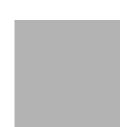
LEVEL II SCOUR ANALYSIS FOR BRIDGE 67 (MTHOTH00120067) on TOWN HIGHWAY 12, crossing FREEMAN BROOK, MOUNT HOLLY, VERMONT

Open-File Report 98-401

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. Department of the Interior U.S. Geological Survey



LEVEL II SCOUR ANALYSIS FOR BRIDGE 67 (MTHOTH00120067) on TOWN HIGHWAY 12, crossing FREEMAN BROOK, MOUNT HOLLY, VERMONT

By EMILY C. WILD and TIMOTHY SEVERANCE

U.S. Geological Survey Open-File Report 98-401

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and FEDERAL HIGHWAY ADMINISTRATION

Pembroke, New Hampshire

1998

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Thomas J. Casadevall, Acting Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Branch of Information Services Open-File Reports Unit Box 25286 Denver, CO 80225-0286

CONTENTS

Conversion Factors, Abbreviations, and Vertical Datum	iv
Introduction and Summary of Results	1
Level II summary	7
Description of Bridge	7
Description of the Geomorphic Setting	8
Description of the Channel	8
Hydrology	9
Calculated Discharges	9
Description of the Water-Surface Profile Model (WSPRO) Analysis	10
Cross-Sections Used in WSPRO Analysis	10
Data and Assumptions Used in WSPRO Model	11
Bridge Hydraulics Summary	12
Scour Analysis Summary	13
Special Conditions or Assumptions Made in Scour Analysis	13
Scour Results	14
Riprap Sizing	14
Selected References	18
Appendices:	
A. WSPRO input file	19
B. WSPRO output file	21
C. Bed-material particle-size distribution	26
D. Historical data form	28
E. Level I data form	34

E. Level I data form..... F. Scour computations.....

44

FIGURES

1. Map showing location of study area on two USGS 1:24,000 scale maps	3
2. Map showing location of study area on Vermont Agency of Transportation town	
highway map	4
3. Structure MTHOTH00120067 viewed from upstream (October 5, 1995)	5
4. Downstream channel viewed from structure MTHOTH00120067 (October 5, 1995)	5
5. Upstream channel viewed from structure MTHOTH00120067 (October 5, 1995)	6
6. Structure MTHOTH00120067 viewed from downstream (October 5, 1995).	6
7. Water-surface profiles for the 100- and 500-year discharges at structure	
MTHOTH00120067 on Town Highway 12, crossing Freeman Brook,	
Mount Holly, Vermont.	15
8. Scour elevations for the 100- and 500-year discharges at structure	
MTHOTH00120067 on Town Highway 12, crossing Freeman Brook,	
Mount Holly, Vermont	16
TABLES	
1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
MTHOTH00120067 on Town Highway 12, crossing Freeman Brook,	
Mount Holly, Vermont	17

Mount Holly, Vermont	17
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
MTHOTH00120067 on Town Highway 12, crossing Freeman Brook,	
Mount Holly, Vermont	17

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

_

_

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km)
	Area	- · · ·
square mile (mi ²)	2.590	square kilometer (km ²)
• • • •	Volume	•
cubic foot (ft^3)	0.02832	cubic meter (m^3)
	Velocity and Flow	
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft^3/s)	0.02832	cubic meter per second (m ³ /s
cubic foot per second per square mile	0.01093	cubic meter per second per square
$[(ft^{3}/s)/mi^{2}]$		kilometer [(m ³ /s)/km ²

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	Max	maximum
D ₅₀	median diameter of bed material	MC	main channel
DS	downstream	RAB	right abutment
elev.	elevation	RABUT	face of right abutment
f/p ft ²	flood plain	RB	right bank
ft^2	square feet	ROB	right overbank
ft/ft	feet per foot	RWW	right wingwall
FEMA	Federal Emergency Management Agency	TH	town highway
FHWA	Federal Highway Administration	UB	under bridge
JCT	junction	US	upstream
LAB	left abutment	USGS	United States Geological Survey
LABUT	face of left abutment	VTAOT	Vermont Agency of Transportation
LB	left bank	WSPRO	water-surface profile model
LOB	left overbank	yr	year

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 67 (MTHOTH00120067) ON TOWN HIGHWAY 12, CROSSING FREEMAN BROOK, MOUNT HOLLY, VERMONT

By Emily C. Wild and Timothy Severance

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure MTHOTH00120067 on Town Highway 12 crossing Freeman Brook, Mount Holly, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D.

The site is in the Green Mountain section of the New England physiographic province in south-central Vermont. The 11.4-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forested.

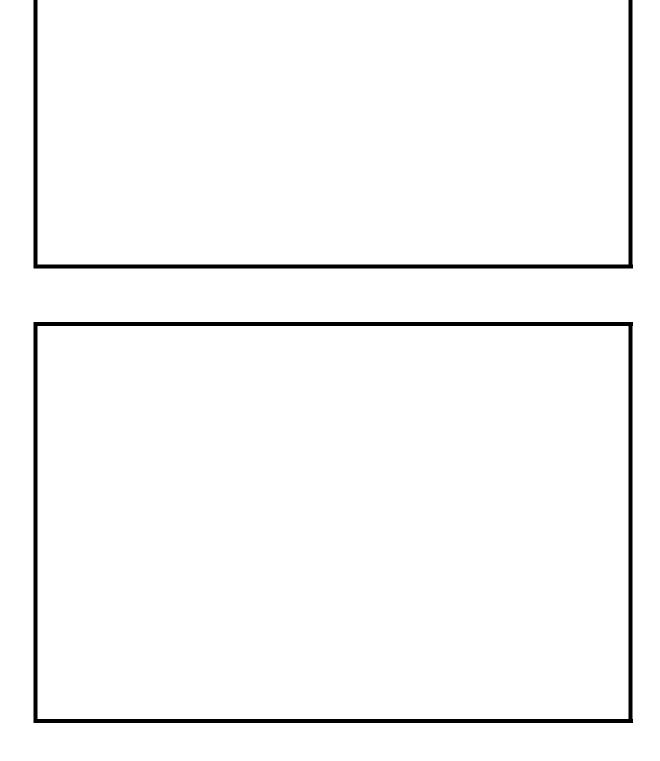
In the study area, Freeman Brook has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 51 ft and an average bank height of 6 ft. The channel bed material ranges from sand to boulders with a median grain size (D_{50}) of 55.7 mm (0.183 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 5, 1995, indicated that the reach was stable.

The Town Highway 12 crossing of Freeman Brook is a 34-ft-long, two-lane bridge consisting of a 30-foot prestressed concrete-slab span (Vermont Agency of Transportation, written communication, March 15, 1995). The opening length of the structure parallel to the bridge face is 29.5 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 50 degrees to the opening while the opening-skew-to-roadway is 15 degrees.

Along the upstream right wingwall, the right abutment and the downstream right wingwall, a scour hole approximately 1.0 to 2.0 ft deeper than the mean thalweg depth was observed during the Level I assessment. Scour protection measures at the site included type-1 stone fill (less than 12 inches diameter) along the downstream end of the downstream right wingwall; type-2 stone fill (less than 36 inches diameter) along the upstream left wingwall, the left abutment, the downstream left wingwall and the upstream left and right banks; type-3 stone fill (less than 48 inches diameter) along the downstream left and right banks; and type-4 stone fill (less than 60 inches diameter) along the upstream right wingwall. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E.

Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 2.6 to 3.9 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 7.9 to 10.0 ft. Right abutment scour ranged from 12.7 to 15.2 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.


It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

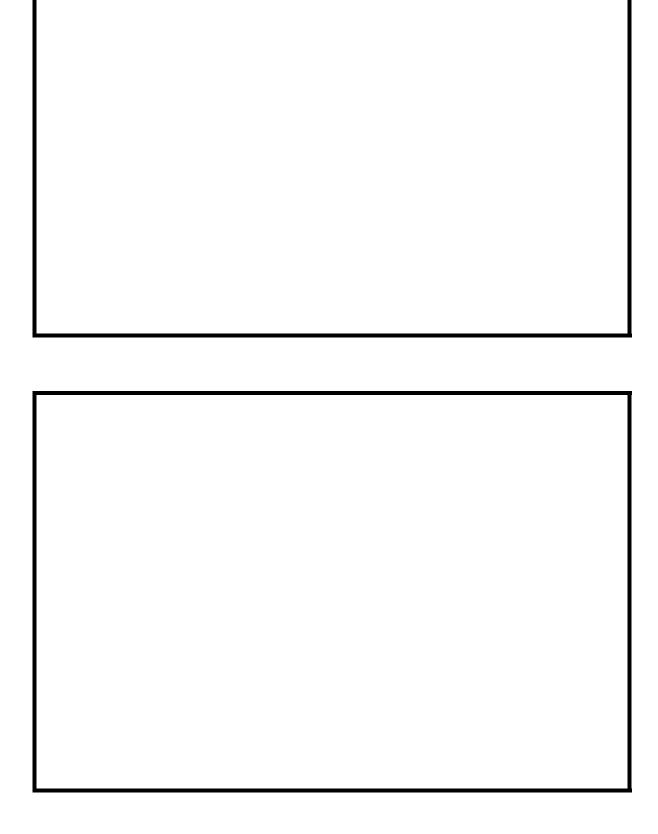


Figure 1. Location of study area on USGS 1:24,000 scale map.

Figure 2. Location of study area on Vermont Agency of Transportation town highway map.

LEVEL II SUMMARY

Structure Number —	MTHOTH00120067	Stream	Freeman Brook		
County Rutland		Road —	TH 12	District —	3

Description of Bridge

	34		25.2			30
Bridge length —	ft	Bridge width		ft	Max span length	n ft
Alignment of bridg	ge to road (o	n curve or stra	ight) —	Curve		
	Vertical, cor	ncrete			Sloping	
Abutment type	Yes		Embankm	ent type	10/5/95	
Stone fill on abutm	ent?		Date of inst e downstre		of the downstre	am right
wingwall. Type-2		upstream left	wingwall,	left abu	tment and down	stream left
wingwall. Type-4	4 along the u	upstream right	wingwall.			
		Abu	itments and	wingwa	lls are concrete. T	here is a 1.1
foot deep scour ho	le in front of	the right abutn	nent, and the	e right al	outment footing is	exposed.
Yes						
					_50	Yes
Is bridge skewed t	to flood flow	according to <u>T</u>	here <i>surve</i>	ey?	Angle	
is a moderate chan	nel bend thro	ugh the bridge.	The <u>sçour l</u>	nole has	developed in the lo	ocation where
the flow impacts th	e right abutn	nent.				

Debris accumulation on bridge at time of Level I or Level II site visit:

	Date of inspection	Percent of channel blocked norizonially	Percent of alarral block ed vertically
Level I	10/5/95	0	0
Level II	Moderate. Th	nere is some debris in the upst	ream reach.
Potential for	debris		

None, 10/5/95.

Describe any features near or at the bridge that may affect flow (include observation date)

Description of the Geomorphic Setting

General topography The channel is located within a high relief valley.

Geomorphic conditions at bridge site: downstream (DS), upstream (US)

Date of insp	<i>ection</i> <u>10/5/95</u>
DS left:	There is a steep channel bank and a narrow flood plain.
DS right:	The channel bank and overbank are moderately sloped (road embankment).
US left:	There is a steep channel bank and a narrow flood plain.
US right:	The channel bank and overbank are moderately sloped.

