. The water is about 2 feet deep along each abutment. Some boulder stone fill is reported protecting the banks upstream and downstream. The banks are noted as showing signs of previous erosion.

Bridge Hydrologic Data

Is there hydrologic data available? N if No, type *ctrl-n h* VTAOT Drainage area (mi^2): _____

Terrain character: _____

Stream character & type: _____

Streambed material: _____

Discharge Data (cfs): $Q_{2.33}$ _____ Q_{10} _____ Q_{25} _____
 Q_{50} _____ Q_{100} _____ Q_{500} _____

Record flood date (MM / DD / YY): _____ / _____ / _____ Water surface elevation (ft): _____

Estimated Discharge (cfs): _____ Velocity at Q _____ (ft/s): _____

Ice conditions (Heavy, Moderate, Light) : _____ Debris (Heavy, Moderate, Light): _____

The stage increases to maximum highwater elevation (Rapidly, Not rapidly): _____

The stream response is (Flashy, Not flashy): _____

Describe any significant site conditions upstream or downstream that may influence the stream's stage: _____

Watershed storage area (in percent): _____ %

The watershed storage area is: _____ (1-mainly at the headwaters; 2-uniformly distributed; 3-immediately upstream of the site)

Water Surface Elevation Estimates for Existing Structure:

Peak discharge frequency	$Q_{2.33}$	Q_{10}	Q_{25}	Q_{50}	Q_{100}
Water surface elevation (ft)	-	-	-	-	-
Velocity (ft / sec)	-	-	-	-	-

Long term stream bed changes: _____

Is the roadway overtopped below the Q_{100} ? (Yes, No, Unknown): U Frequency: _____

Relief Elevation (ft): _____ Discharge over roadway at Q_{100} (ft^3 / sec): _____

Are there other structures nearby? (Yes, No, Unknown): U If No or Unknown, type *ctrl-n os*

Upstream distance (miles): _____ Town: _____ Year Built: _____

Highway No. : _____ Structure No. : _____ Structure Type: _____

Clear span (ft): _____ Clear Height (ft): _____ Full Waterway (ft^2): _____

Downstream distance (miles): - _____ Town: - _____ Year Built: - _____
Highway No. : - _____ Structure No. : - _____ Structure Type: - _____
Clear span (ft): - _____ Clear Height (ft): - _____ Full Waterway (ft²): - _____

Comments:
-

USGS Watershed Data

Watershed Hydrographic Data

Drainage area (DA) 39.07 mi² Lake/pond/swamp area 0.05 mi²
Watershed storage (ST) 0.1 %
Bridge site elevation 791 ft Headwater elevation 2215 ft
Main channel length 11.45 mi
10% channel length elevation 820 ft 85% channel length elevation 1614 ft
Main channel slope (S) 92.48 ft / mi

Watershed Precipitation Data

Average site precipitation - _____ in Average headwater precipitation - _____ in
Maximum 2yr-24hr precipitation event (I24,2) - _____ in
Average seasonal snowfall (Sn) - _____ ft

Bridge Plan Data

Are plans available? **N** *If no, type ctrl-n pl* Date issued for construction (MM / YYYY): - / -

Project Number - Minimum channel bed elevation: -

Low superstructure elevation: USLAB - DSLAB - USRAB - DSRAB -

Benchmark location description:

NO BENCHMARK INFORMATION

Reference Point (MSL, Arbitrary, Other): - Datum (NAD27, NAD83, Other): -

Foundation Type: **4** *(1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown)*

If 1: Footing Thickness - Footing bottom elevation: -

If 2: Pile Type: - *(1-Wood; 2-Steel or metal; 3-Concrete)* Approximate pile driven length: -

If 3: Footing bottom elevation: -

Is boring information available? **N** *If no, type ctrl-n bi* Number of borings taken: -

Foundation Material Type: **3** *(1-regolith, 2-bedrock, 3-unknown)*

Briefly describe material at foundation bottom elevation or around piles:

NO FOUNDATION MATERIAL INFORMATION

Comments:

NO PLANS.

