LEVEL II SCOUR ANALYSIS FOR BRIDGE 7 (WFAITH00030007) on TOWN HIGHWAY 3, crossing ALGERINE BROOK, WEST FAIRLEE, VERMONT

Open-File Report 98-405

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. Department of the Interior U.S. Geological Survey

LEVEL II SCOUR ANALYSIS FOR BRIDGE 7 (WFAITH00030007) on TOWN HIGHWAY 3, crossing ALGERINE BROOK, WEST FAIRLEE, VERMONT

By MICHAEL A. IVANOFF AND ERICK M. BOEHMLER

U.S. Geological Survey Open-File Report 98-405

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY
Thomas J. Casadevall, Acting Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Branch of Information Services Open-File Reports Unit Box 25286 Denver, CO 80225-0286

CONTENTS

Co	onversion Factors, Abbreviations, and Vertical Datum
Int	roduction and Summary of Results
Le	vel II summary
	Description of Bridge
	Description of the Geomorphic Setting
	Description of the Channel
	Hydrology
	Calculated Discharges
	Description of the Water-Surface Profile Model (WSPRO) Analysis
	Cross-Sections Used in WSPRO Analysis
	Data and Assumptions Used in WSPRO Model
	Bridge Hydraulics Summary
	Scour Analysis Summary
	Special Conditions or Assumptions Made in Scour Analysis
	Scour Results
C -	Riprap Sizing
se	lected References
Αp	ppendices:
	A. WSPRO input file
	B. WSPRO output file
	C. Bed-material particle-size distribution
	D. Historical data form
	E. Level I data form
	F. Scour computations
FI	GURES
1.	Map showing location of study area on USGS 1:24,000 scale map
2.	Map showing location of study area on Vermont Agency of Transportation town
	highway map
	Structure WFAITH00030007 viewed from upstream (September 8, 1995)
	Downstream channel viewed from structure WFAITH00030007 (September 8, 1995).
	Upstream channel viewed from structure WFAITH00030007 (September 8, 1995).
	Structure WFAITH00030007 viewed from downstream (September 8, 1995)
7.	Water-surface profiles for the 100- and 500-year discharges at structure
	WFAITH00030007 on Town Highway 3, crossing Algerine Brook,
_	West Fairlee, Vermont.
8.	Scour elevations for the 100- and 500-year discharges at structure
	WFAITH00030007 on Town Highway 3, crossing Algerine Brook,
	West Fairlee, Vermont.
T/	ABLES
1.	Remaining footing/pile depth at abutments for the 100-year discharge at structure
	WFAITH00030007 on Town Highway 3, crossing Algerine Brook,
	West Fairlee, Vermont
2.	Remaining footing/pile depth at abutments for the 500-year discharge at structure
	WFAITH00030007 on Town Highway 3, crossing Algerine Brook,
	West Fairlee, Vermont

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km)
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
•	Volume	•
cubic foot (ft ³)	0.02832	cubic meter (m ³)
	Velocity and Flow	7
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m ³
cubic foot per second per square mile	0.01093	cubic meter per second per square
$[(ft^3/s)/mi^2]$		kilometer $[(m^3/s)/km^2]$

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	Max	maximum
D_{50}	median diameter of bed material	MC	main channel
DS	downstream	RAB	right abutment
elev.	elevation	RABUT	face of right abutment
f/p ft ²	flood plain	RB	right bank
ft^2	square feet	ROB	right overbank
ft/ft	feet per foot	RWW	right wingwall
FEMA	Federal Emergency Management Agency	TH	town highway
FHWA	Federal Highway Administration	UB	under bridge
JCT	junction	US	upstream
LAB	left abutment	USGS	United States Geological Survey
LABUT	face of left abutment	VTAOT	Vermont Agency of Transportation
LB	left bank	WSPRO	water-surface profile model
LOB	left overbank	yr	year

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 7 (WFAITH00030007) ON TOWN HIGHWAY 3, CROSSING ALGERINE BROOK, WEST FAIRLEE, VERMONT

By Michael A. Ivanoff and Erick M. Boehmler

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure WFAITH00030007 on Town Highway 3 crossing Algerine Brook, West Fairlee, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D.

The site is in the New England Upland section of the New England physiographic province in central Vermont. The 7.7-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest.

In the study area, Algerine Brook has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 31 ft and an average bank height of 3 ft. The channel bed material ranges from cobble to boulder with a median grain size (D_{50}) of 101 mm (0.332 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 8, 1995, indicated that the reach was stable.

The Town Highway 3 crossing of Algerine Brook is a 25-ft-long galvanized plate arch culvert with an opening span width of 25 ft (Vermont Agency of Transportation, written communication, March 9, 1995). The opening length of the structure parallel to the bridge face is 23.4 ft. The culvert is supported by vertical, concrete abutments with "laid-up" stone wingwalls upstream. The channel is skewed approximately 30 degrees to the opening. The opening skew-to-roadway value from the VTAOT database is 30 degrees while zero degrees was computed from surveyed points.

The scour counter measures at the site include type-2 stone fill (less than 36 inches diameter) along the downstream right bank, type-3 stone fill (less than 48 inches diameter) along the upstream right bank, and "laid-up" stone walls along the left and right downstream road embankments. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E.

Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 0.0 to 1.0 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 6.6 to 14.9 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

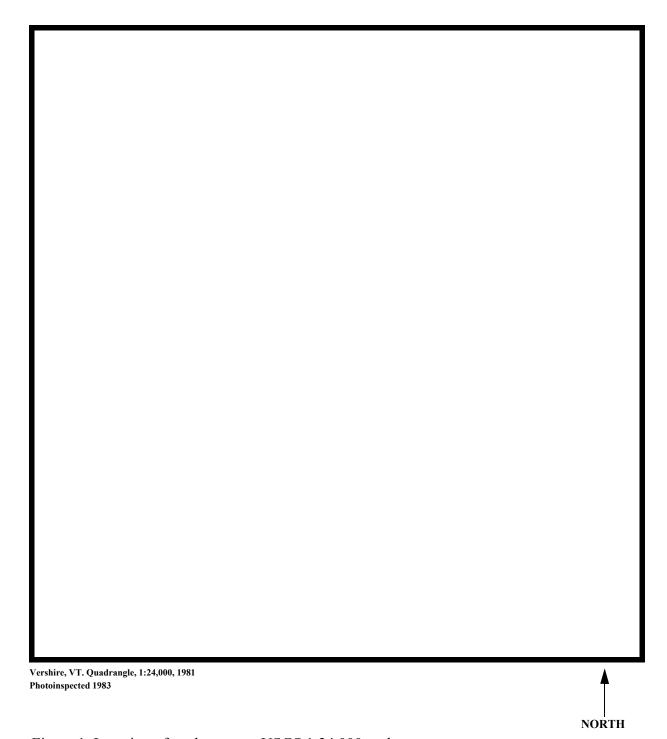
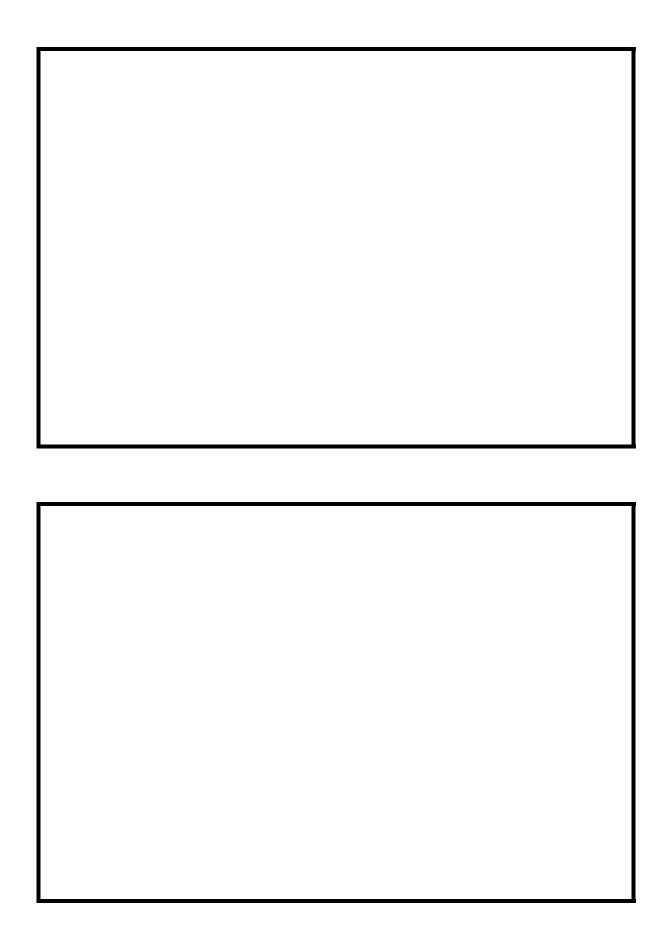



Figure 1. Location of study area on USGS 1:24,000 scale map.