Description of the Channel

	51			6
Average top	o width	Gravel / Cobbles	Average depth	Gravel/Cobbles
Predominant	t bed material		Bank material	Sinuous but stable
with non-allu	vial channel boun	daries and a narrow floo	d plain.	
				10/5/95
Vegetative co	Trees, brush and	d shrub	·· ·	
DS left:	Trees and brush	and Town Highway 12		
DS right:	Trees, shrub, br	ush and Town Highway	12	
US left:	Trees, brush and	l grass		
US right:		Yes		
Do banks app	pear stable? -		. w.u.w. u.u .yp .	vj_msuwuny_unu
date of obser	rvation.			
			<u>N</u>	Jone, 10/5/95.
Describe any	obstructions in (channel and date of obs	ervation.	

Hydrology

Physiographic province/section New England/Green Mountain Percent of drainage area 100 100 Is drainage area considered rural or urban? Rural Describe any significant urbanization: None. None. Is there a USGS gage on the stream of interest?	Percentage of drainage area in physiogra	phic provinces: (app	roximate)
Is drainage area considered rural or urban? Describe any significant None. urbanization: Is there a USGS gage on the stream of interest? USGS gage description USGS gage number Gage drainage area mi² Is there a lake/p Q100 ft²/s Q100 ft²/s Q100 ft²/s The 100- and 500-year discharges are based on flood frequency.estimates available from the VTAOT database (Vermont Agency of Transportation, written communication, May 1995). These values were selected due to the central tendency of he discharge frequency curve with others which were developed from empirical relationships Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1957a&b Talbot, 1887). Each		Pero	
Is there a USGS gage on the stream of interest? USGS gage description USGS gage number Gage drainage area mi ² Is there a lake/p	None	m? Rural	Describe any significant
$USGS gage number ____________________________________$	Is there a USGS gage on the stream of int		
$\underline{2,550}$ $\underline{2,550}$ $\underline{Calculated Discharges}_{3,500}$ $\underline{2,550}$ $\underline{ft^3/s}$ $\underline{0500}$ $\underline{ft^3/s}$ $\underline{ft^3/s}$ $\underline{0500}$ $\underline{ft^3/s}$ $\underline{ft^3/s}$ $\underline{ft^3/s}$ $\underline{0500}$ $\underline{ft^3/s}$ $$	USGS gage descri	ption	
Is there a lake/p	USGS gage numbe	er 	
Is there a lake/p Calculated Discharges 3,500 Q100 ft ³ /s Q500 ft ³ /s The 100- and 500-year discharges are based on flood frequency.estimates.available.ftom.the.VTAOT database (Vermont Agency of Transportation, written communication, May 1995). These values were selected due to the central tendency of he discharge frequency curve with others which were developed from empirical relationships Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1957a&b Talbot, 1887). Each	Gage drainage are	ea mi ²	No
Q100 ft ³ /s Q500 ft ³ /s <u>D100 ft³/s</u> <u>D500 ft³/s</u> <u>The 100- and 500-year discharges are based on flood</u> <u>The 100</u>			
Q100 ft ³ /s Q500 ft ³ /s <u>C 3,300</u> Q100 ft ³ /s <u>The 100- and 500-year discharges are based on flood</u> frequency.estimates.available.from.the.VTAOT database (Vermont Agency of Transportation, written communication, May 1995). These values were selected due to the central tendency of the discharge frequency curve with others which were developed from empirical relationships Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1957a&b Talbot, 1887). Each	Is there a lake/p_		
$\begin{array}{cccc} Q100 & ft^3/s & Q500 & ft^3/s \\ \hline & & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	Is there a lake/p	~ ~ ~ ~ ~	
written communication, May 1995). These values were selected due to the central tendency of the discharge frequency curve with others which were developed from empirical relationships Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1957a&b Talbot, 1887). Each		culated Discharges	3,500
he discharge frequency curve with others which were developed from empirical relationships Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1957a&b Talbot, 1887). Each	Calc	Q500	ft^3/s
Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1957a&b Talbot, 1887). Each	Calc 	Q500 The 100- and 500-yea	<i>ft³/s</i> ar discharges are based on flood
	Calc 	Q500 The 100- and 500-yea AOT database (Vermo	ft^3/s ar discharges are based on flood ont Agency of Transportation,
	Calc 	<i>Q500</i> The 100- and 500-yea AOT database (Vermo values were selected of	ft ³ /s ar discharges are based on flood ont Agency of Transportation, due to the central tendency of

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT	plans) USGS survey
Datum tie between USGS survey and VTAOT plans	To obtain VTAOT datum, add
21.3 ft to USGS arbitrary survey datum.	
Description of reference marks used to determine USGS dat	<i>um.</i> <u>RM1 is a chiseled X on</u>
top of the upstream end of the right abutment (elev. 498.73 ft,	arbitrary survey datum). RM2 is a
chiseled X on top of the upstream end of the upstream left wi	ngwall (elev. 492.91 ft, arbitrary
survey datum). RM3 is a chiseled X on top of the downstrear	n end of the left abutment (elev.
499.83 ft, arbitrary survey datum).	

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXIT1	-46	1	Exit section
FULLV	0	2	Downstream Full-valley section (Templated from EXITX)
BRIDG	0	1	Bridge section
RDWAY	15	1	Road Grade section
APPR3	59	1	Approach section

Cross-Sections Used in WSPRO Analysis

¹ For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.045 to 0.055, and overbank "n" values ranged from 0.060 to 0.070.

Normal depth at the exit section (EXIT1) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990). The slope used was 0.0104 ft/ft, which was calculated from thalweg points surveyed downstream of the bridge.

The modelled approach section (APPR3) was surveyed one bridge length upstream of the upstream face, as recommended by Shearman and others (1986). This location provides a consistent method for determining scour variables.

For the 100-year and 500-year discharges, WSPRO assumes critical depth at the bridge section. Supercritical models were developed for these discharges. After analyzing the supercritical and subcritical profiles for each discharge, it was determined that the water surface profile does pass through critical depth within the bridge opening. Thus, the assumptions of critical depth at the bridge are satisfactory solutions.

Bridge Hydraulics Summary

Average bridge embankment elevation499.7Average low steel elevation496.9ft

100-year discharge	2,550	ft ³ /s				
Water-surface elevation	in bridge	opening		489.6	ft	
Road overtopping?	No	Discharge	over i	oad		ft ³ /s
Area of flow in bridge o	pening	179	ft ²			
Average velocity in bridg	ge openin	g	14.2	ft/s		
Maximum WSPRO tube	e velocity	at bridge		18.5	ft/s	
			-			

Water-surface elevation at Approach section v	493.3	
Water-surface elevation at Approach section w	490.5	
Amount of backwater caused by bridge	2.8 <i>t</i>	

500-year discharge	3,500	ft ³ /s			
Water-surface elevation	in bridge	opening	4	^{91.1} ft	
Road overtopping?	No	Discharge	over ro	ad	ft^3/s
Area of flow in bridge o	pening	221	ft ²		
Average velocity in brid	ge opening	g	15.8	ft/s	
Maximum WSPRO tube	e velocity d	at bridge		20.8 /s	
					105 (

Water-surface elevation at Approach section with bridge495.6Water-surface elevation at Approach section without bridge491.6Amount of backwater caused by bridge4.0 t

Incipient overtopping discharge		ft ³ /s	
Water-surface elevation in bridge opening	ŗ		ft
Area of flow in bridge opening	j	ft ²	
Average velocity in bridge opening		ft/s	
Maximum WSPRO tube velocity at bridge	,		_ft/s

Water-surface elevation at Approach section	with bridge	~
Water-surface elevation at Approach section	without bridge	
Amount of backwater caused by bridge	<u>î</u>	

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analyses for the 100- and 500-year discharges are presented in tables 1 and 2 and the scour depths are shown graphically in figure 8. Bottom of footing elevations shown in figure 8 were taken from the bridge construction plans available from the VTAOT.

Contraction scour for the 100-year and 500-year discharges was computed by use of the Laursen clear-water contraction scour equation (Richardson and Davis, 1995, p. 32, equation 20). Variables for the Laursen clear-water contraction scour equation include the discharge through the bridge, the width of the channel at the bridge, and the median grain size of the channel bed material.

Abutment scour was computed by use of the Froehlich equation (Richardson and Davis, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour Results

Contraction scour:	100-year discharge	500-year discharge	Incipient overtopping discharge
	<i>(S</i>	cour depths in feet	
Main channel			
Live-bed scour			
Clear-water scour	2.6	3.9	
	N/A	N/A	
Depth to armoring			"
Left overbank			
Right overbank			
Local scour:			
Abutment scour	7.9	10.0	
Left abutment	12.7-	15.2-	
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			

Riprap Sizing

	100-year discharge	500-year discharge (D ₅₀ in feet)	Incipient overtopping discharge
41	2.6	3.3	
Abutments:	2.6	3.3	
Left abutment			
Right abutment			
Piers:			
Pier 1			
Pier 2			

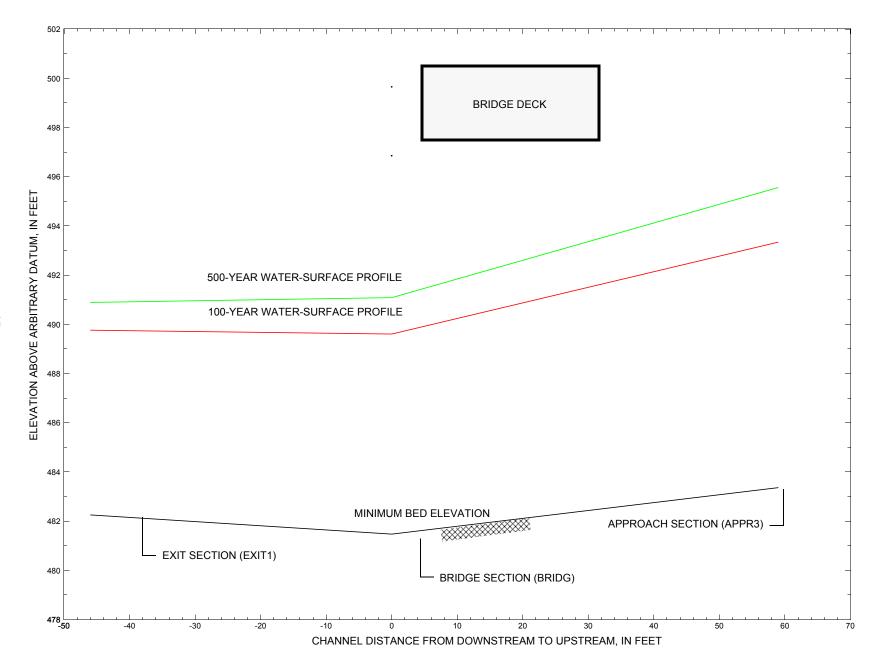


Figure 7. Water-surface profiles for the 100- and 500-year discharges at structure MTHOTH00120067 on Town Highway 12, crossing Freeman Brook, Mount Holly, Vermont.