Cross-sectional Data

Is cross-sectional data available? Y If no, type *ctrl-n xs*

Source (*FEMA, VTAOT, Other*)? FEMA

Comments: **This cross section information was retrieved from the Flood Insurance Study data at this bridge (FEMA, 1979)**

Station	256	256.1	259	259	267	279	279	281.9	282	-	-
Feature	LB	-	-	-	-	-	-	-	RB	-	-
Low chord elevation	789.6	789.6	789.6	789.6	789.7	789.8	789.8	789.9	789.9	-	-
Bed elevation	776.0	774.8	774.8	772.9	773.2	772.7	774.9	774.9	776.0	-	-
Low chord to bed	13.6	14.8	14.8	16.7	16.5	17.1	14.9	15.0	13.9	-	-
Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low chord to bed	-	-	-	-	-	-	-	-	-	-	-

Source (*FEMA, VTAOT, Other*)? -

Comments:

Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low chord to bed	-	-	-	-	-	-	-	-	-	-	-
Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low chord to bed	-	-	-	-	-	-	-	-	-	-	-

APPENDIX E:
LEVEL I DATA FORM

Structure Number BURKTH00580015

Qa/Qc Check by: RB Date: 2/27/96

Computerized by: RB Date: 2/27/96

Reviewed by: EMB Date: 3/27/98

A. General Location Descriptive

1. Data collected by (First Initial, Full last name) T. SEVERANCE Date (MM/DD/YY) 8 / 9 / 1995

2. Highway District Number 07

Mile marker 0000

County CALEDONIA 005

Town BURKE 10450

Waterway (1- 6) West Branch Passumpsic River

Road Name Bugbee Road

Route Number TH 58

Hydrologic Unit Code: 01080102

3. Descriptive comments:

Located about 0.1 mile east of the intersection of TH58 with U.S. Route 5.

Cast bridge/post date reads "1923", not "1922" as noted in the historical form.

B. Bridge Deck Observations

4. Surface cover... LBUS 5 RBUS 6 LBDS 5 RBDS 5 Overall 5
(2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland)

5. Ambient water surface... US 2 UB 2 DS 1 (1- pool; 2- riffle)

6. Bridge structure type 1 (1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other)

7. Bridge length 30 (feet) Span length 26 (feet) Bridge width 20.2 (feet)

Road approach to bridge:

8. LB 2 RB 2 (0 even, 1- lower, 2- higher)

9. LB 2 RB 2 (1- Paved, 2- Not paved)

10. Embankment slope (run / rise in feet / foot):

US left -- US right --

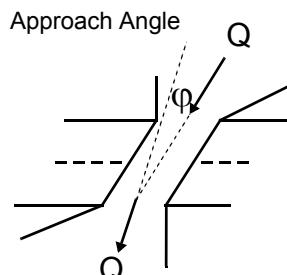
11.Type	12.Cond.	Protection	13.Erosion	14.Severity	
		LBUS	RBUS	RBDS	LBDS
<u>0</u>	<u>-</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>
<u>2</u>	<u>2</u>	<u>3</u>	<u>2</u>	<u>1</u>	<u>2</u>
<u>2</u>	<u>1</u>	<u>2</u>	<u>1</u>	<u>1</u>	<u>2</u>
<u>2</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>3</u>	<u>3</u>

Bank protection types: 0- none; 1- < 12 inches;

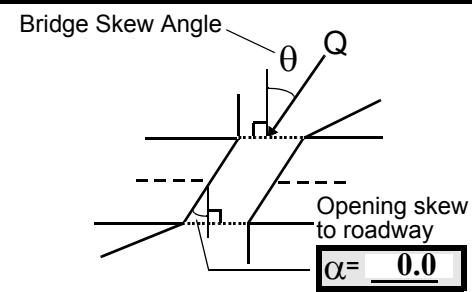
2- < 36 inches; 3- < 48 inches;

4- < 60 inches; 5- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped;


3- eroded; 4- failed

Erosion: 0 - none; 1- channel erosion; 2- road wash; 3- both; 4- other


Erosion Severity: 0 - none; 1- slight; 2- moderate; 3- severe

Channel approach to bridge (BF):

15. Angle of approach: 25

16. Bridge skew: 15

17. Channel impact zone 1: Exist? Y (Y or N)

Where? LB (LB, RB) Severity 2

Range? 0 feet US (US, UB, DS) to 30 feet DS

Channel impact zone 2: Exist? Y (Y or N)

Where? RB (LB, RB) Severity 1

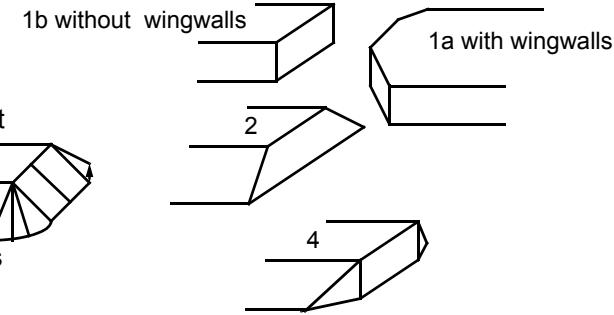
Range? 40 feet US (US, UB, DS) to 0 feet US

Impact Severity: 0- none to very slight; 1- Slight; 2- Moderate; 3- Severe

18. Bridge Type: **1a**

1a- Vertical abutments with wingwalls

1b- Vertical abutments without wingwalls


2- Vertical abutments and wingwalls, sloping embankment

Wingwalls parallel to abut. face

3- Spill through abutments

4- Sloping embankment, vertical wingwalls and abutments

Wingwall angle less than 90°.