LEVEL II SUMMARY

Description of Bridge Description of Bridge Description of Bridge Description of Bridge Description of Bridge Description of Bridge Description Description	cture Number —	WFAITH00030007	StreamAlgerine	e Brook
Bridge length ft Bridge width ft Curve Alignment of bridge to road (on curve or straight) Vertical, concrete Bridge max span length Curve Sloping 9/8/95 Stone fill on abutment? None. Abutments are concrete. The upstream wingwalls are "laid-up" stone. Abutments are concrete. The upstream wingwalls are "laid-up" stone. Abutments are concrete. The upstream wingwalls are "laid-up" stone. Abutments are concrete. The upstream wingwalls are "laid-up" stone. Debridge skewed to flood flow according to No survey? Angle There is a moderate channel bend in the upstream reach. Debris accumulation on bridge at time of Level I or Level II site visit: Determinent type Percent of channel blocked norizontally Bolocked norizontally Level I Moderate. There are some trees leaning over the channel upstream None as of 9/8/95.	nty Orange		Road TH 3	District4
Sloping Sloping Sloping Sloping Sloping Sloping 9/8/95 Stone fill on abutment? None. Abutment type None. Sloping 9/8/95 Stone fill on abutment? None. Abutments are concrete. The upstream wingwalls are "laid-up" stone. Yes 30 Is bridge skewed to flood flow according to No survey? Angle There is a moderate channel bend in the upstream reach. Percent of shannel Percent of shannel Percent of shannel Blocked norizontally Blocked verticatity Level I 9/8/95 0 0 Moderate. There are some trees leaning over the channel upstream None as of 9/8/95. Moderate. There are some trees leaning over the channel upstream None as of 9/8/95. Moderate. There are some trees leaning over the channel upstream None as of 9/8/95. Moderate. There are some trees leaning over the channel upstream None as of 9/8/95. Moderate. There are some trees leaning over the channel upstream None as of 9/8/95. Moderate. There are some trees leaning over the channel upstream None as of 9/8/95. Moderate. There are some trees leaning over the channel upstream None as of 9/8/95. Moderate. None		Descri	ption of Bridge	
Alignment of bridge to road (on curve or straight) Vertical, concrete Abutment type No None. Parts of inspection Abutments are concrete. The upstream wingwalls are "laid-up" stone. Abutments are concrete. The upstream wingwalls are "laid-up" stone. Is bridge skewed to flood flow according to No 'survey? Angle There is a moderate channel bend in the upstream reach. Debris accumulation on bridge at time of Level I or Level II site visit: Date of inspection blocked nortzontally blocked vertically blocked vertically blocked vertically None as of 9/8/95. Moderate. There are some trees leaning over the channel upstream None as of 9/8/95.	Rridge length —	25.0 ft Rridge w	idth ————————————————————————————————————	ax span length
Vertical, concrete Embankment type Sloping 9/8/95	0 0		Curve	ix span tengin
Abutment type No None. None Data of inspection Possibility Pos	Alignment of brid	ge to road (on curve or Vertical, concrete	straight)	Sloping
Abutments are concrete. The upstream wingwalls are "laid-up" stone. Yes 30	Abutment type	•	Embankment type	
Abutments are concrete. The upstream wingwalls are "laid-up" stone. Yes 30	Stone fill on abutn	nent?		10173
Is bridge skewed to flood flow according to No survey? Angle There is a moderate channel bend in the upstream reach. Debris accumulation on bridge at time of Level I or Level II site visit: Date of inspection 9/8/95 Percent of channel blocked verticatly blocked norizontally blocked verticatly blocked in place of	Danamintian of ata	None.		
Is bridge skewed to flood flow according to No survey? Angle There is a moderate channel bend in the upstream reach. Debris accumulation on bridge at time of Level I or Level II site visit: Date of inspection 9/8/95 Percent of channel blocked verticatly blocked norizontally blocked verticatly blocked in place of				
There is a moderate channel bend in the upstream reach. Debris accumulation on bridge at time of Level I or Level II site visit: Date of inspection 9/8/95 Percent of channel blocked norizontally blocked verticatty Level I 9/8/95 0 0 Moderate. There are some trees leaning over the channel upstream None as of 9/8/95.			-	Yes <u>30</u>
Debris accumulation on bridge at time of Level I or Level II site visit: Date of inspection Percent of channel Percent of channe	Is bridge skewed	to flood flow according	to No survey?	Angle
Level II None as of 9/8/95. Date of inspection 9/8/95 Percent of channel blocked verticatly blocked verticatly blocked verticatly blocked verticatly None as of 9/8/95. Percent of channel blocked verticatly blocked verticatly blocked verticatly blocked verticatly blocked verticatly blocked verticatly Moderate. There are some trees leaning over the channel upstream	There is a modera	te channel bend in the u	pstream reach.,	,,
Date of inspection 9/8/95 Percent of channel Percent of channel blocked verticatty Level I None as of 9/8/95. Percent of channel percent of channel place of channel percent of chann				
Date of inspection 9/8/95 Percent of channel Percent of channel blocked verticatty Level I None as of 9/8/95. Percent of channel percent of channel place of channel percent of chann				
Level II None as of 9/8/95 Solution Sol	Debris accumulat			
Level II None as of 9/8/95. Moderate. There are some trees leaning over the channel upstream		Date of inspection 9/8/95		Percent of harmel blocked vertically
None as of 9/8/95.	Level I	9/8/95	0	0
		·	nere are some trees leaning o	ver the channel upstream.
Describe any features near or at the bridge that may affect flow (include observation date)				

Description of the Geomorphic Setting

n (US)
k.
3
o donth ft
terial Cobbles/ Boulders
9/8/95
7/0/73
in ippe of monomy unit
None, 9/8/95.
]

Hydrology

Drainage area $\frac{7.7}{}$ mi ²				
Percentage of drainage area in physiographic p	provinces: (ap	pproximate)		
Physiographic province/section New England/New England Upland	Percent of drainage area			
Is drainage area considered rural or urban? None. urbanization:	Rural	— Describe any significant		
Is there a USGS gage on the stream of interest:	No			
USGS gage description				
USGS gage number				
	mi ²	No		
Is there a lake/p				
Calculated	d Discharges	2,230		
$Q100$ ft^3/s The 1	Q50 00- and 500-y	00 ft ³ /s year discharges are based on a		
method documented by the Federal Highway Adr	•			
values are within a range defined by several other	•	·		
1962; Johnson and Tasker, 1974; Potter, 1957a&b	; Talbot, 1887	7).		

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT plans)	USGS survey		
Datum tie between USGS survey and VTAOT plans None.			
Description of reference marks used to determine USGS datum.	RM1 is a chiseled X in		
bedrock on the US left bank, 70 ft perpendicular to the culvert centerli	ne between two jeep trails		
(elev. 495.98 ft, arbitrary survey datum). RM2 is a nail 4.5 ft above the	e ground in a telephone		
pole (18-6-295), 120 ft along the DS side of the right bank of TH 3, 1	5 ft from the edge of the		
pavement (elev. 510.94 ft, arbitrary survey datum).			

Cross-Sections Used in WSPRO and CAP Analysis

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXITX	-21	1	Exit section
FULLV	0	2	Downstream Full-valley section (Templated from EXITX)
CLVRT	0	1	Culvert outlet section
APPRO	109	1	Approach section

For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's one-dimensional, step-backwater computer program, WSPRO (Shearman and others, 1986, and Shearman, 1990) and the U.S. Geological Survey's Culvert Analysis Program (CAP, Fulford, 1995). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Although flow approaches this site at an angle greater than the opening-skew-to-roadway, flow was assumed to align with the abutments in the culvert. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.040 to 0.075.

Normal depth at the exit section (EXITX) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990). The slope used was 0.0218 ft/ft, which was estimated from surveyed points downstream of the bridge.

The approach section (APPRO) was surveyed one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This location provides a consistent method for determining scour variables.

The unconstricted channel was modeled for each discharge by use of WSPRO. Then the water surface elevation computed at the FULLV section for each discharge under the unconstricted channel condition was applied as the starting water surface elevation for the culvert hydraulic analysis by use of the CAP. The CAP computes the appropriate discharge coefficient based on the techniques documented in Bodhaine (1968).

Bridge Hydraulics Summary

lverage bridge embankment elevation	2	199.0 ft			
	95.3 j	ft J			
100-year discharge Water-surface elevation	1,610 in bridge	ft ³ /s e opening	488.6	ft	
Road overtopping?	No	Discharge	·	ft ³ /s	
Area of flow in bridge of Average velocity in brid Maximum WSPRO tub	ge openin	$g = \frac{134}{2}$		ft/s	
Water-surface elevation Water-surface elevation Amount of backwater c	at Appro	ach section	_	493.6 ge 49	90.6
500-year discharge Water-surface elevation Road overtopping? Area of flow in bridge of Average velocity in bridge Maximum WSPRO tube	No opening lge openin	Discharge 149	489.4 over roadft^215.1ft/s		
Water-surface elevation Water-surface elevation Amount of backwater c	at Appro	ach section	_	498.0 ge 49	91.5
Incipient overtopping d Water-surface elevation Area of flow in bridge o Average velocity in brid Maximum WSPRO tube	in bridge opening lge openin	g	ft ³ /s _ ft ² ft/s 	_ft/s	
Water-surface elevation Water-surface elevation Amount of backwater c	at Appro	ach section	_		- - -

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analyses for the 100- and 500-year discharges are presented in tables 1 and 2 and the scour depths are shown graphically in figure 8.