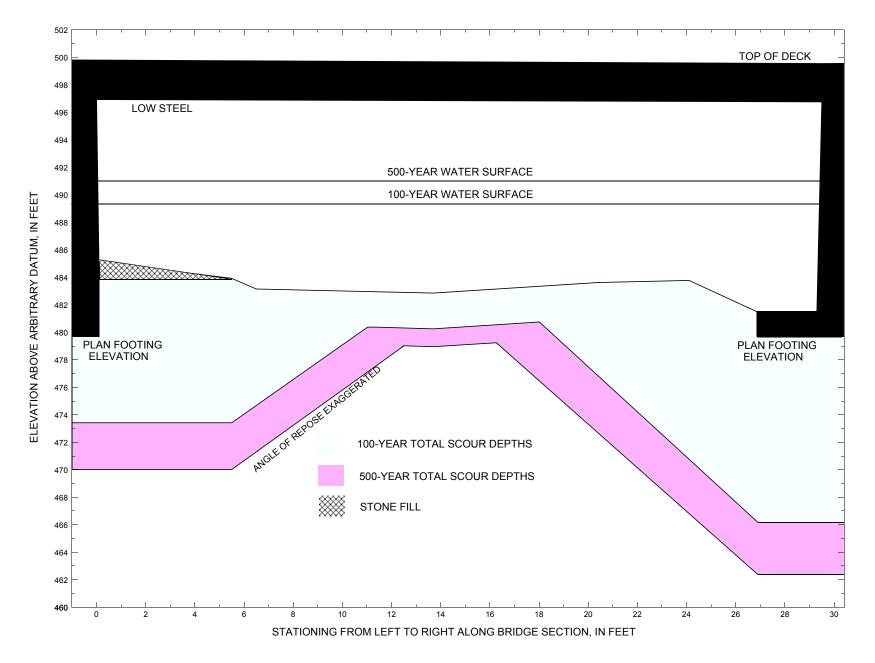


Figure 8. Scour elevations for the 100- and 500-year discharges at structure MTHOTH00120067 on Town Highway 12, crossing Freeman Brook, Mount Holly, Vermont.

 Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure MTHOTH00120067 on Town Highway 12, crossing Freeman Brook, Mount Holly, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation ² (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing/pile elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				100-year	discharge is 2,55	0 cubic-feet per se	cond				
Left abutment	0.0	497.0	496.9	479.7	483.9	2.6	7.9		10.5	473.4	-6.3
Right abutment	29.5	496.7	496.8	479.7	481.5	2.6	12.7		15.3	466.2	-13.5

1.Measured along the face of the most constricting side of the bridge.

2. Arbitrary datum for this study.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure MTHOTH00120067 on Town Highway 12, crossing Freeman Brook, Mount Holly, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing/pile elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				500-year	discharge is 3,50	0 cubic-feet per se	econd				
Left abutment	0.0	497.0	496.9	479.7	483.9	3.9	10.0		13.9	470.0	-9.7
Right abutment	29.5	496.7	496.8	479.7	481.5	3.9	15.2		19.1	462.4	-17.3

1.Measured along the face of the most constricting side of the bridge.

2. Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M. A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158.
- Federal Highway Administration, 1993, Stream Stability and Scour at Highway Bridges: Participant Workbook: Federal Highway Administration Report FHWA-HI-91-011.
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C., 1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.
- Johnson, C.G. and Tasker, G.D., 1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Geological Survey, 1986, Mount Holly, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Scale 1:24,000.
- U.S. Geological Survey, 1986, Wallingford, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

U.S. Geological Survey WSPRO Input File mtho067.wsp T1T2 Hydraulic analysis for structure MTHOTH00120067 Date: 05-FEB-98 Т3 Town Highway 12, Freeman Brook, Mount Holly, Vermont ECW * * * This file was generated by AWISPP v2.5 * * * 6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3 J3 * Q 2550.0 3500.0 0.0104 0.0104 SK * XS EXIT1 -46 Ο. -90.2, 508.52 GR -60.7, 495.43 -46.2, 494.68 -40.3, 493.06 0.0, 487.43 GR -16.4, 492.31 -11.7, 487.43 8.7, 483.00 13.5, 483.38 14.0, 482.29 17.6, 482.25 26.0, 482.61 GR GR 34.6, 482.85 36.2, 483.34 48.4, 489.37 66.7, 498.45 104.5, 498.49 126.6, 497.38 143.0, 509.92 GR * Ν 0.070 0.050 0.060 -16.4 66.7 SA * 0 * * * 0.0 XS FULLV * * SRD XSSKEW LSEL BR BRIDG 0 496.85 15.0 0.0, 496.93 0.0, 485.12 5.5, 483.92 6.5, 483.15 GR GR 11.4, 482.97 13.7, 482.85 20.4, 483.62 24.1, 483.77 GR 26.9, 481.47 29.3, 481.51 29.5, 496.76 0.0, 496.93 * Ν 0.045 * * BRTYPE BRWDTH WWANGL WWWID CD 1 43.0 * * 45.2 16.3 * * SRD EMBWID IPAVE XR 15 25.2 2 RDWAY -41.8, 499.99 0.0, 499.80 28.7, 499.55 51.3, 499.01 GR 92.9, 498.29 100.9, 503.33 110.5, 512.31 GR * * AS APPR3 59 Ο. -54.1, 500.47 -125.7, 510.77 -108.8, 500.51 -81.9, 500.14 GR -6.0, 492.46 GR -22.7, 499.99 -9.0, 498.27 7.7, 484.48 12.2, 484.31 GR 14.2, 483.73 17.6, 483.70 23.4, 483.76 28.4, 483.55 41.3, 491.15 GR 25.7, 483.36 30.7, 484.30 GR 56.8, 495.77 66.2, 496.75 74.0, 499.56 94.1, 512.25 * 0.055 0.070 Ν 0.060 SA -9.0 56.8 * HP 1 BRIDG 489.60 1 489.60 HP 2 BRIDG 489.60 * * 2550 HP 1 APPR3 493.34 1 493.34 HP 2 APPR3 493.34 * * 2550 HP 1 BRIDG 491.08 1 491.08 HP 2 BRIDG 491.08 * * 3500 HP 1 APPR3 495.56 1 495.56

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

U.S. Geological Survey WSPRO Input File mtho067.wsp Hydraulic analysis for structure MTHOTH00120067 Date: 05-FEB-98 Town Highway 12, Freeman Brook, Mount Holly, Vermont ECW *** RUN DATE & TIME: 02-23-98 09:31

CROSS-SECTIO	ON PROPER	TIES: ISEQ	Q = 3; SE0	CID = BRIDG;	; SRD =	0.
WSEL SA# 1	AREA	K 15544.	TOPW WET1 28. 42	P ALPH I	LEW REW	QCR 2551.
489.60	179.	15544.	28. 42	. 1.00	0. 29.	
VELOCITY DIS	STRIBUTIO	N: ISEQ =	3; SECID	= BRIDG; S	SRD =	0.
WSEL 489.60	LEW 0.0	REW AF 29.4 179	REA 1 9.1 15544	K Q . 2550.	VEL 14.24	
X STA. A(I) V(I)	0.0 20.9 6.09	4.4 8.1 15.84	5.9 7.6 16.84	7.1 6.9 18.48	8.2 7.3 17.48	9.3
X STA. A(I) V(I)	9.3 7.0 18.10	10.5 7.1 17.90	11.6 7.2 17.62	12.7 7.2 17.67	13.8 7.2 17.81	14.9
X STA. 14 A(I) V(I)	1.9 7.0 18.22	16.0 7.1 18.02	17.2 7.1 17.84	18.3 7.4 17.34	19.6 7.2 17.62	20.8
X STA. 20 A(I) V(I)	0.8 7.2 17.63	22.1 7.3 17.40	23.4 8.0 15.97	24.8 7.7 16.59	25.9 26.5 4.81	29.4
CROSS-SECTIO	ON PROPER	TIES: ISE(Q = 5; SE0	CID = APPR3;	; SRD =	59.
WSEL SA# 2 493.34		K 30988. 30988.	TOPW WET1 55. 60 55. 60	P ALPH I . 1.00 -	-6. 49.	QCR 5063. 5063.
VELOCITY DI	STRIBUTIO	N: ISEQ =	5; SECID	= APPR3; S	SRD = 5	59.
WSEL 493.34	LEW -6.5	REW AF 48.6 352	REA 1 2.7 30988	K Q . 2550.	VEL 7.23	
X STA (A(I) V(I)	5.5 43.4 2.94	4.8 16.4 7.80	6.9 14.5 8.82	8.5 13.8 9.23	10.1 14.0 9.09	11.6
X STA. 1: A(I) V(I)	1.6 14.1 9.05	13.2 13.7 9.28	14.6 14.0 9.10	16.1 13.9 9.20	17.5 13.9 9.20	19.0
X STA. 1: A(I) V(I)		13.7	13.3	13.7	13.2	
X STA. 21 A(I) V(I)				30.0 15.1 8.47		

WSPRO OUTPUT FILE (continued)

U.S. Geological Survey WSPRO Input File mtho067.wsp Hydraulic analysis for structure MTHOTH00120067 Date: 05-FEB-98 ECW Town Highway 12, Freeman Brook, Mount Holly, Vermont *** RUN DATE & TIME: 02-23-98 09:31 CROSS-SECTION PROPERTIES: ISEQ = 3; SECID = BRIDG; SRD = 0. WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR
 21116.
 28.
 45.

 21116.
 28.
 45.
 221. 3499. 1 221. 21116. 221. 21116. 491.08 Ο. 29. 3499. VELOCITY DISTRIBUTION: ISEQ = 3; SECID = BRIDG; SRD = Ο. LEW REW AREA K Q VEL 0.0 29.4 221.1 21116. 3500. 15.83 WSEL 491.08
 0
 4.5
 5.9
 7.1
 8.2

 28.1
 9.4
 8.9
 8.6
 8.4

 6.23
 18.64
 19.60
 20.34
 20.84
 X STA. 0.0 9.3 A(I) V(I) 13.7
 10.4
 11.5
 12.6
 13.7

 8.6
 8.5
 8.8
 8.8

 20.33
 20.52
 19.91
 19.98
 X STA. 9.3 8.7 14.8 A(I) V(I) 20.04
 15.9
 17.0
 18.1
 19.3

 8.6
 8.5
 8.6
 8.8

 20.27
 20.69
 20.35
 19.98
 X STA. 14.8 20.5 8.5 20.27 A(T)V(T) 20.58 24.1 9.8
 20.5
 21.7
 22.9
 20.5
 20.54
 20.39
 19.89
 X STA. 25.4 29.4 35.7 A(I) 9.8 17.88 V(I) 4.91 CROSS-SECTION PROPERTIES: ISEQ = 5; SECID = APPR3; SRD = 59. AREA K TOPW WETP ALPH 485. 47385. 64. 71. 485. 47385. 64. 71. 1.00 WSEL SA# LEW REW OCR 2 7583. 495.56 -8. 56. 7583. VELOCITY DISTRIBUTION: ISEQ = 5; SECID = APPR3; SRD = 59. WSEL LEW REW AREA K Q VEL 495.56 -7.6 56.1 484.5 47385. 3500. 7.22 495.56 -7.6 3.0 5.5 7.5 9.2 53.9 22.6 20.8 18.9 18 3.25 7.73 8.42 9.25 9. X STA. 10.9 18.8 9 30 A(I) V(I)
 10.9
 12.6
 14.2
 15.8
 17.4