19. Bridge Deck Comments (surface cover variations, measured bridge and span lengths, bridge type variations, approach overflow width, etc.)

5. Shallow US with riffle. Under the bridge is deeper but flow is still fast and somewhat rippled. DS one bridge length it is rippled along left half of the channel and pooled on the right half. At 2 bridge lengths DS it is pooled and is the US approach section for the railroad bridge.

7. Values are from VT AOT files. Measured bridge length = 30.5 feet, span length = 25.5 feet, and bridge width = 20.02 feet. Span length was a difficult measurement because of a strong current and no good point for attaching the tape.

8. Lowest elevation on roadway is directly above the left abutment. Overflows would occur here first.

11. Some DS left bank protection is as large as 8 feet in length; some is under 36 inches. All protection is stone fill that extends the entire bank. The US left wingwall of the railroad bridge is steel sheet piles that have been installed and backfilled with concrete. This extends into the channel 2 or 3 feet from the railroad bridge left wingwall.

14. There is some stone at the base of the end of the upstream right wingwall that is covered with fines from road wash and does not extend US. On the left bank US, severe roadwash is washing out the embankment over a one bridge length span out from the bridge. A slope of 3 is present. Several guardrail posts footings are close to being exposed. This is also occurring on the left bank DS. On the right bank US the roadwash is eroding the embankment and there is a cutbank US.

C. Upstream Channel Assessment

21. Bank height (BF) 22. Bank angle (BF)

26. % Veg. cover (BF) 27. Bank material (BF) 28. Bank erosion (BF)

20. SRD LB RB LB RB

LB RB LB RB LB RB

30.0 **2.5** _____ **4.5**

1 **4** **1** **420**

1 **2**

23. Bank width **25.0**

24. Channel width **65.0**

25. Thalweg depth **51.0**

29. Bed Material **34**

30. Bank protection type: LB **0** RB **1**

31. Bank protection condition: LB _____ RB **2**

SRD - Section ref. dist. to US face % Vegetation (Veg) cover: 1- 0 to 25%; 2- 26 to 50%; 3- 51 to 75%; 4- 76 to 100%

Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2- sand, 1/16 - 2mm; 3- gravel, 2 - 64mm;

4- cobble, 64 - 256mm; 5- boulder, > 256mm; 6- bedrock; 7- manmade

Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting

Bank protection types: 0- absent; 1- < 12 inches; 2- < 36 inches; 3- < 48 inches; 4- < 60 inches; 5- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

32. Comments (bank material variation, minor inflows, protection extent, etc.):

27. Some right bank material is organics with much vegetation, roots are exposed.

29. Bed material is a mixture of 65% gravel to 35% cobbles.

30. There is no protection on the left bank. The bank slopes up gradually, 30 degrees for 10 feet, then flattens out. At the US left wingwall the road elevation is high consequently much fill is present. There is no protection from roadwash. Protection is present at the US right wingwall and 5 feet US. At high flow protection will easily be overtopped. This rock fill protection is deflecting flow along the right bank away from the US right wingwall. Some stone fill protection has slumped into the channel.

33. Point/Side bar present? Y (Y or N, if N type ctrl-n pb) 34. Mid-bar distance: 44 35. Mid-bar width: 10
 36. Point bar extent: 40 feet US (US, UB) to 50 feet US (US, UB, DS) positioned 5 %LB to 50 %RB
 37. Material: 34
 38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.):
37. There is an even distribution of gravel and cobbles. At the time of the visit, the bar was entirely submerged by the flow.

39. Is a cut-bank present? Y (Y or if N type ctrl-n cb) 40. Where? RB (LB or RB)
 41. Mid-bank distance: 30 42. Cut bank extent: 12 feet US (US, UB) to 65 feet US (US, UB, DS)
 43. Bank damage: 1 (1- eroded and/or creep; 2- slip failure; 3- block failure)
 44. Cut bank comments (eg. additional cut banks, protection condition, etc.):
Rock and silt are at the edge of the water. The bank slopes upwards for a couple feet where the cut bank is located. Roots are exposed at this cut-bank.