Contraction scour for the 100- and 500-year discharges was computed by use of the Laursen clear-water contraction scour equation (Richardson and Davis, 1995, p. 32, equation 20). The computed streambed armoring depths suggest that armoring will not limit the depth of contraction scour.

Abutment scour was computed by use of the Froehlich equation (Richardson and Davis, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour Results

Contraction scour:	•	500-yr discharge cour depths in feet)	Incipient overtopping discharge
Main channel			
Live-bed scour			
Clear-water scour	0.0	1.0	
Depth to armoring	10.6	37.2	
Left overbank	⁻	 -	
Right overbank			
Local scour:			
Abutment scour	11.3	14.9	
Left abutment	6.6–	11.2-	
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			
	Riprap Sizing	I	
			Incipient overtopping
	100-yr dischargo	e 500-yr discharge	discharge
	2.5	$(D_{50} in feet)$	
Abutments:	2.5	2.9	
Left abutment	2.5	2.9	
Right abutment	_	_	_
Piers:			
Pier 1			
Pier 2			

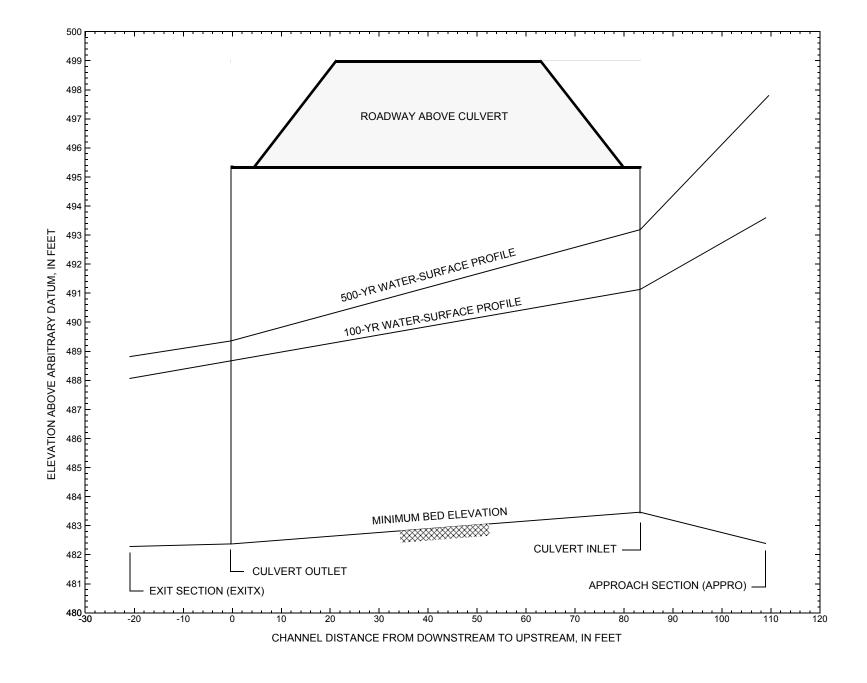


Figure 7. Water-surface profiles for the 100- and 500-yr discharges at structure WFAITH00030007 on Town Highway 3, crossing Algerine Brook, West Fairlee, Vermont.

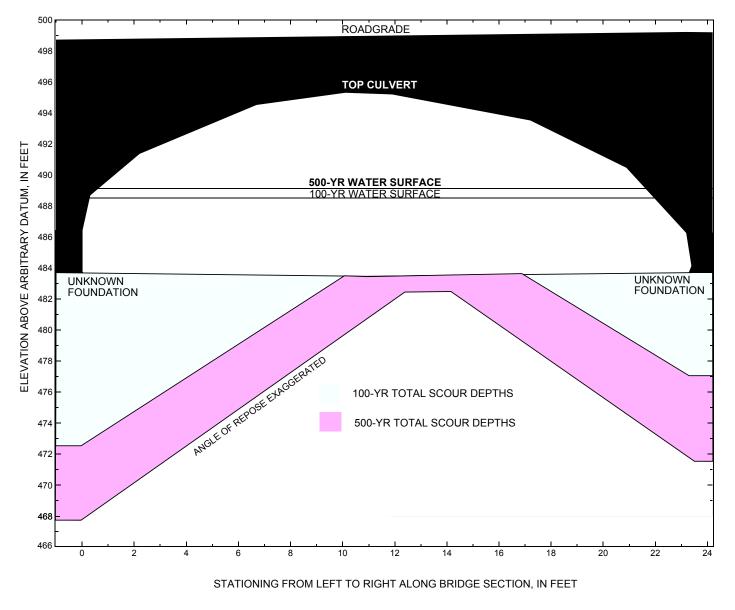


Figure 8. Scour elevations for the 100- and 500-yr discharges at structure WFAITH00030007 on Town Highway 3, crossing Algerine Brook, West Fairlee, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-yr discharge at structure WFAITH00030007 on Town Highway 3, crossing Algerine Brook, West Fairlee, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				100-yr	discharge is 1,610	cubic-feet per sec	ond				
Left abutment	0.0		495.3		483.7	0.0	11.3		11.3	472.4	
Right abutment	23.4		495.3		483.7	0.0	6.6		6.6	477.1	

^{1.} Measured along the face of the most constricting side of the bridge.

Table 2. Remaining footing/pile depth at abutments for the 500-yr discharge at structure WFAITH00030007 on Town Highway 3, crossing Algerine Brook, West Fairlee, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
	500-yr discharge is 2,250 cubic-feet per second										
Left abutment	0.0		495.3		483.7	1.0	14.9		15.9	467.8	
Right abutment	23.4		495.3		483.7	1.0	11.2		12.2	471.5	

^{1.}Measured along the face of the most constricting side of the bridge.

^{2.} Arbitrary datum for this study.

^{2.} Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M. A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.
- Bodhaine, G. L., 1968, Measurement of Peak Discharge at Culverts by Indirect Methods: U.S. Geological Survey Techniques of Water-resources Investigations, Book 3, Chapter A3, 60 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158.
- Federal Highway Administration, 1993, Stream Stability and Scour at Highway Bridges: Participant Workbook: Federal Highway Administration Report FHWA-HI-91-011.
- Federal Emergency Management Agency, 1982, Flood Insurance Study, Town of West Fairlee, Orange County, Vermont: Washington, D.C., December 2, 1982.
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Fulford, J.M., 1995, User's Guide to the Culvert Analysis Program: U.S. Geological Survey Open-File Report 1995-137, 69 p.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.
- Johnson, C.G. and Tasker, G.D.,1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Geological Survey, 1981, Vershire, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Photoinspected 1983, Scale 1:24,000.

18

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

```
Т1
         U.S. Geological Survey WSPRO Input File wfai007.wsp
ΤЭ
          Hydraulic analysis for structure WFAITH00030007 Date: 03-NOV-97
Т3
          Bridge 7 on Town Highway 3 over Algerine Brook West Fairlee, VT by MAI
*
          6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
ιT3
0
           1610.0
                    2250.0
SK
            0.0218
                   0.0218
*
XS
     EXITX
            -21
*
           -111.1, 498.11
                            -89.7, 493.93
                                             -75.7, 491.85
                                                              -61.9, 493.84
GR
            -33.9, 494.82
                            -29.4, 494.16
                                             -16.4, 488.11
                                                                0.0, 487.26
                            13.0, 482.68
GR
             7.9, 483.02
                                             15.9, 482.45
                                                               20.4, 482.28
                                              34.1, 484.32
GR
             23.6, 482.28
                            27.2, 482.66
                                                               50.2, 486.66
GR
            93.4, 507.22
*
           0.060
Ν
*
               0 * * *
XS
     FULLV
                          0.0112
XS
     APPRO
             109
          -109.0, 519.03
GR
                            -51.2, 499.13
                                             -31.7, 497.84
                                                              -15.5, 490.08
GR
             -3.6, 487.81
                              0.0, 484.30
                                              3.7, 483.74
                                                                8.4, 483.31
GR
            11.5, 482.38
                            16.6, 483.45
                                              18.6, 484.29
                                                               20.9, 484.85
            25.0, 486.80
GR
                            36.1, 492.84
                                              63.5, 495.45
                                                              80.5, 500.18
GR
           135.9, 501.96
                          188.7, 525.05
*
Ν
            0.075
HP 1 APPRO
           493.68 1 493.68
HP 2 APPRO 493.68 * * 1610
HP 1 APPRO 497.96 1 497.96
HP 2 APPRO 497.96 * * 2250
ΕX
ER
CV
     CLVRT 0 23.4 83. 482.37 483.46 1
CG
           411 137.9 285.6
*C1
           0.92
*C3
           * * * 1, 0.90
*C5
           0.75, 0.44, 1.4, 0.46, 1.5, 0.51, 2.0, 0.54, 2.5
*CF
            5, 500.0
           10.1, 495.33
                             6.7, 494.54
                                              2.2, 491.38
                                                              0.3, 488.69
            0.0, 486.44
                             2.3, 483.70
                                              5.5, 483.67
                                                               8.1, 483.60
*
           10.9, 483.46
                            17.1, 483.64
                                             23.3, 483.70
                                                              23.4, 484.12
*
           23.2, 486.27
                            20.9, 490.48
                                             17.2, 493.54
                                                              11.9, 495.22
           10.1, 495.33
*CS
           12.7, 493.86
                           11.1, 493.77
                                              6.0, 492.26
                                                               2.3, 489.26
*CS
            0.0, 484.95
                            0.4, 484.92
                                              0.5, 483.09
                                                               5.2, 482.47
*CS
            8.6, 482.68
                            15.1, 482.37
                                             20.4, 482.77
                                                              23.0, 483.12
*CS
           23.8, 485.16
                            23.2, 485.27
                                             21.4, 490.33
                                                              16.8, 493.27
*CS
           12.7, 493.86
*CX
           488.62 489.39
*CO
           1610.0 2250.0
*CN
           0.050
*PD
            0.,23.,1.0
XS
    APPRO
            109
GR
           -109.0, 519.03
                             -51.2, 499.13
                                              -31.7, 497.84
                                                              -15.5, 490.08
GR
            -3.6, 487.81
                              0.0, 484.30
                                              3.7, 483.74
                                                                8.4, 483.31
GR
            11.5, 482.38
                             16.6, 483.45
                                              18.6, 484.29
                                                               20.9, 484.85
                                                               80.5, 500.18
GR
            25.0, 486.80
                            36.1, 492.84
                                              63.5, 495.45
GR
           135.9, 501.96
                            188.7, 525.05
```