 18.9
 19.2
 19.0
 18.8
 19.2

 9.28
 9.12
 9.23
 9.33
 19.3
 X STA. 19.0 18.8 A(I) V(I)
 19.0
 20.5
 22.0
 23.5
 25.0

 17.9
 17.8
 18.0
 18.1
 17.4

 9.79
 9.81
 9.71
 9.66
 10.03
 X STA. 26.5 A(I) V(I)
 26.5
 27.9
 29.5
 31.1
 33.0

 17.8
 18.0
 18.3
 20.5
 91.1

 9.84
 9.71
 9.57
 8.52
 1.92
 X STA. 56.1 A(T)V(I)

WSPRO OUTPUT FILE (continued)

U.S. Geological Survey WSPRO Input File mtho067.wsp Hydraulic analysis for structure MTHOTH00120067 Date: 05-FEB-98 ECW Town Highway 12, Freeman Brook, Mount Holly, Vermont *** RUN DATE & TIME: 02-23-98 09:31 XSID:CODE SRDL SRD FLEN EGL ERR LEW AREA VHD HF CRWS Q WSEL K ALPH REW HO FR# VEL -14. 306. 1.08 ***** 490.84 488.51 49. 24983. 1.00 ***** ******* 0.67 EXIT1:XS ***** 2550. 489.76 -46. ***** 8.33 V 46. -15. 346. 0.84 0.40 491.24 ****** 2550. 490 0. 46. 50. 30038. 1.00 0.00 -0.01 0.56 7.36 <<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>> FULLV:FV 2550. 490.39 ===125 FR# EXCEEDS FNTEST AT SECID "APPR3": TRIALS CONTINUED. FNTEST, FR#, WSEL, CRWS = 0.80 490.49 490.27 0.95 ===110 WSEL NOT FOUND AT SECID "APPR3": REDUCED DELTAY. WSLIM1,WSLIM2,DELTAY = 489.89 512.25 0.50 ===115 WSEL NOT FOUND AT SECID "APPR3": USED WSMIN = CRWS. WSLIM1,WSLIM2,CRWS = 489.89 490.27 512.25 ===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS. "APPR3" KRATTO = 0.53

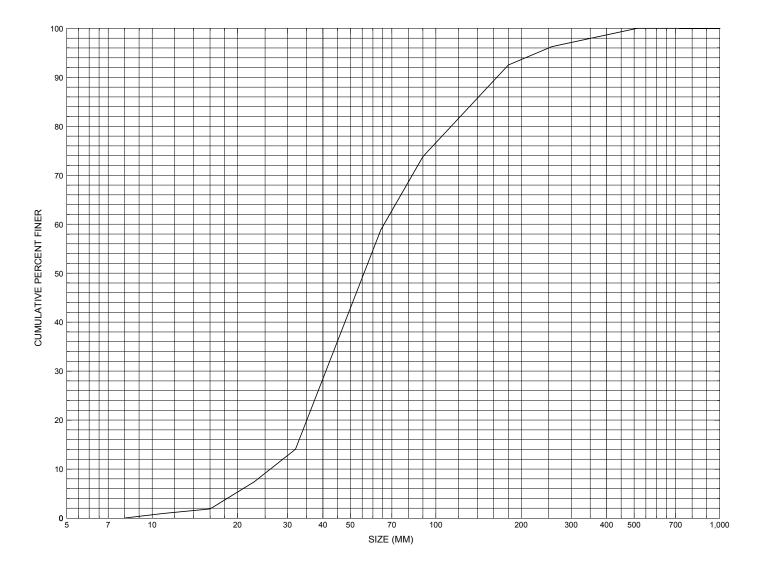
 59.
 -3.
 214.
 2.21
 0.80
 492.71
 490.27
 2550.
 490.50

 9.
 59.
 40.
 15998.
 1.00
 0.68
 0.00
 0.94
 11.92

 <<<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>

 APPR3 · AS 59. 59. ===285 CRITICAL WATER-SURFACE ELEVATION A _ S _ S _ U _ M _ E _ D !!!!! SECID "BRIDG" Q,CRWS = 2550. 489.60 <<<<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>> CRWS AREA VHD XSID:CODE SRDL TEW HF EGL 0 WOFT. SRD FLEN REW K ALPH HO ERR FR# VEL 179. 3.16 ***** 492.75 489.60 BRIDG:BR 46. Ο. 2550. 489.60 29. 15528. 1.00 ***** ****** 0. 46. 1.00 14.25 TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB 1. **** 1. 1.000 ****** 496.85 ****** ****** XSID:CODE SRD FLEN HF VHD EGL ERR 0 WSEL <<<<EMBANKMENT IS NOT OVERTOPPED>>>> RDWAY:RG 15. XSID:CODE SRDL LEW AREA VHD HF EGL CRWS 0 WSEL SRD FLEN REW K ALPH HO ERR FR# VEL -6. 353. 0.81 0.24 494.15 490.27 49. 31001. 1.00 1.16 0.01 0.50 APPR3:AS 16. 2550. 493.34 59. 18. 7.23 M(G) M(K) KQ XLKQ XRKQ OTEL 0.315 0.001 30922. 5. 34. 493.11 <<<<END OF BRIDGE COMPUTATIONS>>>> FIRST USER DEFINED TABLE. Q LEW REW XSID.CODE SRD AREA VEL. WSEL К -46. -14. 49. 2550. 24983. 306. 8.33 489.76 EXIT1:XS 2550. 30038. FULLV: FV Ο. -15. 50. 346. 7.36 490.39 0. 29. 15528. BRIDG · BR 0 2550. 179. 14.25 489.60 0.********* 15.********* **** 2.00****** RDWAY:RG APPR3:AS 59. -6. 49. 2550. 31001. 353. 7.23 493.34 KQ XSID:CODE XLKQ XRKQ 30922. APPR3:AS 5. 34. SECOND USER DEFINED TABLE. FR# YMIN YMAX HF HO VHD VOID CODE CBMG POT WORT

VRID:CODE	CRWB	L U#	THITIN	IMAA	пг	нo	VHD	EGD	WSEL
EXIT1:XS	488.51	0.67	482.25	509.92*	*****	* * * * *	1.08	490.84	489.76
FULLV:FV	* * * * * * * *	0.56	482.25	509.92	0.40	0.00	0.84	491.24	490.39
BRIDG:BR	489.60	1.00	481.47	496.93*	*****	* * * * *	3.16	492.75	489.60
RDWAY:RG	*********	*****	498.29	512.31*	*****	*****	*****	*******	******
APPR3:AS	490.27	0.50	483.36	512.25	0.24	1.16	0.81	494.15	493.34


WSPRO OUTPUT FILE (continued)

U.S. Geological Survey WSPRO Input File mtho067.wsp Hydraulic analysis for structure MTHOTH00120067 Date: 05-FEB-98 Town Highway 12, Freeman Brook, Mount Holly, Vermont ECW *** RUN DATE & TIME: 02-23-98 09:31 EGL ERR XSID:CODE SRDL SRD FLEN LEW AREA VHD HF CRWS WSEL 0 K ALPH FR# FLEN REW HO VEL -15. 379. 1.33 ***** 492.22 489.47 51. 34307. 1.00 ***** ******* 0.68 EXIT1:XS ***** 3500. 490.89 -46. ***** 9.23 V 46. -16. 424. 1.06 0.41 492.62 ****** 3500. 491 0. 46. 53. 40435. 1.00 0.00 -0.01 0.59 8.26 <<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>> FULLV:FV 3500. 491.56 ===125 FR# EXCEEDS FNTEST AT SECID "APPR3": TRIALS CONTINUED. FNTEST,FR#,WSEL,CRWS = 0.80 491.57 1.01 491.51 ===110 WSEL NOT FOUND AT SECID "APPR3": REDUCED DELTAY. WSLIM1,WSLIM2,DELTAY = 491.06 512.25 0.50 ===115 WSEL NOT FOUND AT SECID "APPR3": USED WSMIN = CRWS. WSLIM1,WSLIM2,CRWS = 491.06 512.25 491.57 ===130 CRITICAL WATER-SURFACE ELEVATION A _ S _ S _ U _ M _ E _ D !! ENERGY EQUATION N_O_T B_A_L_A_N_C_E_D AT SECID "APPR3" D !!!!! WSBEG, WSEND, CRWS = 491.57 512.25 491.57 -4. 262. 2.78 ***** 494.35 491.57 3500. 491.57 43. 20977. 1.00 ***** ******* 1.00 13.37 APPR3:AS 59. 59. 59. <<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>> ===285 CRITICAL WATER-SURFACE ELEVATION A _ S _ S _ U _ M _ E SECID "BRIDG" Q,CRWS = 3500. 491.00 D !!!!! 491.08 <<<<<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>> XSID:CODE SRDL LEW AREA VHD HF EGL CRWS WSEL 0 SRD FLEN K ALPH HO ERR VEL REW FR# 0. 221. 3.90 ***** 494.98 491.08 29. 21122. 1.00 ***** ****** 1.00 BRIDG: BR 46. 3500. 491.08 Ο. 46. 15.83 TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB 1. **** 1. 1.000 ****** 496.85 ***** ****** XSID:CODE SRD FLEN HF VHD EGL ERR 0 WSEL 15. <<<<<EMBANKMENT IS NOT OVERTOPPED>>>> RDWAY:RG XSID:CODE SRDL LEW AREA VHD HF EGL CRWS 0 WSEL SRD FLEN HO ERR REW K ALPH FR# VEL APPR3:AS 16. -8. 485. 0.81 0.22 496.37 491.57 3500. 495.56 0.01 0.46 59. 18. 56. 47394. 1.00 1.18 7.22 KQ XLKQ XRKQ M(K) M(G) OTEL 0.376 0.061 44449. 5. 34. 495.38 <<<<<END OF BRIDGE COMPUTATIONS>>>>> FIRST USER DEFINED TABLE. XSTD:CODE SRD AREA LEW REW 0 К VEL WSEL EXIT1:XS -46. -15. 51. 3500. 34307. 379. 9.23 490.89 424. Ο. 40435. 21122. FULLV·FV -16. 53. 3500 8.26 491.56 29. 3500. 221. BRTDG:BR Ο. 0. 15.83 491.08 15.********** 0.****** RDWAY:RG 2.00******* APPR3:AS 59. -8. 56. 3500. 47394. 485. 7.22 495.56 XSID:CODE XLKQ XRKQ KQ 5. 34. 44449 APPR3:AS SECOND USER DEFINED TABLE. XSID:CODE CRWS FR# YMIN YMAX HF HO VHD EGL WSEL EXIT1:XS 489.47 0.68 482.25 509.92********* 1.33 492.22 490.89 ******* 0.59 482.25 509.92 0.41 0.00 1.06 492.62 491.56 FULLV:FV 491.08 1.00 481.47 496.93********* 3.90 494.98 491.08 BRIDG:BR RDWAY:RG APPR3:AS 491.57 0.46 483.36 512.25 0.22 1.18 0.81 496.37 495.56 ER NORMAL END OF WSPRO EXECUTION.

25

APPENDIX C:

BED-MATERIAL PARTICLE-SIZE DISTRIBUTION

Appendix C. Bed material particle-size distribution for a pebble count in the channel approach of structure MTHOTH00120067, in Mount Holly, Vermont.