45. Is channel scour present? Y (Y or if N type ctrl-n cs) 46. Mid-scour distance: 23
 47. Scour dimensions: Length 17 Width 4 Depth : 1.75 Position 60 %LB to 80 %RB
 48. Scour comments (eg. additional scour areas, local scouring process, etc.):
US thalweg depth is 1 foot.

49. Are there major confluences? N (Y or if N type ctrl-n mc) 50. How many? -
 51. Confluence 1: Distance - 52. Enters on - (LB or RB) 53. Type - (1- perennial; 2- ephemeral)
 Confluence 2: Distance - Enters on - (LB or RB) Type - (1- perennial; 2- ephemeral)
 54. Confluence comments (eg. confluence name):
NO MAJOR CONFLUENCES

D. Under Bridge Channel Assessment

55. Channel restraint (BF)? LB 2 ... (1- natural bank; 2- abutment; 3- artificial levee)

56. Height (BF)	57 Angle (BF)	61. Material (BF)	62. Erosion (BF)
LB	RB	LB	RB
<u>43.5</u>	<u>2.0</u>	<u>2</u>	<u>7</u>

58. Bank width (BF) - 59. Channel width - 60. Thalweg depth 90.0 63. Bed Material -

Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2- sand, 1/16 - 2mm; 3- gravel, 2 - 64mm; 4- cobble, 64 - 256mm; 5- boulder, > 256mm; 6- bedrock; 7- manmade

Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting

64. Comments (bank material variation, minor inflows, protection extent, etc.):
23
Bridge constrains flow. Footings are exposed and below water surface. The concrete is eroded at the base of both the left and right abutment. The left abutment and left wingwall have exposed reinforcement bars.

65. Debris and Ice Is there debris accumulation? (Y or N) 66. Where? Y (1- Upstream; 2- At bridge; 3- Both)
 67. Debris Potential 1 (1- Low; 2- Moderate; 3- High) 68. Capture Efficiency 1 (1- Low; 2- Moderate; 3- High)
 69. Is there evidence of ice build-up? 2 (Y or N) Ice Blockage Potential N (1- Low; 2- Moderate; 3- High)
 70. Debris and Ice Comments:
 2
 -

<u>Abutments</u>	71. Attack ∠(BF)	72. Slope ∠ (Qmax)	73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76. Exposure depth	77. Material	78. Length
LABUT		10	90	2	3	0.75	2	90.0
RABUT	1	-	90			2	2	25.5

Pushed: LB or RB
 Toe Location (Loc.): 0- even, 1- set back, 2- protrudes
 Scour cond.: 0- not evident; 1- evident (comment); 2- footing exposed; 3- undermined footing; 4- piling exposed;
 5- settled; 6- failed

Materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.):

0.75

2

1

74. Scour is present at the left abutment, 0.75 foot at the US footing to 1.5 feet at the DS footing. The DS end of the footing is also undermined. It is possible to probe over 5 feet beneath this end. At the US end of the footing, it is just possible to stick the range pole beneath the footing into loose bed material. Along the right abutment, it is possible to penetrate beneath the footing into loose bed material in places up to 2.5 feet with the range pole, although the footing is not visually undermined.

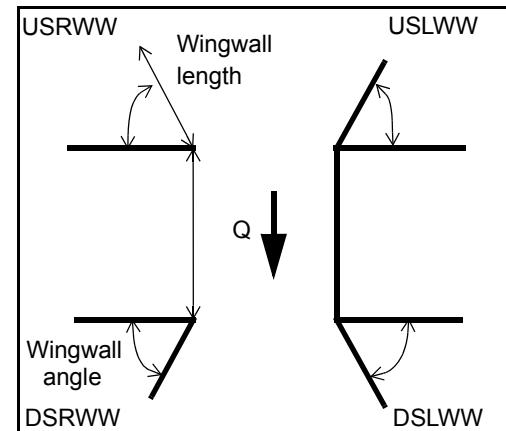
76. The left abutment exposure is greatest DS and the right abutment exposure is greatest US.

Average thalweg depth = 1.5 feet.

80. Wingwalls:

Exist? Material? Scour Condition? Scour depth? Exposure depth?