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

```
CAP -USGS culvert analysis program VER 97-01
                                                                               page 0
CV
    CLVRT 0 23.4 83. 482.37 483.46 1
CG
             411 137.9 285.6
*C1
             0.92
            * * * 1, 0.90
*C3
     KR <1, default of 1 used
     KW <1, default of 1 used
*C5
             0.75, 0.44, 1.4, 0.46, 1.5, 0.51, 2.0, 0.54, 2.5
*CF
             5, 500.0
                                                  2.2, 491.38
                                                                    0.3, 488.69
                              6.7, 494.54
             10.1, 495.33
              0.0, 486.44
                                 2.3, 483.70
                                                    5.5, 483.67
                                                                       8.1, 483.60
                                                23.3, 483.70
                                                                   23.4, 484.12
                             17.1, 483.64
             10.9, 483.46
                                                17.2, 493.54
             23.2, 486.27
                              20.9, 490.48
                                                                    11.9, 495.22
             10.1, 495.33
                            11.1, 493.77
*CS
             12.7, 493.86
                                                    6.0, 492.26
                                                                       2.3, 489.26
             0.0, 484.95
8.6, 482.68
                              0.4, 484.92
15.1, 482.37
                                                0.5, 483.09
20.4, 482.77
21.4, 490.33
                                                                      5.2, 482.47
*CS
*CS
                                                                      23.0, 483.12
                             23.2, 485.27
                                                                   16.8, 493.27
*CS
             23.8, 485.16
*CS
             12.7, 493.86
             488.62 489.39
1610.0 2250.0
*CX
*CQ
*CN
             0.050
            0.,23.,1.0
*PD
XS APPRO
            109
                                                 -31.7, 497.84 -15.5, 490.08
3.7, 483.74 8.4, 483.31
18.6, 484.29 20.9, 484.85
            -109.0, 519.03
                               -51.2, 499.13
GR
GR
             -3.6, 487.81
                                0.0, 484.30
GR
              11.5, 482.38
                                16.6, 483.45
GR
              25.0, 486.80
                                 36.1, 492.84
                                                    63.5, 495.45
                                                                       80.5, 500.18
GR
             135.9, 501.96
                               188.7, 525.05
N
             0.075
CAP -USGS culvert analysis program VER 97-01
                                                                              page 1
Hydraulic analysis for the culvert structure WFAITH00030007
                 CULVERT SECTION PROPERTIES - ID: CLVRT
                      Culvert section type: 6.3,07X,F7.2)
                 (r or w)/D KR or KW Ktheta Kproj n
0.00 1.00 1.00 0.90 0.050
                                                                    Inlet
                                                                   1
                      <<User supplied discharge coefficients>>
                                           C46 = 0.75
                        CB12 = 0.92
                        For type123 flow
                                                For type 5 flow
                                         C (h1-z)/D

0.44 1.40

0.46 1.50

0.51 2.00

0.54 2.50
                                (h1-z)/D
                         0.00
                                 0.00
                         0.00
                                   0.00
                                0.00
                         0.00
                         0.00
                                                                    Wetted
          Barrel
                                                        Top
                                  Conveyance width (cfs) (ft)
          depth
                        Area
                                                                   perimeter
                                                                   (ft)
                        (sq.ft)
            (ft)
                                                         (ft)
                                                      0.00
           0.00
                         0.0
                                         0.0
                                                0.00
17.12
22.51
22.68
22.85
23.02
23.19
23.70
22.88
22.54
22.20
21.86
21.52
21.18
20.84
20.50
20.16
19.82
19.47
18.87
18.26
17.55
16.48
15.40
14.33
13.26
12.04
10.15
8.26
                                                                        0.0
           0.38
                                          33.8
                                                                       17.2
                          3.4
                                     204.0
522.7
941.6
           0.77
                                                                      22.7
                         11.0
           1.15
                         19.7
                                                                       23.5
                                                                      24.2
           1.53
                         28.4
                                   941.6
1443.7
2017.8
2634.0
3276.2
3974.2
4696.2
                                                                     25.0
25.8
           1.91
                         37.2
           2 30
                         46 1
           2.68
                         55.0
                                                                       27.0
           3.06
                         63.9
                                                                       28.4
           3.45
                         72.6
                                                                       29 2
           3.83
                         81.2
                                                                       30.0
                                     5436.5
6190.1
           4.21
                         89.6
                                                                       30.9
           4.60
                         97.9
                                                                       31 7
                                     6952.9
           4.98
                        106.1
                                                                       32.6
           5.36
                        114.2
                                       7721.2
                                                                       33.4
           5.74
                        122.1
                                     8492.0
                                                                       34.2
           6.13
                        129.9
                                       9262.7
                                                                       35.1
                                    10030.8
           6.51
                        137.5
           6.89
                        145.1
                                      10794.0
                                                                       36.8
                                     11509.1
           7.28
                        152.4
                                                                       37.8
           7.66
                        159.5
                                      12200.2
           8.04
                        166.4
                                     12851.2
                        172.9
                                      13406.7
           8.43
                                                                       41.2
           8.81
                        179.0
                                     13909.5
                                      14359.3
           9.19
                        184.7
                                     14755.9
           9.57
                        190.0
                                                                      45.1
           9.96
                        194.8
                                      15070.4
                                                                       46.6
                                     15178.2
          10.34
                        199.1
                                                  8.26
5.25
                                     15202.6
14931.8
          10.72
                        202.6
                                                                       50.7
                        205.3
          11.11
                                                                       53.8
          11.49
                        206.5
                                      14158.6
                                                       0.00
                                                                       59.2
```

WSPRO OUTPUT FILE (continued)

^LCAP -USGS culvert analysis program VER 97-01

page 2

Hydraulic analysis for the culvert structure WFAITH00030007 ${\tt APPROACH\ SECTION\ PROPERTIES\ -\ ID:\ APPRO}$

Water			Top		Critical
Surface	Area	Conveyance	width	Alpha	discharge
el.(ft)*	(sq.ft)	(cfs)	(ft)		(cfs)
482.38	0.0	0.0	0.0	1.00	0.0
483.34	3.7	43.6	8.0	1.00	14.4
484.30	17.1	314.2	18.6	1.00	92.6
485.26	37.1	991.7	22.7	1.00	268.9
486.21	60.3	2029.5	25.7	1.00	524.0
487.17	86.4	3407.6	28.6	1.00	851.5
488.13	115.4	5027.2	32.7	1.00	1229.0
489.09	150.0	6891.8	39.5	1.00	1658.0
490.05	191.1	9310.7	46.3	1.00	2202.9
491.01	237.3	12641.3	50.2	1.00	2929.7
491.96	287.2	16522.2	53.9	1.00	3761.5
492.92	340.7	20810.7	58.4	1.00	4670.4
493.88	402.5	24392.0	70.5	1.00	5458.4
494.84	475.8	29146.6	82.5	1.00	6482.5
495.80	560.2	35624.8	92.2	1.00	7836.4
496.76	651.1	44054.4	97.6	1.00	9542.5
497.71	747.3	53449.6	103.1	1.00	11418.7
498.67	853.2	60710.4	119.4	1.00	12944.8
499.63	974.7	71304.0	131.2	1.00	15075.7
500.59	1105.6	81171.5	148.7	1.00	17110.8
501.55	1263.7	89286.8	181.3	1.00	18934.7
502.51	1448.8	105791.8	198.1	1.00	22229.8
503.46	1641.1	128008.0	203.1	1.00	26468.8
504.42	1838.1	152083.3	208.1	1.00	30999.1
505.38	2039.9	177997.1	213.1	1.00	35815.3