APPENDIX D: HISTORICAL DATA FORM

United States Geological Survey Bridge Historical Data Collection and Processing Form

Structure Number MTHOTH00120067

General Location Descriptive

Data collected by (First Initial, Full last name) <u>E</u>. <u>BOEHMLER</u>

Date (MM/DD/YY) 03 / 15 / 95

Highway District Number (I - 2; nn) 03

Town (FIPS place code; I - 4; nnnnn) 47200

Waterway (1 - 6) FREEMAN BROOK

Route Number TH012

Topographic Map Mount Holly

Latitude (I - 16; nnnn.n) 43286

County (FIPS county code; I - 3; nnn) ____021

Mile marker (I - 11; nnn.nnn) 000000

Road Name (I - 7): _-____

Vicinity (1 - 9) 0.5 MI TO JCT W VT103

Hydrologic Unit Code: 02010002

Longitude (i - 17; nnnnn.n) 72519

Select Federal Inventory Codes

FHWA Structure Number (1 - 8) <u>10111200671112</u>

Maintenance responsibility (I - 21; nn) 03	Maximum span length (I - 48; nnnn) 0030
Year built (I - 27; YYYY) <u>1973</u>	Structure length (I - 49; nnnnnn) 000034
Average daily traffic, ADT (I - 29; nnnnnn) 000150	_ Deck Width (I - 52; nn.n) _252
Year of ADT (1 - 30; YY) 92	Channel & Protection (I - 61; n) 5
Opening skew to Roadway (I - 34; nn) 15	Waterway adequacy (I - 71; n) 6
Operational status (I - 41; X) A	Underwater Inspection Frequency (I - 92B; XYY) N
Structure type (I - 43; nnn) _501	Year Reconstructed (I - 106) 0000
Approach span structure type (I - 44; nnn) 000	Clear span (<i>nnn.n ft</i>)030.0
Number of spans (I - 45; nnn)	Vertical clearance from streambed (<i>nnn.n</i> ft) 000.0
Number of approach spans (<i>I - 46; nnnn</i>) <u>0000</u> Comments:	Waterway of full opening (nnn.n ft ²) 240.0

The structural inspection report of 6/8/94 indicates the structure is a prestressed concrete slab type bridge. The abutment walls and wingwalls are concrete on which there are randomly distributed fine cracks. Concrete scaling is reported primarily along the bottom section of the right abutment wall. Local scour is noted along the right abutment and its downstream wingwall, which has an exposed footing. The footing concrete is noted as having heavy scaling but no undermining. Most of the channel flow is along the right abutment. Heavy riprap protection is reported in front of each upstream wingwall and along the left abutment wall. A gravel point bar is reported along the left abutment side of the (Cont., page 31)

Is there hydrologic data available? <u>N</u> if No, type ctrl-n h VTAOT Drainage area (mi^2): <u>11.8</u>				
Torrain abaractor:				
Terrain character:				
Stream character & type:				
- -				
Streambed material:				
Discharge Data (cfs): $Q_{2.33}$ - Q_{10} _ 1500 Q_{25} _ 1840 Q_{50} _ 2200 Q_{100} - Q_{500} _ -				
Record flood date (MM / DD / YY): / Water surface elevation (#):				
Estimated Discharge (cfs): Velocity at Q 25(ft/s):				
Ice conditions (Heavy, Moderate, Light): Debris (Heavy, Moderate, Light):				
The stage increases to maximum highwater elevation (Rapidly, Not rapidly):				
The stream response is (Flashy, Not flashy):				
Describe any significant site conditions upstream or downstream that may influence the stream's stage: _				
Watershed storage area (in percent): - %				
The watershed storage area is: (1-mainly at the headwaters; 2- uniformly distributed; 3-immediatly upstream				
oi the site)				
Water Curfage Flowetian Fatimentes for Fuisting Otweetung				
Water Surface Elevation Estimates for Existing Structure:				
Peak discharge frequency $Q_{2.33}$ Q_{10} Q_{25} Q_{50} Q_{100}				
Peak discharge frequency $Q_{2.33}$ Q_{10} Q_{25} Q_{50} Q_{100} Water surface elevation (ft))7.8				
Water surface elevation (ft))7.812.513.513.5				
Water surface elevation (ft))7.8				
Water surface elevation (ft))7.812.5				
Water surface elevation (ft))7.8Velocity (ft / sec) 12.5				
Water surface elevation (ft))7.8Velocity (ft / sec) 12.5Long term stream bed changes:-				
Water surface elevation (ft))7.8Velocity (ft / sec) 12.5Long term stream bed changes:-Is the roadway overtopped below the Q_{100} ? (Yes, No, Unknown):UFrequency:				
Water surface elevation (ft))7.8Velocity (ft / sec) 12.5Long term stream bed changes:-				
Water surface elevation (ft) 7.8Velocity (ft / sec) 12.5Long term stream bed changes:-Is the roadway overtopped below the Q_{100} ? (Yes, No, Unknown):UFrequency:-Relief Elevation (ft) :-Discharge over roadway at Q_{100} (ft^3/sec):-				
Water surface elevation (ft)) $ 7.8$ $ -$ Velocity (ft / sec) $ 12.5$ $ -$ Long term stream bed changes: $ 12.5$ $ -$ Is the roadway overtopped below the Q_{100} ? (Yes, No, Unknown): U Frequency: $-$ Relief Elevation (ft) : $ Discharge over roadway at Q_{100} (ft^3/sec):-Are there other structures nearby? (Yes, No, Unknown):UIf No or Unknown, type ctrl-n os$				
Water surface elevation (ft) 7.8Velocity (ft / sec) 12.5Long term stream bed changes:-Is the roadway overtopped below the Q_{100} ? (Yes, No, Unknown):UFrequency:-Relief Elevation (ft) :-Discharge over roadway at Q_{100} (ft^3/sec):-				

Downstream distance (<i>miles</i>): Town:		
Highway No. : Structure No. : Structure Type: _ Clear span (t): Clear Height (t): Full Waterway (t^2):		
Comments: channel. The channel is noted as lined with stone and boulders upstream and do provide some protection. There is very limited hydrologic data provided on an hydraulics section files.	ownstream, which may	
USGS Watershed Data		
Watershed Hydrographic Data		
Drainage area (DA) 11.38 mi ² Lake/pond/swamp area 0.02 Watershed storage (ST) 0.2 %	2 mi ²	
Bridge site elevation1161ftHeadwater elevation3286Main channel length5.33mi	ft	
10% channel length elevation 1181 ft85% channel length elMain channel slope (S) 204.77 ft / miWatershed Precipitation Data	evation <u>2000</u> ft	
Average site precipitation in Average headwater precipitation Maximum 2yr-24hr precipitation event ($I24,2$) in Average seasonal snowfall (Sn) ft	tion _ [_] in	

Bridge Plan Data

Are plans available? <u>Y</u> <i>If no, type ctrl-n pl</i> D Project Number <u>STF-9437</u>	ate issued for construction (<i>MM / YYYY</i>): <u>11</u> / <u>1973</u> Minimum channel bed elevation: <u>505.0</u>
Low superstructure elevation: USLAB 518.26	_DSLAB <u>519.21</u> USRAB <u>517.99</u> DSRAB <u>518.94</u>
temporary stretch of roadway on the right bank	lock tree between a 6 in ash and 12 in poplar tree on the upstream that once led to a temporary bridge. The tree is and 20 feet from the centerline of the temporary roadway
Reference Point (MSL, Arbitrary, Other): Arbitra	ry Datum (NAD27, NAD83, Other): Arbitrary
Foundation Type: <u>1</u> (1-Spreadfooting; 2-	Pile; 3- Gravity; 4-Unknown)
If 1: Footing Thickness <u>2.0</u> Footing	pottom elevation: <u>501.0</u>
If 2: Pile Type: (1-Wood; 2-Steel or metal; 3-0	Concrete) Approximate pile driven length:
If 3: Footing bottom elevation:	
Is boring information available? N If no, typ	be ctrl-n bi Number of borings taken:
Foundation Material Type: <u>3</u> (1-regolith, 2	-bedrock, 3-unknown)
Briefly describe material at foundation bottom -	elevation or around piles:

Comments:

These plans are listed under the last project number which is STF 9437. The same hydraulic data on the bridge given in the previous section are printed on the plans. Additional reference marks that may be used are: 1) the point on the top streamward edge of the upstream right wingwall, where the slope of the concrete changes from horizontal to downward, elevation shown is 519.95; and 2) another point in the same location as in, but on the upstream left wingwall and the elevation shown is 520.22.

Cross-sectional Data

Is cross-sectional data available? Y ____ If no, type ctrl-n xs

Source (FEMA, VTAOT, Other)? <u>VTAOT</u> Some cross sections of the stream were generated and kept with the plans, which may be Comments: retrieved when needed. No reproducible bridge cross sections.

Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low chord to bed	-	-	-	-	-	-	-	-	-	-	-
	-	-			-					-	
Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low chord			_	_	_	_	-	-	-	-	-
Source (<i>FEMA</i>		- Other)? _					1		I		<u> </u>
to bed Source (<i>FEMA</i>	A, VTAOT,										
to bed Source (<i>FEMP</i> Comments: -	A, VTAOT,				-	-	-	-	_	-	-
to bed Source (<i>FEMA</i> Comments: - -	 A, VTAOT,	Other)? _	<u>-</u>		-	-	-	-	-	-	-
to bed Source (<i>FEMA</i> Comments: - - Station	a, vtaot,	Other)? _	-								
to bed Source (<i>FEMA</i> Comments: - - Station Feature	A, VTAOT,	Other)? _	- - -	-	-	-	-	-	-	-	-
to bed Source (<i>FEMP</i> Comments: - - Station Feature Low chord elevation Bed	A, VTAOT, - - -	Other)? _ - - -	- - -	-	-	-	-	-	-	-	-
to bed Source (<i>FEMA</i> Comments: - - Station Feature Low chord elevation Bed elevation Low chord	A, VTAOT, - - - -	Other)? _ - - - -	- - - -	- -	-	-	-		-	-	-
to bed Source (<i>FEMA</i> Comments: - - Station Feature Low chord elevation Bed elevation Low chord	A, VTAOT, - - - -	Other)? _ - - - -	- - - -	- -	-	-	-		-	-	-
to bed Source (<i>FEMA</i> Comments: - - Station Feature Low chord elevation Bed elevation Low chord to bed	A, VTAOT, - - - - -	Other)?	- - - -	-							
to bed Source (<i>FEMA</i> Comments: - - Station Feature Low chord elevation Bed elevation Low chord to bed Station	A, VTAOT, - - - - -	Other)?	- - - - -	- - -	- - -	- - -		- - -	- - -	- - -	- - -
to bed Source (<i>FEMA</i> Comments: - Station Feature Low chord elevation Bed elevation Low chord to bed Station Feature Low chord	A, VTAOT, - - - - - - -	Other)?	- - - - - -	- - -	- - - -						