81.	Angle?	Length?
	25.5	
	2.0	
	20.5	
	20.5	


USLWW:

USRWW: **Y** **1** **2**

DSLWW: **0** **1.5** **Y**

DSRWW: **1** **2** **1**

Wingwall materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal;
 4- wood

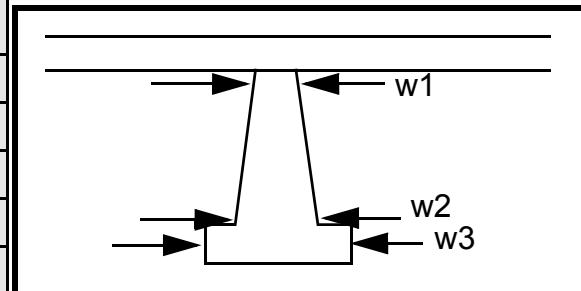
82. Bank / Bridge Protection:

Location	USLWW	USRWW	LABUT	RABUT	LB	RB	DSLWW	DSRWW
Type	2	2	Y	0	-	2	-	-
Condition	Y	1	1	1	-	2	-	-
Extent	1	2	2	0	1	0	0	0

Bank / Bridge protection types: 0- absent; 1- < 12 inches; 2- < 36 inches; 3- < 48 inches; 4- < 60 inches;
 5- wall / artificial levee

Bank / Bridge protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

Protection extent: 1- entire base length; 2- US end; 3- DS end; 4- other


83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):

-
-
0
-
-
0
-
-
2
1
3

Piers:

84. Are there piers? Th (Y or if N type ctrl-n pr)

85. Pier no.	width (w) feet			elevation (e) feet		
	w1	w2	w3	e@w1	e@w2	e@w3
Pier 1				45.0	14.5	45.0
Pier 2				14.5	40.0	11.0
Pier 3			-	45.0	11.5	-
Pier 4	-	-	-	-	-	-

Level 1 Pier Descr.	1	2	3	4
86. Location (BF)	e con-	is dete-	bars	partly
87. Type	crete	rio-	are	wash
88. Material	at	ratin	expo	ed
89. Shape	the	g.	sed.	out
90. Inclined?	base	On	At	by
91. Attack ∠ (BF)	s of	the	the	road
92. Pushed	the	left	DS	wash
93. Length (feet)	-	-	-	-
94. # of piles	abut	bank	left	. As
95. Cross-members	ment	side,	wing	note
96. Scour Condition	s and	rein-	wall,	d
97. Scour depth	wing	force	back	ear-
98. Exposure depth	walls	ment	fill is	lier,

LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP

1- Solid pier, 2- column, 3- bent

1- Wood; 2- concrete; 3- metal; 4- stone

1- Round; 2- Square; 3- Pointed

Y- yes; N- no

LB or RB

0- none; 1- laterals; 2- diagonals; 3- both

0- not evident; 1- evident (comment);
2- footing exposed; 3- piling exposed;
4- undermined footing; 5- settled; 6- failed

99. Pier comments (eg. undermined penetration, protection and protection extent, unusual scour processes, etc.):

both guard rails on the left bank US and DS have posts which are almost if not entirely exposed at their base due to heavy roadwash flow.

N

E. Downstream Channel Assessment

100.

SRD	Bank height (BF)		Bank angle (BF)		% Veg. cover (BF)		Bank material (BF)		Bank erosion (BF)	
	LB	RB	LB	RB	LB	RB	LB	RB	LB	RB
-	-	-	-	-	-	-	-	-	-	-
Bank width (BF)	-	Channel width	-	Thalweg depth	-	Bed Material	-			

Bank protection type (Qmax): LB - RB - Bank protection condition: LB - RB -

SRD - Section ref. dist. to US face % Vegetation (Veg) cover: 1- 0 to 25%; 2- 26 to 50%; 3- 51 to 75%; 4- 76 to 100%
Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2- sand, 1/16 - 2mm; 3- gravel, 2 - 64mm;

4- cobble, 64 - 256mm; 5- boulder, > 256mm; 6- bedrock; 7- manmade

Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting

Bank protection types: 0- absent; 1- < 12 inches; 2- < 36 inches; 3- <

Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

101. Is a drop structure present? - (Y or N, if N type *ctrl-n ds*)

102. Distance: - feet

103. Drop: - feet

104. Structure material: - (1- steel sheet pile; 2- wood pile; 3- concrete; 4- other)

105. Drop structure comments (eq. downstream scour depth):

106. Point/Side bar present? - (Y or N. if N type ctrl-n pb) Mid-bar distance: - Mid-bar width: -

Point bar extent: - feet - (US, UB, DS) to - feet - (US, UB, DS) positioned - %LB to - %RB

Material: -

Point or side bar comments (Circle Point or Side; note additional bars, material variation, status, etc.):

-
-
-
-

Is a cut-bank present? N (Y or if N type ctrl-n cb) Where? O (LB or RB) Mid-bank distance: PIE