*elevation referenced to common vertical datum $^{\rm LCAP}$ -USGS culvert analysis program VER 97-01

page 3

Hydraulic analysis for the culvert structure WFAITH00030007

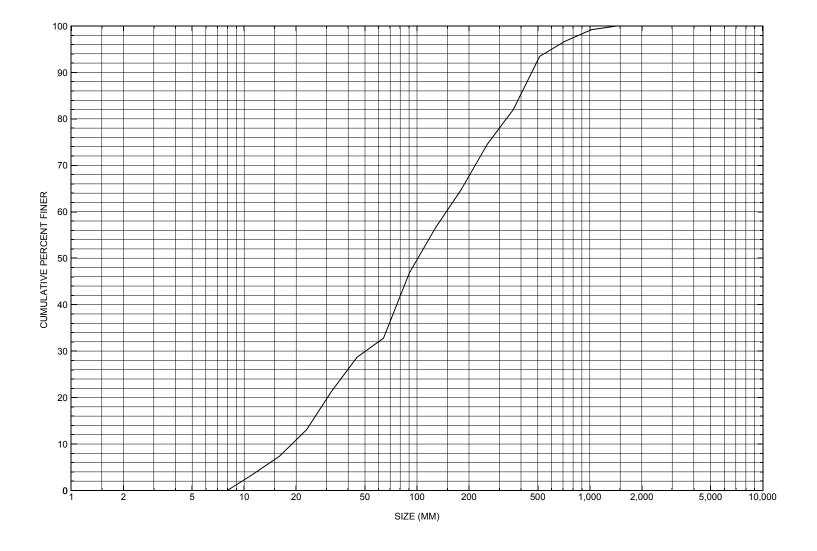
	CU	LARKI.		APPROACH	SECTION
I.D. CLVRT		Mannings n	0.050	I.D. APPRO	
Height	11.49 ft	Width	23.8ft	Station	109.0 ft
Station	0.0 ft	Length	83.0 ft	Minimum el.	482.38ft
Inlet el.	483.46ft	Outlet el	. 482.37ft		
Di	scharge Flo	w Water Sur	face Elevations	s (feet) Critica	l Error
no.	(cfs) typ	e appr. i	nlet outlet	exit Dc	code@
1	1610.0 3	493.68 4	91.20 488.62	488.62 5.6	0
2	1610.0 3	493.45 4	91.28 489.39	489.39 5.6	0
3	2250.0 25	498.07 4	94.95******	488.62 6.9	11
4	2250.0 35	497.96 4	94.95******	489.39 6.9	11
	Fall (ft)	Losses (ft)	Appr. Se	ection Control	Section
no. C	entry eff.	entry(1-2) (2	-3) VH alph	n F energy	F
1 0.84	5.06 3.26	0.97 0.23 1	.83 0.27 1.00	0.31 490.92	0.83
2 0.85	4.06 2.55	0.70 0.24 1	.56 0.29 1.00	0.32 491.24	0.70
3 0.44	****	***** ****	*** 0.13 1.00	0.19 *****	****
4 0.44	****	***** ****	*** 0.13 1.00	0.19 *****	****

Abrevs. used: appr.-approach C-discharge coefficient eff.-effective VH-velocity head alph-velocity coefficient n-Manning's roughness coef. energy-specific energy F-Froude number entry,(1-2),(2-3)-part of reach

WSPRO OUTPUT FILE (continued)

U.S. Geological Survey WSPRO Input File wfai007.wsp
Hydraulic analysis for structure WFAITH0030007 Date: 03-NOV-97
Bridge 7 on Town Highway 3 over Algerine Brook West Fairlee, VT by MAI
*** RUN DATE & TIME: 03-13-98 14:14

									3; SEC					
	WS	SEL	SA#		AREA	025	K	TOPW	WETP	ALPI	H L	EW	REW	QCR 5274. 5274.
	493	. 68	1		389.	2354	17. 17.	68.	73.	1.00	0 -2	3.	45.	5274.
	VE	LOCI	ry D	ISTR	IBUTIC	N: IS	SEQ =	3;	SECID :	= APPI	RO; S	RD =	10	09.
		WS 493	SEL .68	- 2 i	LEW 3.0	REW 44.9	Al 38	REA 8.6	K 23547.	10	Q 610.	VEL 4.14		
Χ	STA.		-	23.0	19 7	-7.5	19 /	-3.9	20.3 3.96	-1.0	15 5	0.7	14 6	2.2
	V(I)				1.65		4.14		3.96		5.19		5.50	
	STA. A(I)			2.2	14 2	3.7	14.0	5.1	L 14.5 5.54	6.5	14 6	8.0	14 0	9.4
	V(I)				5.64		5.65		5.54		5.53		5.42	
	STA.)					
	A(I) V(I)				14.4 5.57		14.0 5.75		13.9 5.77		13.8 5.82		14.1 5.72	
	STA.			15.8		17.2		18.7	7	20.2		21.9		44.9
	A(I) V(I)				13.7 5.88		14.8 5.44		14.0 5.75		15.0 5.38		69.8 1.15	
	CRO	OSS-S	SECT	ION 1	PROPER	TIES:	ISE	Q = 3	B; SEC	ID = 2	APPRO;	SRD	=	109.
														109. QCR 11843. 11843.
	WS 497	SEL .96	SA# 1		AREA 773. 773.	5552 5552	K 24. 24.	TOPW 106. 106.		ALP1	H L	EW	REW 73.	QCR 11843. 11843.
	WS 497	SEL .96 LOCIT	SA# 1 TY D	ISTR!	AREA 773. 773. IBUTIC	5552 5552 ON: IS	K 24. 24. SEQ =	TOPW 106. 106.	WETP 112. 112. SECID	ALPI 1.00	H L O -3 RO; S	EW 4. RD = VEL	REW 73.	QCR 11843. 11843.
	WS 497 VE	SEL .96 LOCIT WS 497	SA# 1 FY D SEL .96	ISTR:] -3:	AREA 773. 773. IBUTIC	555; 555; DN: IS REW 72.5	K 24. 24. SEQ = Al 77:	TOPW 106. 106. 3;	WETP 112. 112. SECID :	1.00 = APPI	H L O -3 RO; S Q 250.	EW 4. RD = VEL 2.91	REW 73.	QCR 11843. 11843.
X	WS 497 VE	SEL .96 LOCIT WS 497	SA# 1 FY D SEL .96	ISTR:] -3:	AREA 773. 773. IBUTIC	555; 555; DN: IS REW 72.5	K 24. 24. SEQ = Al 77:	TOPW 106. 106. 3;	WETP 112. 112. SECID :	1.00 = APPI	H L O -3 RO; S Q 250.	EW 4. RD = VEL 2.91	REW 73.	QCR 11843. 11843.
X	WS 497 VE	SEL .96 LOCIT WS 497	SA# 1 FY D SEL .96	ISTR: -3: 33.5	AREA 773. 773. IBUTIC LEW 3.5	555: 555: 0N: IS REW 72.5	K 24. 24. SEQ = Al 77: 33.0 3.41	TOPW 106. 106. 3; REA 3.0	WETP 112. 112. SECID : K 555524.	ALPP 1.00 = APPP 2:	H L C -3	EW 4. RD = VEL 2.91 -2.3	73. 10	QCR 11843. 11843.
Х	WS 497 VED STA. A(I) V(I) STA.	SEL .96 LOCIT WS 497	SA# 1 FY D SEL .96	ISTR: -3: 33.5	AREA 773. 773. IBUTIC LEW 3.5	555: 555: 0N: IS REW 72.5	K 24. 24. SEQ = Al 77: 33.0 3.41	TOPW 106. 106. 3; REA 3.0	WETP 112. 112. SECID : K 555524.	ALPP 1.00 = APPP 2:	H L C -3	EW 4. RD = VEL 2.91 -2.3	73. 10	QCR 11843. 11843.
Х	WS 497 VEI STA. A(I) V(I)	SEL .96 LOCIT WS 497	SA# 1 FY D SEL .96	ISTR: -3: 33.5	AREA 773. 773. IBUTIC LEW 3.5	555; 555; 0N: IS REW 72.5 -12.7	K 24. 24. SEQ = Al 77: 33.0 3.41	TOPW 106. 106. 3; REA 3.0 -8.9	WETP 112. 112. SECID :	ALPI 1.00 = APPI 2: -5.5	H L C -3	EW 4. RD = VEL 2.91 -2.3	73. 10	QCR 11843. 11843. 09.
x x	WS 497 VED STA. A(I) V(I) STA. A(I) V(I) STA.	SEL .96 .GOCIT WS 497	SA# 1 TY D SEL 96	1STR: -3333.5	AREA 773. 773. IBUTIC	555; 555; 50N: IS REW 72.5 -12.7	K 24. 24. SEQ = A1 77. 33.0 3.41 28.9 3.90	TOPW 106. 106. 3; REA 3.0 -8.9	WETP 112. 112. SECID : K 55524. 9 32.6 3.46	ALPP 1.00 = APPP 2: -5.5 6.3	H L D -3 RO; S Q 250. 32.9 3.42 29.2 3.85	EW 4. RD = VEL 2.91 -2.3 8.3	REW 73. 10 32.9 3.42 28.2 3.99	QCR 11843. 11843. 09.
X	WS 497 VED STA. A(I) V(I) STA. A(I) V(I)	SEL .96 .GOCIT WS .497	SA# 1 TY D SEL 96	1STR: -3333.5	AREA 773. 773. IBUTIC	555; 555; 50N: IS REW 72.5 -12.7	K 24. 24. SEQ = A1 77. 33.0 3.41 28.9 3.90	TOPW 106. 106. 3; REA 3.0 -8.9	WETP 112. 112. SECID 5 K 55524. 9 32.6 3.46	ALPP 1.00 = APPP 2: -5.5 6.3	H L D -3 RO; S Q 250. 32.9 3.42 29.2 3.85	EW 4. RD = VEL 2.91 -2.3 8.3	REW 73. 10 32.9 3.42 28.2 3.99	QCR 11843. 11843. 09. 0.3
x x	VEI STA. A(I) V(I) STA. A(I) V(I) STA. A(I)	SEL .96 LOCIT WS 497	SA# 1 TY D SEL .96	13TR: -3333.5	AREA 773. 773. IBUTIC	555: 555: 5N: IS REW 72.5 -12.7 2.3	K 244. 244. 244. 344. 244. 244. 244. 244.	TOPW 106. 106. 3; REA 3.0 -8.9 4.4	WETP 112. 112. SECID : K 55524. 9 32.6 3.46	ALPP 1.00 = APPP 2: -5.5 6.3 15.4	H L 0 -3 RO; S Q 250. 32.9 3.42 29.2 3.85	EW 4. RD = VEL 2.91 -2.3 8.3 17.2	REW 73. 10 32.9 3.42 28.2 3.99 27.1 4.15	QCR 11843. 11843. 09. 0.3