APPENDIX E: LEVEL I DATA FORM

U. S. Geological Survey Bridge Field Data Collection and Processi Structure Number	Computerized by: CG Date: 2/12/96					
	Hydrologic Unit Code: 02010002					
B. Bridge Deck Observations 4. Surface cover LBUS 6 RBUS 6 RBUS 6 Overall 6 (2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland) Overall 6 5. Ambient water surface US 2 UB 2,1 DS 2,1 (1- pool; 2- riffle) 6. Bridge structure type 1 (1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other)						
Road approach to bridge:	Span length 30 (feet) Bridge width 25.2 (feet) Channel approach to bridge (BF):					
	15. Angle of approach: 0 16. Bridge skew: 50					
9. LB <u>2</u> RB <u>2</u> (1- Paved, 2- Not paved) 10. Embankment slope (run / rise in feet / foot): US left <u>2.1:1</u> US right <u>2.6:1</u> Protection 11.Type 12.Cond. 13.Erosion 14.Severity LBUS 0 - 2	Approach Angle Q					
RBUS <u>0</u> <u>-</u> <u>2</u> <u>2</u>	17. Channel impact zone 1: Exist? <u>Y</u> (Y or N)					
RBDS <u>0</u> <u>-</u> <u>0</u> <u>-</u>	Where? <u>RB</u> (<i>LB</i> , <i>RB</i>) Severity <u>2</u> $\overline{2}$					
LBDS0-0-Bank protection types: 0- none; 1- < 12 inches; 2- < 36 inches; 3- < 48 inches; 4- < 60 inches; 5- wall / artificial levee Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failedBank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failedErosion: 0 - none; 1- channel erosion; 2- road wash; 3- both; 4- otherErosion Severity: 0 - none; 1- slight; 2- moderate; 3- severe	Range? 5 feet US (US, UB, DS) to 28 feet UB Channel impact zone 2: Exist? Y (Y or N) Where? LB (LB, RB) Severity 1 Range? 15 feet DS (US, UB, DS) to 40 Impact Severity: 0- none to very slight; 1- Slight; 2- Moderate; 3- Severe					

18. Bridge Type: _4				
1a- Vertical abutments with wingwalls	1b without wing	walls	1a with wingwalls	
1b- Vertical abutments without wingwalls				
2- Vertical abutments and wingwalls, sloping en Wingwalls parallel to abut. face	nbankment			
3- Spill through abutments	- ×			
4- Sloping embankment, vertical wingwalls and Wingwall angle less than 90°.	abutments	4		
 Bridge Deck Comments (surface cover variation approach overflow width, etc.) 	ns, measured bridge and s	pan lengths, bridge	type variations,	
7: Values are from the VTAOT database. T	_	gth equals 34 ft, s	span length equa	ls 32 ft,
clear span equals 30 ft, and bridge width equation of the second se				
The clear span was measured from abutmen Guard rails are along the upstream and dow			annragch	
The stream is in a V-notch valley.	IISticalli Di luge uces al	nu out onto the r	Jau approach.	
8. The right road approach is slightly higher	near the bridge than th	e left road approa	ach. Then, the rig	ght road
approach is lower than the bridge.				
C Unstroa	m Channel Asses	smont		
C. Upstrea	m Channel Asses	sment		
21. Bank height (BF) 22. Bank angle (BF)	26. % Veg. cover (BF)	27. Bank material (sion (BF)
21. Bank height (BF) 22. Bank angle (BF) 20. SRD LB RB LB RB	26. % Veg. cover (BF) LB RB	27. Bank material (LB RB	LB	RB
21. Bank height (BF) 22. Bank angle (BF)	26. % Veg. cover (BF)	27. Bank material (LB	. ,
21. Bank height (BF) 22. Bank angle (BF) 20. SRD LB RB LB RB	26. % Veg. cover (BF) LB RB <u>1</u> <u>2</u>	27. Bank material (LB RB	LB 0	RB 0
21. Bank height (BF) 22. Bank angle (BF) 20. SRD LB RB LB RB 34.0 8.0 7.0	26. % Veg. cover (BF) LB RB <u>1</u> <u>2</u> 35.0 25. That	27. Bank material (LB RB <u>342 342</u>	LB 0 29. Bed Material	RB 0
21. Bank height (BF) 22. Bank angle (BF) 20. SRD LB RB LB RB 34.0 8.0 7.0 23. Bank width 15.0 24. Channel width 30. Bank protection type: LB 2 RB 24 SRD - Section ref. dist. to US face % Vegeta	26. % Veg. cover (BF) LB RB <u>1</u> <u>2</u> <u>35.0</u> 25. Thak 31. Bank pro- <i>tion (Veg) cover: 1- 0 to 25</i>	27. Bank material (LB RB <u>342</u> <u>342</u> weg depth <u>52.5</u> otection condition: %; 2- 26 to 50%; 3-	LB <u>0</u> 29. Bed Material LB <u>1</u> RB <u>1</u> <i>51 to 75%; 4- 76 to</i>	RB 0 435
21. Bank height (BF) 22. Bank angle (BF) 20. SRD LB RB LB RB 34.0 8.0 7.0 23. Bank width 15.0 24. Channel width 30. Bank protection type: LB 2 RB 24 SRD - Section ref. dist. to US face % Vegeta Bed and bank Material: 0- organics; 1- silt / clay,	26. % Veg. cover (BF) LB RB <u>1</u> <u>2</u> <u>35.0</u> 25. Thak 31. Bank pro- <i>tion (Veg) cover: 1- 0 to 25</i>	27. Bank material (LB RB <u>342</u> <u>342</u> weg depth <u>52.5</u> otection condition: %; 2- 26 to 50%; 3- mm; 3- gravel, 2 - 6	LB <u>0</u> 29. Bed Material LB <u>1</u> RB <u>1</u> <i>51 to 75%; 4- 76 to</i>	RB 0 435
21. Bank height (BF) 22. Bank angle (BF) 20. SRD LB RB LB RB 34.0 8.0 7.0 23. Bank width 15.0 24. Channel width 30. Bank protection type: LB 2 RB 24 SRD - Section ref. dist. to US face % Vegeta Bed and bank Material: 0- organics; 1- silt / clay, < 4- cobble, 64 - 256mm; 5- Bank Erosion: 0- not evident; 1- light fluvial; 2- model	26. % Veg. cover (BF) LB RB <u>1</u> <u>2</u> <u>35.0</u> 25. Thak <u>31. Bank pro-</u> <i>tion (Veg) cover: 1- 0 to 25</i> <i>1/16mm; 2- sand, 1/16 - 2</i> <i>boulder, > 256mm; 6- bedi</i> <i>iderate fluvial; 3- heavy fluv</i>	27. Bank material (LB RB <u>342</u> <u>342</u> weg depth <u>52.5</u> btection condition: %; 2- 26 to 50%; 3- mm; 3- gravel, 2 - 6 rock; 7- manmade vial / mass wasting	LB 0 29. Bed Material LB <u>1</u> RB <u>1</u> 51 to 75%; 4 - 76 to 4mm;	RB <u>0</u> <u>435</u> 0 100%
21. Bank height (BF) 22. Bank angle (BF) 20. SRD LB RB LB RB 34.0 8.0 7.0 23. Bank width 15.0 24. Channel width 30. Bank protection type: LB 2 RB 24 SRD - Section ref. dist. to US face % Vegeta Bed and bank Material: 0- organics; 1- silt / clay, < 4- cobble, 64 - 256mm; 5- Bank Erosion: 0- not evident; 1- light fluvial; 2- mo Bank protection types: 0- absent; 1- < 12 inches; 2-	26. % Veg. cover (BF) LB RB 1 2 35.0 25. Thalw 31. Bank pro- tion (Veg) cover: 1- 0 to 25 1/16mm; 2- sand, 1/16 - 2 boulder, > 256mm; 6- bed boulder, > 256mm; 6- bed derate fluvial; 3- heavy fluv 2- < 36 inches; 3- < 48 inch	27. Bank material (LB RB <u>342</u> <u>342</u> weg depth <u>52.5</u> btection condition: %; 2- 26 to 50%; 3- mm; 3- gravel, 2 - 6 rock; 7- manmade vial / mass wasting	LB 0 29. Bed Material LB <u>1</u> RB <u>1</u> 51 to 75%; 4 - 76 to 4mm;	RB <u>0</u> <u>435</u> 0 100%
21. Bank height (BF) 22. Bank angle (BF) 20. SRD LB RB LB RB 34.0 8.0 7.0 23. Bank width 15.0 24. Channel width 30. Bank protection type: LB 2 RB 24 SRD - Section ref. dist. to US face % Vegeta Bed and bank Material: 0- organics; 1- silt / clay, < 4- cobble, 64 - 256mm; 5- Bank Erosion: 0- not evident; 1- light fluvial; 2- mo Bank protection types: 0- absent; 1- 12 inches; 2 Bank protection conditions: 1- good; 2- slumped; 3	26. % Veg. cover (BF) LB RB 1 2 35.0 25. That 31. Bank pro tion (Veg) cover: 1- 0 to 25 : 1/16mm; 2- sand, 1/16 - 25 : boulder, > 256mm; 6- bedr : derate fluvial; 3- heavy fluv 2- < 36 inches; 3- < 48 inch 3- eroded; 4- failed	27. Bank material (LB RB <u>342</u> <u>342</u> weg depth <u>52.5</u> btection condition: %; 2- 26 to 50%; 3- mm; 3- gravel, 2 - 6 rock; 7- manmade vial / mass wasting	LB 0 29. Bed Material LB <u>1</u> RB <u>1</u> 51 to 75%; 4 - 76 to 4mm;	RB <u>0</u> <u>435</u> 0 100%
21. Bank height (BF) 22. Bank angle (BF) 20. SRD LB RB LB RB 34.0 8.0 7.0 23. Bank width 15.0 24. Channel width 30. Bank protection type: LB 2 RB 24 SRD - Section ref. dist. to US face % Vegeta Bed and bank Material: 0- organics; 1- silt / clay, < 4- cobble, 64 - 256mm; 5- Bank Erosion: 0- not evident; 1- light fluvial; 2- mo Bank protection types: 0- absent; 1- < 12 inches; 2-	26. % Veg. cover (BF) LB RB 1 2 35.0 25. That 31. Bank pro- 31. Bank pro- tion (Veg) cover: 1- 0 to 25 1/16 - 2. boulder, > 256mm; 6- bedi 6- bedi derate fluvial; 3- heavy fluv 2- < 36 inches; 3- < 48 inch 8- eroded; 4- failed vs, protection extent, etc.):	27. Bank material (LB RB <u>342</u> <u>342</u> weg depth <u>52.5</u> btection condition: %; 2- 26 to 50%; 3- mm; 3- gravel, 2 - 6 rock; 7- manmade vial / mass wasting	LB 0 29. Bed Material LB <u>1</u> RB <u>1</u> 51 to 75%; 4 - 76 to 4mm;	RB <u>0</u> <u>435</u> 0 100%
21. Bank height (BF) 22. Bank angle (BF) 20. SRD LB RB LB RB 34.0 8.0 7.0 23. Bank width 15.0 24. Channel width 30. Bank protection type: LB 2 RB 24 SRD - Section ref. dist. to US face % Vegeta Bed and bank Material: 0- organics; 1- silt / clay, < 4- cobble, 64 - 256mm; 5- Bank Erosion: 0- not evident; 1- light fluvial; 2- mo Bank protection types: 0- absent; 1- < 12 inches; 2 Bank protection conditions: 1- good; 2- slumped; 3 32. Comments (bank material variation, minor inflow	26. % Veg. cover (BF) LB RB 1 2 35.0 25. Thalw	27. Bank material (LB RB <u>342</u> <u>342</u> weg depth <u>52.5</u> otection condition: %; 2- 26 to 50%; 3- mm; 3- gravel, 2 - 6 rock; 7- manmade vial / mass wasting es; 4- < 60 inches; 5	LB <u>0</u> 29. Bed Material LB <u>1</u> RB <u>1</u> 51 to 75%; 4 - 76 to 4mm; 5- wall / artificial lev	RB <u>0</u> <u>435</u> 0 100% ree
21. Bank height (BF)22. Bank angle (BF)20. SRDLBRBLBRB34.08.07.023. Bank width15.024. Channel width30. Bank protection type:LB2RB24. Channel width30. Bank protection type:LB2SRD - Section ref. dist. to US face% VegetaBed and bank Material:0- organics; 1- silt / clay, <4- cobble, 64 - 256mm; 5-Bank Erosion:0- not evident; 1- light fluvial; 2- moBank protection types:0- absent; 1- < 12 inches; 2Bank protection conditions:1- good; 2- slumped; 332. Comments (bank material variation, minor inflowBoth upstream banks are protected with boutThe roadway runs along/close to the left banof cobbles, gravel and boulders.	26. % Veg. cover (BF) LB RB 1 2 35.0 25. That 31. Bank pro- 31. Bank pro- tion (Veg) cover: 1- 0 to 25 1/16 - 2. boulder, > 256mm; 6- bedraderate fluvial; 3- heavy fluv 6- bedraderate fluvial; 3- heavy fluv 2- < 36 inches; 3- < 48 inch 8- eroded; 4- failed ws, protection extent, etc.): 11 alders. k. Therefore the bank i	27. Bank material (LB RB <u>342</u> <u>342</u> weg depth <u>52.5</u> otection condition: %; 2- 26 to 50%; 3- mm; 3- gravel, 2 - 6 rock; 7- manmade vial / mass wasting es; 4- < 60 inches; 4 is made up of road	LB 0 29. Bed Material LB <u>1</u> RB <u>1</u> 51 to 75%; 4- 76 to 4mm; 5- wall / artificial lev dbed material co	RB 0 435 0 100% ree
21. Bank height (BF) 22. Bank angle (BF) 20. SRD LB RB LB RB 34.0 8.0 7.0 23. Bank width 15.0 24. Channel width 30. Bank protection type: LB 2 RB 24 SRD - Section ref. dist. to US face % Vegeta Bed and bank Material: 0- organics; 1- silt / clay, <	26. % Veg. cover (BF) LB RB <u>1</u> <u>2</u> <u>35.0</u> 25. Thalw <u>31. Bank pro-</u> <i>ion (Veg) cover: 1- 0 to 25</i> <i>i 1/16mm; 2- sand, 1/16 - 2</i> <i>boulder, > 256mm; 6- bedi</i> <i>iderate fluvial; 3- heavy fluv</i> <i>2- < 36 inches; 3- < 48 inch</i> <i>3- eroded; 4- failed</i> ws, protection extent, etc.): <i>ilders.</i> k. Therefore the bank i upstream 114 feet. The	27. Bank material (LB RB <u>342</u> <u>342</u> weg depth <u>52.5</u> otection condition: %; 2- 26 to 50%; 3- mm; 3- gravel, 2 - 6 rock; 7- manmade vial / mass wasting es; 4- < 60 inches; 4 is made up of road	LB 0 29. Bed Material LB <u>1</u> RB <u>1</u> 51 to 75%; 4- 76 to 4mm; 5- wall / artificial lev dbed material co	RB 0 435 0 100% ree