Cut bank extent: RS feet (US, UB, DS) to _____ feet (US, UB, DS)

Bank damage: _____ (1- eroded and/or creep; 2- slip failure; 3- block failure)

Cut bank comments (eg. additional cut banks, protection condition, etc.):

Is channel scour present? _____ (Y or if N type ctrl-n cs) Mid-scour distance: 1

Scour dimensions: Length 1 Width 7 Depth: 0 Positioned 0 %LB to 1 %RB

Scour comments (eg. additional scour areas, local scouring process, etc.):

4
2
0
1

Are there major confluences? - (Y or if N type ctrl-n mc) How many? Left

Confluence 1: Distance bank Enters on mat (LB or RB) Type erial (1- perennial; 2- ephemeral)

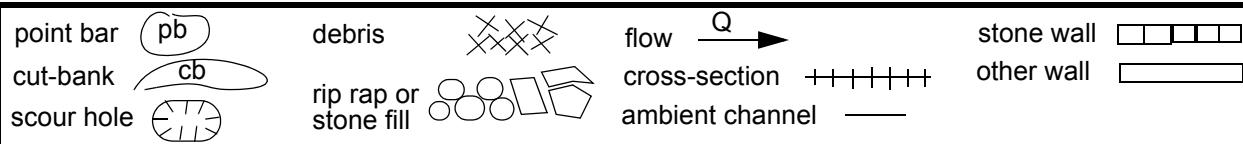
Confluence 2: Distance is Enters on mos (LB or RB) Type tly (1- perennial; 2- ephemeral)

Confluence comments (eg. confluence name):

fill, mainly composed of cobbles and boulders. At 1.5 bridge lengths DS, there is a wingwall for the DS bridge. The base of that wingwall has been built out within the last few years and sheet piles were driven into the bed

F. Geomorphic Channel Assessment

107. Stage of reach evolution an


- 1- Constructed
- 2- Stable
- 3- Aggrated
- 4- Degraded
- 5- Laterally unstable
- 6- Vertically and laterally unstable

108. Evolution comments (*Channel evolution not considering bridge effects; See HEC-20, Figure 1 for geomorphic descriptors*):

d back filled with concrete. This wingwall protrudes 4 feet out into the channel to DS around the bend and parallel with the abutment of the DS railroad bridge.

109. G. Plan View Sketch

N

APPENDIX F:

SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: BURKTH00580015 Town: Burke
 Road Number: TH 58 (BUGBEE ROAD) County: Caledonia
 Stream: West Branch Passumpsic River

Initials EMB Date: 4/29/98 Checked: ECW

Analysis of contraction scour, live-bed or clear water?

Critical Velocity of Bed Material (converted to English units)
 $V_c = 11.21 * y_1^{0.1667} * D_{50}^{0.33}$ with $S_s = 2.65$
 (Richardson and Davis, 1995, p. 28, eq. 16)

Approach Section

Characteristic	100 yr	500 yr	other Q
Total discharge, cfs	3650	5100	4520
Main Channel Area, ft ²	701	1152	1055
Left overbank area, ft ²	0	130	56
Right overbank area, ft ²	0	0	0
Top width main channel, ft	72	83	82
Top width L overbank, ft	0	70	55
Top width R overbank, ft	0	0	0
D ₅₀ of channel, ft	0.2141	0.2141	0.2141
D ₅₀ left overbank, ft	--	--	--
D ₅₀ right overbank, ft	--	--	--
y ₁ , average depth, MC, ft	9.7	13.9	12.9
y ₁ , average depth, LOB, ft	ERR	1.9	1.0
y ₁ , average depth, ROB, ft	ERR	ERR	ERR
Total conveyance, approach	87921	184221	159978
Conveyance, main channel	87921	181314	159132
Conveyance, LOB	0	2907	846
Conveyance, ROB	0	0	0
Percent discrepancy, conveyance	0.0000	0.0000	0.0000
Q _m , discharge, MC, cfs	3650.0	5019.5	4496.1
Q _l , discharge, LOB, cfs	0.0	80.5	23.9
Q _r , discharge, ROB, cfs	0.0	0.0	0.0
V _m , mean velocity MC, ft/s	5.2	4.4	4.3
V _l , mean velocity, LOB, ft/s	ERR	0.6	0.4
V _r , mean velocity, ROB, ft/s	ERR	ERR	ERR
V _{c-m} , crit. velocity, MC, ft/s	9.8	10.4	10.3
V _{c-l} , crit. velocity, LOB, ft/s	ERR	ERR	ERR
V _{c-r} , crit. velocity, ROB, ft/s	ERR	ERR	ERR