WSPRO OUTPUT FILE (continued)

U.S. Geological Survey WSPRO Input File wfai007.wsp
Hydraulic analysis for structure WFAITH0030007 Date: 03-NOV-97
Bridge 7 on Town Highway 3 over Algerine Brook West Fairlee, VT by MAI
*** RUN DATE & TIME: 02-10-98 16:38

100-11022	discharge
IUU-year	discharge

100-year disc	narge								
XSID:CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	0	WSEL
SRD	FLEN	REW	K	ALPH	НО	ERR	FR#	VEL	
	****		211.				487.22		488.06
-21. *	****	53.	10900.	1.00	****	*****	0.77	7.63	
FULLV:XS	21.	-17.	234.	0.74	0.40	489.36	*****	1610.	488.62
0.		54.			0.00		0.67	6.89	
APPRO:XS	109.						*****	1610.	490.58
109.	109.		11082.	1.00	0.06	0.00	0.62	7.45	
FIRST USER	DEFINED	TABLE.							
XSID:COD	E SRD	LEW	REW		0	K	AREA	VEL	WSEL
EXITX:XS	-21.	-15.				10900.	211.	7.63	488.06
FULLV:XS	0.					12629.	234.	6.89	488.62
APPRO:XS	109.	-17.	32.	161	10.	11082.	216.	7.45	490.58
SECOND USER	DEETMED	mant n							
SECOND USER	DEFINED	TABLE.							
XSID: COD	E CRW	S FI	R# YN	IIN	YMAX	HF	HO VHD	EG	L WSEL
EXITX:XS	487.2	2 0.	77 482.	.28 5	07.22	*****	**** 0.90	488.9	7 488.06
FULLV:XS	*****	* 0.6	67 482.	.52 5	07.46	0.40	0.00 0.74	489.3	86 488.62
APPRO:XS	*****	* 0.6	62 482.	.38 5	25.05	2.02	0.06 0.86	491.4	4 490.58
500-year disc	harge								
XSID: CODE	SRDL	LEW	AREA	VHI) н	F EGI	L CRWS	C) WSEL
	FLEN	REW	K	ALPH	НО			VEL	
		-18.	264.				488.24		488.81
-21. *	****	55.	15229.	1.00	****	*****	0.79	8.51	
FULLV:XS	21.	-19.	290.	0.94	0.40	490.33	*****	2250.	489.39
0.			17487.	1.00			0.69	7.77	
APPRO:XS	109.						*****		491.48
109.	109.	34.	14492.	1.00	0.11	0.02	0.68	8.60	
FIRST USER	DEFINED	TABLE.							
XSID:COD	E SRD	LEW	REW		Q	K	AREA	VEL	WSEL
EXITX:XS		-18.					264.	8.51	
FULLV:XS	0.	-19.		225	50.	15229. 17487.	290.	7.77	489.39
APPRO:XS	109.	-18.	34.	225	50.	14492.	262.	8.60	491.48
SECOND USER	DEFINED	TABLE.							
XSID:COD	E CDM	S FI	R# YN	IIN	YMAX	HF	HO VHD	FC	L WSEL
EXITX:XS						*****			94 488.81
FULLV:XS									33 489.39
APPRO:XS			68 482.	.38 5	25.05	2.18	0.11 1.15	492.6	3 491.48

APPENDIX C: BED-MATERIAL PARTICLE-SIZE DISTRIBUTION

Appendix C. Bed material particle-size distribution for a pebble count in the channel approach of structure WFAITH00030007, in West Fairlee, Vermont.

APPENDIX D: HISTORICAL DATA FORM

Structure Number WFAITH00030007

Gener	al I	Location Descriptive	
Data collected by (First Initial, Full last name)	\mathbf{E}	Boehmler	

Date (MM/DD/YY) __03 / _09 / _95

Highway District Number (1 - 2; nn) 04

Town (FIPS place code; I - 4; nnnnn) 79975

Waterway (1 - 6) Algerine (Coppermine) Brook

Route Number TH003

Topographic Map Vershire

Latitude (I - 16; nnnn.n) 43547

County (FIPS county code; I - 3; nnn) ____017

Mile marker (I - 11; nnn.nnn) <u>000000</u>

Road Name (1 - 7): _Vicinity (1 - 9) _0.85 miles to jct with VT 113

Hydrologic Unit Code: 01080103

Longitude (i - 17; nnnnn.n) 72167

Select Federal Inventory Codes

FHWA Structure Number (1 - 8) 10091600070916

Maintenance responsibility (I - 21; nn) __03 __ Maximum span length (I - 48; nnnn) __0025

Year built (1 - 27; YYYY) 1958 Structure length (1 - 49; nnnnnn) 000025

Average daily traffic, ADT (I - 29; nnnnnn) 000350 Deck Width (I - 52; nn.n) 000

Year of ADT (1 - 30; YY) 90 Channel & Protection (1 - 61; n) 8

Opening skew to Roadway (I - 34; nn) 30 Waterway adequacy (I - 71; n) 7

Operational status (I - 41; X) A Underwater Inspection Frequency (I - 92B; XYY) N

Structure type (*I - 43: nnn*) 319 Year Reconstructed (*I - 106*) 1992

Approach span structure type (I - 44: nnn) 000 Clear span (nnn.n ft) -

Number of spans (I - 45; nnn) 001 Vertical clearance from streambed (nnn.n ft) 12.0

Number of approach spans (*I - 46; nnnn*) 0000 Waterway of full opening (*nnn.n ft*²) _-

Comments:

The structural inspection report of 5/27/94 indicates the structure is a multi-plate arch crossing. This arch culvert was built in 1992 and no problems were reported. The streambed is noted as stone and gravel, except upstream of the culvert opening where some bedrock outcrops are present in the channel.

	Brid	ge Hydro	ologic Da	ata				
Is there hydrologic data available	e? <u>N</u> if	No, type ctrl	-n h VTA	OT Draina	age area (m	າi ²):		
Terrain character:								
Stream character & type: _								
a								
Streambed material: Stone and								
Discharge Data (cfs): $Q_{2.33}$								
Record flood date (MM / DD / YY):								
Estimated Discharge (cfs):								
Ice conditions (Heavy, Moderate, Li The stage increases to maximum								
The stream response is (<i>Flashy</i> , <i>I</i>	•		•	voi rapidiy j.				
Describe any significant site cor	- ,			m that ma	v influence	the stream's		
stage: -					,			
Watershed storage area (in perce	· ——							
The watershed storage area is:		ainly at the h e site)	eadwaters; 2	2- uniformly	distributed; 3-	-immediatly upstream		
	3. u .	<i>-</i> ,						
Water Surface Elevation Estima	tes for Exi	sting Struc	ture:					
Peak discharge frequency	Q _{2.33}	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀			
	-2.33	-	25	-50	- 100			
Water surface elevation (ft))								
Velocity (ft / sec)	-	-	-	-	-			
Long torm atracm had shanges						l		
Long term stream bed changes:								
Is the roadway overtopped below								
Relief Elevation (#): -	Discha	arge over r	oadway at	$Q_{100} (ft^3/$	sec):	_		
Are there other structures nearb	y? (Yes, No	o, Unknown)	: <u>U</u> If No	o or Unknow	n, type ctrl-n	os		
Upstream distance (miles):		Town:			_ Year Buil	It:		
Highway No. :								
Clear span (ft): Clear He	eight (#):	· F	ull Waterw	ay (ft²): <u>-</u>				