33. Point/Side bar present? Y (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 84 35. Mid-bar width: 16
36. Point bar extent: <u>54</u> feet <u>US</u> (US, UB) to <u>103</u> feet <u>US</u> (US, UB, DS) positioned <u>0</u> %LB to <u>60</u> %RB
37. Material: _435
38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.):
This is a point bar. The boulders have probably fallen or rolled from the upstream left bank protection.
There are bars upstream along the locally braided reach (142 feet upstream to 300 feet upstream).
39. Is a cut-bank present? Y (Y or if N type ctrl-n cb) 40. Where? LB (LB or RB)
41. Mid-bank distance: <u>191</u> 42. Cut bank extent: <u>135</u> feet <u>US</u> (US, UB) to <u>300</u> feet <u>US</u> (US, UB, DS)
43. Bank damage: 2 (1- eroded and/or creep; 2- slip failure; 3- block failure)
44. Cut bank comments (eg. additional cut banks, protection condition, etc.):
The cut bank starts where the left bank protection ends. It is opposite the center of the area where the chan-
nel is braided and has bars.
45. Is channel scour present? Y (Y or if N type ctrl-n cs) 46. Mid-scour distance: 39
47. Scour dimensions: Length <u>15</u> Width <u>4</u> Depth : <u>1.2</u> Position <u>65</u> %LB to <u>80</u> %RB
48. Scour comments (eg. additional scour areas, local scouring process, etc.):
There is some localized scouring in pools. The stream is riffled at the locally braided area upstream.
An Are there major confluences? No (Verit Name state res) 50 How months
49. <u>Are there major confluences?</u> N (Y or if N type ctrl-n mc) 50. How many? -
51. Confluence 1: Distance 52. Enters on (LB or RB) 53. Type (1- perennial; 2- ephemeral)
Confluence 2: Distance - Enters on - (<i>LB or RB</i>) Type - (<i>1- perennial; 2- ephemeral</i>)
54. Confluence comments (eg. confluence name): NO MAJOR CONFLUENCES
NO MAJOR CONFLUENCES
D. Under Bridge Channel Assessment
55. Channel restraint (BF)? LB 2 (1- natural bank; 2- abutment; 3- artificial levee)
56. Height (BF)57 Angle (BF)61. Material (BF)62. Erosion (BF)
LB RB LB RB LB RB RB
$18.5 _ 1.0 _ 2$
58. Bank width (BF) 59. Channel width 60. Thalweg depth 90.0 63. Bed Material
Bed and bank Material: 0 - organics; 1 - silt / clay, < 1/16mm; 2 - sand, 1/16 - 2mm; 3 - gravel, 2 - 64mm; 4 - cobble, 64 - 256mm;
5- boulder, > 256mm; 6- bedrock; 7- manmade
Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting
64. Comments (bank material variation, minor inflows, protection extent, etc.):
42
There is a point bar, 6 feet under the bridge to 45 feet under the bridge. The downstream end is sand and the
upstream end is cobble, with gravel mixed over the entire bar. The mid-bar distance is at 20 feet under bridge. The mid-bar width is 16 feet. The channel takes up the entire width between the two abutments at the
upstream bridge face. Flow is then directed at the right abutment from 5 feet to 20 feet under the bridge,
across the upstream end of the under bridge point bar.
63. Bed material is cobbles with sand along the base of the right abutment.

65. <mark>Debris a</mark> ı	nd Ice Is	there deb	ris accumula	ition?	_ (Y or N) 66. Wh	ere?	Y (1- l	Jpstream; 2-	At bridge; 3- B	oth)
65. Debris and IceIs there debris accumulation?(Y or N)66. Where?Y(1- Upstream; 2- At bridge; 3- Both67. Debris Potential 1(1- Low; 2- Moderate; 3- High)68. Capture Efficiency(1- Low; 2- Moderate; 3- High)											
69. Is there evidence of ice build-up? <u>1</u> (<i>Y or N</i>) Ice Blockage Potential <u>N</u> (<i>1- Low; 2- Moderate; 3- High</i>) 70. Debris and Ice Comments:											
The channel na and the low ch				-				e betwee	n the top of	the footing	
Abutments	71. Attack ∠(BF)	(72. Slop (Qmax)		6.0	Scour 7	5. Scour depth		posure lepth	77. Material	78. Length	
LABUT		0	90	2		0	-		-	90.0	
RABUT	1	30	90				2		2	28.5	
	not evident; ettled; 6- fai	led	(comment);	2 - footing	exposed;	3-underr	- set ba nined f	ack, 2- pro footing; 4 -	trudes piling expos	ed;	
Materials: 1- Co	ncrete; 2 - Ste	one masor	nry or drywal	l; 3 - steel	or metal;	4 - wood					
1.1 0.1 1 Just the downs											
	<u>S</u> : ? Material?	Scour Condition	Scour ? depth?	Exposure depth?	-	Length		SRWW	Wingwall length	USLWW	
USLWW:					28.5	<u> </u>		V		<u> </u>	
		1		0	1.0				Q		
DSLWW: _		-		<u>Y</u>	<u> </u>						
DSRWW: <u>1</u>		1		1			v	Vingwall	7		
Wingwall materi	4 - wood	1	one masonry	y or drywa	all; 3- stee	l or meta	Ι,	angle SRWW	/	K DSLWW	r
82. <u>Bank / Br</u>	idge Pro	tection:									
		ISRWW	LABUT	RABUT	LB		В	DSLWV	DSRWV	/	
Туре		0	Y	2	1	1		1	-		
Condition	-	-	1	0.3	1	1		1	-		
Extent	1	-	2	2	3,4	2		0	-		
Bank / Bridge protection types: 0- absent; 1- < 12 inches; 2- < 36 inches; 3- < 48 inches; 4- < 60 inches; 5- wall / artificial levee Bank / Bridge protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed Protection extent: 1- entire base length; 2- US end; 3- DS end; 4- other											

83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):

- _

- Piers:

04. Alt then	e piers:		. (101111	type ctri-n p	')		
85.]
Pier no.	widt	h (w)	feet	elev	vation (e) f	eet	· · ·
	w1	w2	w3	e@w1	e@w2	e@w3	w1
Pier 1				30.0	30.0	60.0	
Pier 2				14.0	60.0	11.0	
Pier 3			-	30.0	25.0	-	
Pier 4	-	-	-	-	-	-	
Level 1 Pi	or Dooor					1.	1
Level I Fi	ei Desci		1	2	3	4	-
86. Locatio	on (BF)		RWW-	WW-	DSLW	most	LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP
87. Type			The	The	W -	of	1- Solid pier, 2- column, 3- bent
88. Materia	al		upst	foot-	Ther	whic	1- Wood; 2- concrete; 3- metal; 4- stone
89. Shape			ream	ingis	e is	h is	1- Round; 2- Square; 3- Pointed
90. Inclined	d?		end	not	pro-	alon	Y- yes; N- no
91. Attack	∠ (BF)		of	expo	tec-	g the	
92. Pushec	b		the	sed,	tion	dow	LB or RB
93. Length	(feet)		-	-	-	-	
94. # of pile	es		foot-	but	alon	nstre	
95. Cross-r	members	S	ingis	there	g the	am	 0- none; 1- laterals; 2- diagonals; 3- both 0- not evident; 1- evident (comment);
96. Scour (Condition	ı	expo	is	entir	end.	2- footing exposed; 3- piling exposed; 4- undermined footing; 5- settled; 6- failed
97. Scour c	depth		sed.	scou	e	DSR	
98. Exposu	ure depth	1	USR	r.	base,	WW	

84. Are there piers? <u>**DS**</u> (*Y or if N type ctrl-n pr*)

99. Pier comments (eg. undermined penetration, protection and protection extent, unusual scour processes, etc.):

- There is some small protection at the downstream end. This may be slumped bank protection. The upstream end of the footing is exposed 3 feet. There is some coarse sand at the base of the center of the wingwall.