Results

Live-bed(1) or Clear-Water(0) Contraction Scour?
 Main Channel 0 0 0

Armoring

$D_c = [(1.94 * V^2) / (5.75 * \log(12.27 * y / D_{90}))^{2/3}] / [0.03 * (165 - 62.4)]$
 Depth to Armoring = $3 * (1/P_c - 1)$

(Federal Highway Administration, 1993)

Downstream bridge face property	100-yr	500-yr	Other Q
Q, discharge thru bridge MC, cfs	3650	4962	4520
Main channel area (DS), ft ²	268.3	365.7	353
Main channel width (normal), ft	25.2	25.3	25.3
Cum. width of piers, ft	0.0	0.0	0.0
Adj. main channel width, ft	25.2	25.3	25.3
D ₉₀ , ft	0.4902	0.4902	0.4902
D ₉₅ , ft	0.5745	0.5745	0.5745
D _c , critical grain size, ft	0.5996	0.5362	0.4833
P _c , Decimal percent coarser than D _c	0.040	0.072	0.104

Depth to armoring, ft N/A 20.83 12.49

Clear Water Contraction Scour in MAIN CHANNEL

$y_2 = (Q_2^2 / (131 * D_m^{(2/3)} * W_2^2))^{(3/7)}$ Converted to English Units
 $y_s = y_2 - y_{\text{bridge}}$
 (Richardson and Davis, 1995, p. 32, eq. 20, 20a)

Bridge Section	Q100	Q500	Other Q
(Q) total discharge, cfs	3650	5100	4520
(Q) discharge thru bridge, cfs	3650	4962	4520
Main channel conveyance	30534	35825	35825
Total conveyance	30534	35825	35825
Q2, bridge MC discharge, cfs	3650	4962	4520
Main channel area, ft ²	268	366	366
Main channel width (normal), ft	25.2	25.3	25.3
Cum. width of piers in MC, ft	0.0	0.0	0.0
W, adjusted width, ft	25.2	25.3	25.3
y _{bridge} (avg. depth at br.), ft	10.65	14.45	14.45
D _m , median (1.25*D50), ft	0.267625	0.267625	0.267625
y ₂ , depth in contraction, ft	12.83	16.64	15.36
ys, scour depth (y ₂ -y _{bridge}), ft	2.19	2.19	0.91

Pressure Flow Scour (contraction scour for orifice flow conditions)

Chang pressure flow equation $H_b + Y_s = C_q * q_{br} / V_c$
 $C_q = 1 / C_f * C_c$ $C_f = 1.5 * Fr^{0.43}$ (≤ 1) $C_c = \sqrt{0.10(H_b / (y_a - w) - 0.56)} + 0.79$ (≤ 1)
 Umbrell pressure flow equation
 $(H_b + Y_s) / y_a = 1.1021 * [(1 - w / y_a) * (V_a / V_c)]^{0.6031}$
 (Richardson and Davis, 1995, p. 144-146)

	Q100	Q500	OtherQ
Q, total, cfs	3650	5100	4520
Q, thru bridge MC, cfs	3650	4962	4520
V _c , critical velocity, ft/s	9.80	10.40	10.27
V _a , velocity MC approach, ft/s	5.21	4.36	4.26
Main channel width (normal), ft	25.2	25.3	25.3
Cum. width of piers in MC, ft	0.0	0.0	0.0
W, adjusted width, ft	25.2	25.3	25.3
q _{br} , unit discharge, ft ² /s	144.8	196.1	178.7
Area of full opening, ft ²	268.3	365.7	365.7
H _b , depth of full opening, ft	10.65	14.45	14.45
Fr, Froude number, bridge MC	0	0.63	0.57
C _f , Fr correction factor (≤ 1.0)	0.00	1.00	1.00
**Area at downstream face, ft ²	N/A	N/A	353
**H _b , depth at downstream face, ft	N/A	N/A	13.95
**Fr, Froude number at DS face	ERR	ERR	0.60
**C _f , for downstream face (≤ 1.0)	N/A	N/A	1.00
Elevation of Low Steel, ft	0	787.68	787.68
Elevation of Bed, ft	-10.65	773.23	773.23
Elevation of Approach, ft	0	792.54	791.37
Friction loss, approach, ft	0	0.08	0.07
Elevation of WS immediately US, ft	0.00	792.46	791.30
y _a , depth immediately US, ft	10.65	19.23	18.07
Mean elevation of deck, ft	0	794	794
w, depth of overflow, ft (≥ 0)	0.00	0.00	0.00
C _c , vert contrac correction (≤ 1.0)	1.00	0.93	0.94
**C _c , for downstream face (≤ 1.0)	ERR	ERR	0.935584
Y _s , scour w/Chang equation, ft	N/A	5.87	3.97
Y _s , scour w/Umbrell equation, ft	N/A	-1.91	-2.73