Downstream distance (<i>miles</i>):			
Clear span (#): - Clear Heigh			
Comments:	· ,	· · · -	
-			
	USGS Wate	ershed Data	
Watershed Hydrographic Data			
Drainage area (DA) $\frac{7.74}{}$ mi ² Watershed storage (ST) $\frac{0.3}{}$	Lal %	ke/pond/swamp area 0.0	<u>)2</u> mi ²
Bridge site elevation		adwater elevation208	<u>0</u> ft
Main channel length	mi		
10% channel length elevation		85% channel length	elevation <u>1580</u> ft
Main channel slope (S) 231.11	ft / mi		
Watershed Precipitation Data			
Average site precipitation	in Ave	erage headwater precipit	tation in
Maximum 2yr-24hr precipitation ev	vent (124,2)	in	
Average seasonal snowfall (Sn)	· ft		

Bridge Plan Data
Are plans available? YIf no, type ctrl-n pl Date issued for construction (MM / YYYY):09 _ /1958 Project Number Minimum channel bed elevation:
Low superstructure elevation: USLAB DSLAB USRAB DSRAB Benchmark location description: NO BENCHMARK INFORMATION.
Reference Point (MSL, Arbitrary, Other): Datum (NAD27, NAD83, Other): Foundation Type: _4 (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown) If 1: Footing Thickness Footing bottom elevation:
If 2: Pile Type: (1-Wood; 2-Steel or metal; 3-Concrete) Approximate pile driven length: If 3: Footing bottom elevation: Is boring information available? _N If no, type ctrl-n bi Number of borings taken: Foundation Material Type: _3 (1-regolith, 2-bedrock, 3-unknown) Briefly describe material at foundation bottom elevation or around piles:
NO FOUNDATION MATERIAL INFORMATION.
Comments: The plans that are available are those for the original structure. No plans exist for the current multi-plate arch structure.

Cross-sectional Data

Is cross-sectional data available? \underline{No} If no, type ctrl-n xs

Source (FEMA, VTAOT, Other)? - NO CROSS SECTION INFORMATION Comments:

Station	-	ı	-	ı	ı	ı	ı	ı	ı	ı	ı
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	ı	-	-	-	-	ı	ı	ı
Low chord to bed	-	-	-	ı	-	-	-	-	ı	ı	ı
		a.			a.	a	a.	a			
Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord											
elevation	-	-	-	-	-	-	-	-	-	-	-
elevation Bed elevation	-	-	-	-	-	-	-	-	-	-	-
elevation Bed		-		-	-	-	_			-	-

Source (FEMA, VTAOT, Other)? ____

Comments: NO CROSS SECTION INFORMATION

Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	1	-	-	-	1	-	-	-
Low chord to bed	-	-	-	1	-	-	-	1	-	-	-
Station	-	-	-	1	-	-	-	1	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low chord to bed	-	-	-	-	-	-	-	-	-	-	-

APPENDIX E:

LEVEL I DATA FORM

U. S. Geological Survey Bridge Field Data Collection and Processing Form

Structure Number WFAITH00030007

Qa/Qc Check by: **RB** Date: 2/22/96

Computerized by: RB Date: 2/22/96

MAI Date: 11/18/97 Reviewd by:

A. General Location Descriptive

1. Data collected by (First Initial, Full last name) E. Boehmler Date (MM/DD/YY) 9 / 8 / 1995

2. Highway District Number 4 County Orange (017)

Waterway (1 - 6) Algerine (Coppermine) Brook

Route Number TH 3

3. Descriptive comments:

The site is located 0.85 miles from State Route 113.

Mile marker 0 Town West Fairlee (79975)

Road Name Beanville Road

Hydrologic Unit Code: 01080103

B. Bridge Deck Observations

- RBDS 6 4. Surface cover... LBUS_6___ RBUS 6 LBDS 6 (2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland)
- 5. Ambient water surface... US 2 UB 2 DS 2 (1- pool; 2- riffle)
- 6. Bridge structure type <u>3</u> (1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other)
- 7. Bridge length 25.0 __ (feet)

Span length 25.0 (feet)

Bridge width -- (feet)

Road approach to bridge:

8. LB 1 RB 2 (0 even, 1- lower, 2- higher)

9. LB_1__ RB 1___ (1- Paved, 2- Not paved)

10. Embankment slope (run / rise in feet / foot): US left -- US right --

	Pr	otection	10 Exactor	14.Severity	
	11.Type	12.Cond.	13.Erosion	14.Severity	
LBUS		-	0	0	
RBUS	0		2	1	
RBDS	5	1	0	0	
LBDS	_5	1	0	_0	

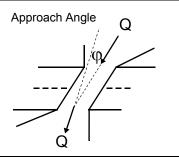
Bank protection types: **0**- none; **1**- < 12 inches;

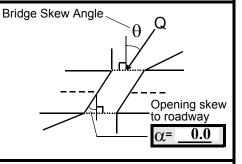
2- < 36 inches; **3-** < 48 inches;

4- < 60 inches; 5- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped;

3- eroded; 4- failed


Erosion: 0 - none: 1- channel erosion: 2road wash; 3- both; 4- other


Erosion Severity: **0** - none: **1**- slight: **2**- moderate:

3- severe

Channel approach to bridge (BF):

16. Bridge skew: 30 15. Angle of approach: 0

17. Channel impact zone 1:

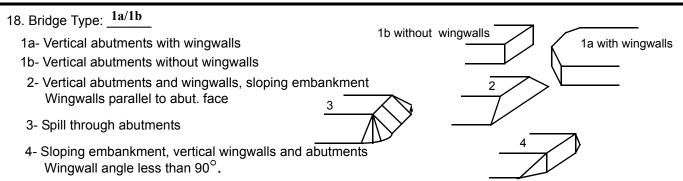
Exist? $\underline{\mathbf{Y}}$ (Y or N)

Where? LB (LB, RB)

Severity 3

Range? 85 feet US (US, UB, DS) to 65 feet US

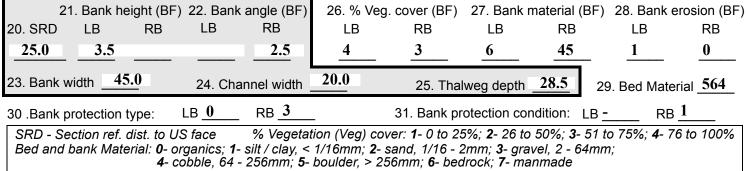
Channel impact zone 2:


Exist? \mathbf{Y} (Y or N)

Where? RB (LB, RB)

Severity 1

Range? 130 feet DS (US, UB, DS) to 195 feet DS


Impact Severity: **0**- none to very slight; **1**- Slight; **2**- Moderate; **3**- Severe

19. Bridge Deck Comments (surface cover variations, measured bridge and span lengths, bridge type variations, approach overflow width, etc.)

The structure is a multiplate arch culvert with wingwalls at the US end and no wingwalls DS. The culvert opening measured 25 feet wide at the base of the plates where they meet the concrete footings. The surface cover is all forest except for small grass plots near the culvert orifices at each end. The roadway width or crest for weir flow, is 20.2 feet. While the left bank impact is severe due to a 90 degree bend right in the channel, the left bank is bedrock.

C. Upstream Channel Assessment

Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting

Bank protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

32. Comments (bank material variation, minor inflows, protection extent, etc.):

The channel US extends straight US from the culvert entrance then makes a 90 degree bend centered on 80 ft US of the culvert. The 90 degree bend follows the joint geometry and configuration of the bedrock on the left bank US. The bedrock extends around the bend to 98 ft US and ends about 4 ft US of the culvert entrance. It also forms part of the bed material mainly on the left bank side of the channel. The bedrock only visibly crosses the channel in the area of 25 ft US to 50 ft US. There is a higher than usual silt clay fraction to the material particularly on the right bank and right bank side of the channel. The right bank is protected from 15 ft US at the end of the stone wingwall and 35 ft US.