N

100.		E. Downstre	am Cha	nnel Asse	essment			
SRD -	Bank height (BF) LB RB -	Bank angle (BF) LB RB -	% Veg. LB -	cover (BF) RB -	Bank ma LB -	aterial (BF) RB -	Bank ero LB -	sion (BF) RB -
Bank wid	th (BF) <u>-</u>	Channel width		Thalv	veg depth _		Bed Materia	al <u>-</u>
Bank prot	tection type (Qmax):	LB <u>-</u>	-	Bank protect	tion conditio	n: LB <u>-</u>	RB <u>-</u>	
Bed and k Bank Ero Bank prot	4 - cob sion: 0 - not evident; : ection types: 0 - abse	face % Vegetatio anics; 1- silt / clay, < 1, ble, 64 - 256mm; 5- bd 1- light fluvial; 2- mode ent; 1- < 12 inches; 2- good; 2- slumped; 3- 6	/16mm; 2- s oulder, > 25 erate fluvial; < 36 inches,	6mm; 6 - bedro 3 - heavy fluvia : 3 - < 48 inche	nm; 3- grave ock; 7- mani al / mass wa	el, 2 - 64mm; made asting		
Comments	(eg. bank material va	ariation, minor inflows,	protection	extent, etc.):				
-								
-								
-								
-								
-								
_								
-								
-								
-								
-								
-								
-								
101. Is a	drop structure	present?(Y	or N, if N ty	pe ctrl-n ds)	102. Distar	nce: -	feet	
103. Drop:		104. Structure					· concrete; 4 ·	other)
-		(eg. downstream scou	r depth):					
-								
-								
-								
-								
-								

106. Point/Side bar present?	_ (Y or N. if N type	<i>ctrl-n pb)</i> Mid-bar	distance:	Mid-bar width:
Point bar extent: <u></u> feet <u></u> (US, UB) Material: <u></u>	, <i>DS)</i> to <u>-</u> fee	et <u></u> (<i>US, UB, I</i>	DS) positioned <u>-</u>	_%LB to _ %RB
Point or side bar comments (Circle Point or	Side; note additiona	al bars, material v	ariation, status, etc	.):
-				
-				
- NO PIERS				
Is a cut-bank present? (Y or Cut bank extent: feet (US, UB, I Bank damage: (1- eroded and/or cre Cut bank comments (eg. additional cut bank	DS) to feet _ ep; 2 - slip failure; 3	(US, UB, DS, 3 - block failure)		bank distance:
3 2 34				
Is channel scour present? 34	Y or if N type ctrl-n	n cs) Mid-sco	our distance: 1	
Scour dimensions: Length $\underline{1}$ Width $\underline{4}$ Scour comments (eg. additional scour areas, 1		-	ned <u>3</u> %LB to <u>1</u>	KRB
Bank material is cobble and gravel. There is stone protection along both do stream left wingwall to 41 feet downstr	wnstream banks	s. The left bank	k protection exte	
Are there major confluences? _t	h (Y or if N type	ctrl-n mc)	How many? e	
Confluence 1: Distance down				erennial; 2 - ephemeral)
Confluence 2: Distance <u>right</u>	Enters on win (L	LB or RB)	Туре <u>gwa</u> (1- ре	erennial; 2 - ephemeral)
Confluence comments (eg. confluence name	e):			
ll to 80 feet downstream. There is a bedrock outcrop 220 feet to	265 feet downstr	ream on the left	t bank. A portio	n of this outcrop sticks
F. Ge	omorphic Ch	hannel Asse	ssment	
107. Stage of reach evolution	<u>out</u>	1- Constructed 2- Stable		

- 3- Aggraded
 4- Degraded
 5- Laterally unstable
 6- Vertically and laterally unstable

108. Evolution comments (Channel evolution not considering bridge effects; See HEC-20, Figure 1 for geomorphic descriptors):

into the channel.

There are cutbanks along both downstream banks. There is some scattered debris.

N -NO DROP STRUCTURE

109. G. Plan View Sketch _						
point bar (pb) cut-bank Cb scour hole	debris XXX rip rap or stone fill COS	flow cross-section +++++++ ambient channel	stone wall			

APPENDIX F:

SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: MTHOTH00120067 Road Number: TH 12 Stream: FREEMAN BROOK		Town: County:	
Initials ECW Date: 2-11-98	Checked:	LKS	
Analysis of contraction scour, live-	-bed or cl	ear water	?
Critical Velocity of Bed Material (Vc=11.21*y1^0.1667*D50^0.33 with Sa (Richardson and Davis, 1995, p. 28,	8=2.65	. to Engli	sh units)
Approach Section Characteristic	100 yr	500 yr	other Q
Total discharge, cfs	2550	3500	0
Main Channel Area, ft2	353	485	0
Left overbank area, ft2	0	0	0
Right overbank area, ft2	0	0	0
Top width main channel, ft	55	64	0
Top width L overbank, ft	0	0	0
Top width R overbank, ft	0	0	0
D50 of channel, ft	0.183	0.183	0.183
D50 left overbank, ft			
D50 right overbank, ft			
y1, average depth, MC, ft	6.4	7.6	ERR
yl, average depth, LOB, ft	ERR	ERR	ERR
y1, average depth, ROB, ft	ERR	ERR	ERR
Total conveyance, approach	30988	47385	0
Conveyance, main channel	30988	47385	0
Conveyance, LOB	0	0	0
Conveyance, ROB	0	0	0
Percent discrepancy, conveyance	0.0000	0.0000	ERR
Qm, discharge, MC, cfs	2550.0	3500.0	ERR
Ql, discharge, LOB, cfs	0.0	0.0	ERR
Qr, discharge, ROB, cfs	0.0	0.0	ERR
QI, discharge, Rob, ers	0.0	0.0	BRR
Vm, mean velocity MC, ft/s	7.2	7.2	ERR
Vl, mean velocity, LOB, ft/s	ERR	ERR	ERR
Vr, mean velocity, ROB, ft/s	ERR	ERR	ERR
Vc-m, crit. velocity, MC, ft/s	8.7	8.9	N/A
Vc-l, crit. velocity, LOB, ft/s	ERR	ERR	ERR
Vc-r, crit. velocity, ROB, ft/s	ERR	ERR	ERR
Results			
Live-bed(1) or Clear-Water(0) Contr	raction Sc	our?	
Main Channel	0	0	N/A
Left Overbank	N/A	N/A	N/A
Right Overbank	N/A	N/A	N/A

Clear Water Contraction Scour in MAIN CHANNEL

y2 = (Q2 ² /(131*Dm ^(2/3) *W2 ²)) ^{(3/} ys=y2-y_bridge	7) Con	verted to	English Units
(Richardson and Davis, 1995, p. 32,	eq. 20,	20a)	
Bridge Section	Q100	Q500	Other Q
(Q) total discharge, cfs	2550	3500	0
(Q) discharge thru bridge, cfs	2550	3500	0
Main channel conveyance	15544	21116	0
Total conveyance	15544	21116	0
Q2, bridge MC discharge,cfs	2550	3500	ERR
Main channel area, ft2	179	221	0
Main channel width (normal), ft	28.4	28.4	0.0
Cum. width of piers in MC, ft	0.0	0.0	0.0
W, adjusted width, ft	28.4	28.4	0
y_bridge (avg. depth at br.), ft	6.30	7.78	ERR
Dm, median (1.25*D50), ft	0.22875	0.22875	0.22875
y2, depth in contraction,ft	8.91	11.69	ERR
ys, scour depth (y2-ybridge), ft	2.61	3.91	N/A
Armoring Dc=[(1.94*V^2)/(5.75*log(12.27*y/D9 Depth to Armoring=3*(1/Pc-1) (Federal Highway Administration, 19		.03*(165-)	62.4)]
Downstream bridge face property	100-yr	500-yr	Other Q
Q, discharge thru bridge MC, cfs	2550	3500	N/A
Main channel area (DS), ft2	179	221	0
Main channel width (normal), ft	28.4	28.4	0.0
Cum. width of piers, ft	0.0	0.0	0.0
Adj. main channel width, ft	28.4	28.4	0.0
D90, ft	0.5386		
D95, ft	0.7458		
Dc, critical grain size, ft	0.8314		
Pc, Decimal percent coarser than Dc	0.038	0.031	0.000
Depth to armoring, ft	N/A	N/A	ERR

Abutment Scour

Froehlich's Abutment Scour Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1 (Richardson and Davis, 1995, p. 48, eq. 28)

	Left Abutment			Right Abutment					
Characteristic	100 yr Q	500 yr Q	Other Q	100 yr Q 5	500 yr Q C)ther Q			
			_						
(Qt), total discharge, cfs	2550	3500	0	2550	3500	0			
a', abut.length blocking flow, ft	7	8.1	0	19.7	27.2	0			
Ae, area of blocked flow ft2	26.88	41.19	0	84.41	136.65	0			
Qe, discharge blocked abut.,cfs	78.98	133.73	0	355.18	590.63	0			
(If using Qtotal_overbank to obtain Ve, leave Qe blank and enter Ve and Fr manually)									
Ve, (Qe/Ae), ft/s	2.94	3.25	ERR	4.21	4.32	ERR			
ya, depth of f/p flow, ft	3.84	5.09	ERR	4.28	5.02	ERR			
Coeff., K1, for abut. type (1.0, verti.; 0.82, verti. w/ wingwall; 0.55, spillthru)									
Kl	0.82	0.82	0.82	0.82	0.82	0.82			
Angle (theta) of embankment (<90 if abut. points DS; >90 if abut. points US)									
theta	75	75	75	105	105	105			
K2	0.98	0.98	0.98	1.02	1.02	1.02			
Fr, froude number f/p flow	0.264	0.254	ERR	0.358	0.340	ERR			
· · · ·									
ys, scour depth, ft	7.85	9.98	N/A	12.67	15.23	N/A			
Tel, and the term			,			,			
HIRE equation (a'/ya > 25)									
$ys = 4*Fr^0.33*y1*K/0.55$									
(Richardson and Davis, 1995, p. 49	ea 29)								
(Richardson and Davis, 1993, p. 49	, cq. 27)								
a'(abut length blocked, ft)	7	8.1	0	19.7	27.2	0			
y1 (depth f/p flow, ft)	3.84	5.09	ERR	4.28	5.02	e ERR			
a'/y1	1.82	1.59	ERR	4.60	5.41	ERR			
	0.95	0.95	0.95	1.03	1.03	1.03			
Skew correction (p. 49, fig. 16)									
Froude no. f/p flow	0.26	0.25	N/A	0.36	0.34	N/A			
Ys w/ corr. factor K1/0.55:									
vertical	ERR	ERR	ERR	ERR	ERR	ERR			
vertical w/ ww's	ERR	ERR	ERR	ERR	ERR	ERR			
spill-through	ERR	ERR	ERR	ERR	ERR	ERR			

Abutment riprap Sizing

Isbash Relationship
D50=y*K*Fr^2/(Ss-1) and D50=y*K*(Fr^2)^0.14/(Ss-1)
(Richardson and Davis, 1995, p112, eq. 81,82)

Characteristic	Q100	Q500	Other Q	Q100	Q500	Other Q
Fr, Froude Number y, depth of flow in bridge, ft	1 6.30	1 7.78	0 0.00	1 6.30	1 7.78	0 0.00
Median Stone Diameter for riprap Fr<=0.8 (vertical abut.) Fr>0.8 (vertical abut.)	at: left ERR 2.63	abutment ERR 3.25	0.00 ERR	right ERR 2.63	abutment, ERR 3,25	ft 0.00 ERR