**=for UNsubmerged orifice flow using estimated downstream bridge face properties.
 **Y_s, scour w/Chang equation, ft N/A N/A 4.65
 **Y_s, scour w/Umbrell equation, ft ERR N/A -2.23

In UNsubmerged orifice flow, an adjusted scour depth using the Laursen equation results and the estimated downstream bridge face properties can also be computed (ys=y₂-y_{bridgeDS})

y ₂ , from Laursen's equation, ft	12.83	16.64	15.36
WSEL at downstream face, ft	--	--	787.19
Depth at downstream face, ft	N/A	N/A	13.95
Y _s , depth of scour (Laursen), ft	N/A	N/A	1.41

Abutment Scour

Froehlich's Abutment Scour

$Y_s/Y_1 = 2.27 * K_1 * K_2 * (a'/Y_1)^{0.43} * Fr_1^{0.61} + 1$
(Richardson and Davis, 1995, p. 48, eq. 28)

Characteristic	Left Abutment				Right Abutment			
	100 yr Q	500 yr Q	Other Q	100 yr Q	500 yr Q	Other Q	100 yr Q	500 yr Q
(Qt), total discharge, cfs	3650	5100	4520	3650	5100	4520		
a', abut.length blocking flow, ft	19.3	91.8	76.5	27.7	36.6	34.8		
Ae, area of blocked flow ft ²	122.9	336.3	274.1	264.9	448.7	406.1		
Qe, discharge blocked abut., cfs	365	--	740.3	1294.1	1683	1516.1		
(If using Qtotal_overbank to obtain Ve, leave Qe blank and enter Ve and Fr manually)								
Ve, (Qe/Ae), ft/s	2.97	2.52	2.70	4.89	3.75	3.73		
ya, depth of f/p flow, ft	6.37	3.66	3.58	9.56	12.26	11.67		
--Coeff., K1, for abut. type (1.0, verti.; 0.82, verti. w/ wingwall; 0.55, spillthru)								
K1	0.82	0.82	0.82	0.82	0.82	0.82		
--Angle (theta) of embankment (<90 if abut. points DS; >90 if abut. points US)								
theta	90	90	90	90	90	90		
K2	1.00	1.00	1.00	1.00	1.00	1.00		
Fr, froude number f/p flow	0.207	0.221	0.251	0.278	0.189	0.193		
ys, scour depth, ft	13.68	14.51	14.30	22.45	25.47	24.39		
HIRE equation (a'/ya > 25)								
ys = 4*Fr ^{0.33} *y1*K/0.55								
(Richardson and Davis, 1995, p. 49, eq. 29)								
a' (abut length blocked, ft)	19.3	91.8	76.5	27.7	36.6	34.8		
y1 (depth f/p flow, ft)	6.37	3.66	3.58	9.56	12.26	11.67		
a'/y1	3.03	25.06	21.35	2.90	2.99	2.98		
Skew correction (p. 49, fig. 16)	1.00	1.00	1.00	1.00	1.00	1.00		
Froude no. f/p flow	0.21	0.22	0.25	0.28	0.19	0.19		
Ys w/ corr. factor K1/0.55:								
vertical	ERR	16.19	ERR	ERR	ERR	ERR		
vertical w/ ww's	ERR	13.28	ERR	ERR	ERR	ERR		
spill-through	ERR	8.90	ERR	ERR	ERR	ERR		

Abutment riprap Sizing

Ibsash Relationship

$D_{50} = y * K * Fr^2 / (Ss - 1)$ and $D_{50} = y * K * (Fr^2)^{0.14} / (Ss - 1)$
(Richardson and Davis, 1995, p112, eq. 81, 82)

Characteristic	Q100	Q500	Other Q	Q100	Q500	Other Q
Fr, Froude Number	0.73	0.63	0.6	0.73	0.63	0.6
Y, depth of flow in bridge, ft	10.65	14.45	13.95	10.65	14.45	13.95
Median Stone Diameter for riprap at: left abutment				right abutment, ft		
Fr <= 0.8 (vertical abut.)	3.51	3.55	3.10	3.51	3.55	3.10
Fr > 0.8 (vertical abut.)	ERR	ERR	ERR	ERR	ERR	ERR