33. Point/Side bar present? Y (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 48 35. Mid-bar width: 5.5
36. Point bar extent: 62 feet US (US, UB) to 35 feet US (US, UB, DS) positioned 90 %LB to 100 %RB
37. Material: 35
38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.):
A small unvegetated side bar composed primarily of fine to medium gravel, some silt, clay, and sand deposited
on top of boulders and bedrock.
39. Is a cut-bank present? N (Y or if N type ctrl-n cb) 40. Where? - (LB or RB)
41. Mid-bank distance: 42. Cut bank extent: feet (US, UB) to feet (US, UB, DS)
43. Bank damage: (1- eroded and/or creep; 2- slip failure; 3- block failure)
44. Cut bank comments (eg. additional cut banks, protection condition, etc.):
NO CUT BANKS
45. Is channel scour present? N (Y or if N type ctrl-n cs) 46. Mid-scour distance: -
47. Scour dimensions: Length <u>-</u> Width <u>-</u> Depth : <u>-</u> Position <u>-</u> %LB to <u>-</u> %RB
48. Scour comments (eg. additional scour areas, local scouring process, etc.):
NO CHANNEL SCOUR Some small pools have developed in the bedrock between 60 ft US and 40 ft US, and between 35 ft US and 40 ft US which are slightly deeper than the thalweg depths elsewhere, at most 0.5 to
0.8 ft deeper. Bedrock has formed 2 small water falls US at 35 ft US and 60 ft US with a pool below each but no
abnormal erosion.
49. Are there major confluences? N (Y or if N type ctrl-n mc) 50. How many?
51. Confluence 1: Distance 52. Enters on (LB or RB) 53. Type (1- perennial; 2- ephemeral)
Confluence 2: Distance Enters on (LB or RB) Type (1- perennial; 2- ephemeral)
54. Confluence comments (eg. confluence name): NO MAJOR CONFLUENCES
THE MANGER COLUMNICAL STATES
D. Under Bridge Channel Assessment
55. Channel restraint (BF)? LB 2 (1- natural bank; 2- abutment; 3- artificial levee)
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF)
LB RB LB RB LB RB
18.5 <u>2.0</u> <u>7</u> <u>7</u> <u>-</u>
58. Bank width (BF) 59. Channel width 60. Thalweg depth 63. Bed Material
Bed and bank Material: 0 - organics; 1 - silt / clay, < 1/16mm; 2 - sand, 1/16 - 2mm; 3 - gravel, 2 - 64mm; 4 - cobble, 64 - 256mm;
5- boulder, > 256mm; 6- bedrock; 7- manmade
Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting
64. Comments (bank material variation, minor inflows, protection extent, etc.): 451

65. Debris and Ice Is there debris accumulation? ____ (Y or N) 66. Where? N ___ (1- Upstream; 2- At bridge; 3- Both) 67. Debris Potential ____ (1- Low; 2- Moderate; 3- High) 68. Capture Efficiency 2 (1- Low; 2- Moderate; 3- High)

69. Is there evidence of ice build-up? 2 (Y or N)

Ice Blockage Potential N (1-Low; 2- Moderate; 3- High)

70. Debris and Ice Comments:

Debris and ice are likely to build up at the 90 degree bend US, the bedrock in the channel, and on the left bank. The banks are stable for the most part, but with forest all around on each bank US, the potential for debris generation in the channel is moderate.

<u>Abutments</u>	71. Attack ∠(BF)	72. Slope ∠ (Qmax)	73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76.Exposure depth	77. Material	78. Length
LABUT		0	90	2	2	0	2	90.0
RABUT	1	-	90	 	l 1	2	2	23.0

Pushed: LB or RB

Toe Location (Loc.): 0- even, 1- set back, 2- protrudes

Scour cond.: 0- not evident; 1- evident (comment); 2- footing exposed; 3-undermined footing; 4- piling exposed; 5- settled; 6- failed

Materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.):

2

The abutments are concrete at the base then the corrugated metal is sealed into the concrete on each side. The concrete portion, footing, is exposed on both sides for their entire length.

80. Winawalls:

	Exist?	Material?	Scour Condition?	Scour depth?	Exposure depth?	Angle?	Length?
USLWW:					-	23.0	
USRWW:	<u>Y</u>		2		0	0.5	
DSLWW:	0		0		<u>Y</u>	83.5	
DSRWW:	2		<u>0</u>		<u>0</u>	83.5	

USRWW USLWW Wingwall length Wingwall angle DSRWW DSLWW

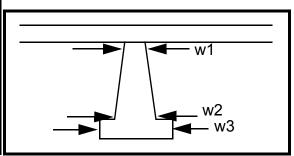
Wingwall materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

82. Bank / Bridge Protection:

Location	USLWW	USRWW	LABUT	RABUT	LB	RB	DSLWW	DSRWW
Туре	0	-	N	-	-	-	-	-
Condition	N	-	-	-	-	-	-	-
Extent	-	-	-	0	0	0	0	-

Bank / Bridge protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank / Bridge protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed


Protection extent: 1- entire base length: 2- US end: 3- DS end: 4- other

83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):

Piers:

84. Are there piers? <u>Th</u> (*Y or if N type ctrl-n pr*)

				71 1	,	
85.						
Pier no.	widt	h (w) fe	eet	elev	ation (e) f	eet
	w1	w2	w3	e@w1	e@w2	e@w3
Pier 1		6.0		20.0	70.0	13.5
Pier 2	1	-	1	-	1	-
Pier 3	-	-	-	-	-	-
Pier 4	-	-	-	-	-	-

Level 1 Pier Descr.	1	2	3	4
86. Location (BF)	e wing-	n.	•	-
87. Type	walls		1	-
88. Material	are		•	-
89. Shape	unpr		-	-
90. Inclined?	otect		-	-
91. Attack ∠ (BF)	ed		-	-
92. Pushed	but		-	-
93. Length (feet)	-	-	-	-
94. # of piles	appe		-	-
95. Cross-members	ar in		-	-
96. Scour Condition	good		ı	-
97. Scour depth	con-		-	-
98. Exposure depth	ditio	N	-	-

LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP

1- Solid pier, 2- column, 3- bent

1- Wood; 2- concrete; 3- metal; 4- stone

1- Round; 2- Square; 3- Pointed

Y- yes; N- no

LB or RB

0- none; 1- laterals; 2- diagonals; 3- both

0- not evident; 1- evident (comment);

2- footing exposed; 3- piling exposed; 4- undermined footing; 5- settled; 6- failed

99. Pier comments (eg. undermined penetration	, protection and protec	ction extent, unusu	al scour proce	sses, etc.):	
-					
-					
_					
-					
-					
-					
_					
- -					
100. E. Down	stream Channe	l Assessmer	nt		
Bank height (BF) Bank angle (BI	W Veg. cover	·(BF) Bankin	naterial (BF)	Bank eros	sion (BF)
SRD LB RB LB RB	,	RB LB	RB	LB	RB
		. <u>-</u>	-	-	-
Bank width (BF) Channel	width -	Thalweg depth	-	Bed Materia	
Bank protection type (Qmax): LB -	RB - Ban	k protection condit			
	etation (Veg) cover: 1 -	<u> </u>			
Bed and bank Material: 0 - organics: 1 - silt / cla	v. < 1/16mm: 2 - sand.	1/16 - 2mm: 3 - gra	vel. 2 - 64mm:	7070, 4 7010	3 10070
4 - cobble, 64 - 256mm Bank Erosion: 0 - not evident; 1 - light fluvial; 2 -					
Bank protection types: 0 - absent; 1 - < 12 inche				l / artificial lev	⁄ee
Bank protection conditions: 1- good; 2- slumpe					
Comments (eg. bank material variation, minor in	flows, protection exten	t, etc.):			
- -					
-					
NO PIERS					
1					
3					
_					
101. <u>Is a drop structure present?</u> 7				feet	
103. Drop: <u>-</u> feet 104. Struc	cture material: <u>514</u> (1	- steel sheet pile; 2	?- wood pile; 3 -	concrete; 4 -	other)
105. Drop structure comments (eg. downstream	scour depth):				
0 1					
451					
0					
2					
-					

106. Point/Side bar present? 1 (Y or N. if N type ctrl-n pb)Mid-bar distance: The Mid-bar width: DS
Point bar extent: <a (us,="" chan="" ds)"="" feet="" href="mailto:chan" is="" nel="" str"="" to="" ub,="">chan feet nel (US, UB, DS) to is feet str (US, UB, DS) positioned aig %LB to ht %RB Material: fro Foint or side bar comments (Circle Point or Side; note additional bars, material variation, status, etc.):
m the culvert exit. The channel is lined on the left bank side by a stone fill ridge which makes up the left bank in a sort of crude stone wall fashion. This ridge is about 5 ft high and extends beyond 300 ft DS. It is 5-6 ft high on the channel side and drops 4-5 ft down on the bankward side. On the right bank side, the bank appears to be stream material dug out and piled up. The gaps between the boulder protection is mainly silt, clay and sand
Is a cut-bank present? wi (Y or if N type ctrl-n cb) Where? th (LB or RB) Mid-bank distance: gras Cut bank extent: s, feet shr (US, UB, DS) to ubs, feet an (US, UB, DS) Bank damage: d (1-eroded and/or creep; 2- slip failure; 3- block failure) Cut bank comments (eg. additional cut banks, protection condition, etc.): brush growing in it. This protection is present from 0 ft DS to 150 ft DS. The bank material description by numbers above is reflecting the right bank material beyond 150 ft DS on the right bank.
Is channel scour present? (Y or if N type ctrl-n cs) Mid-scour distance:
Scour dimensions: Length Width Depth: Positioned %LB to N %RB Scour comments (eg. additional scour areas, local scouring process, etc.):
NO DROP STRUCTURE
Are there major confluences? (Y or if N type ctrl-n mc) How many? Confluence 1: Distance Enters on N (LB or RB) Type (1- perennial; 2- ephemeral) Confluence 2: Distance Enters on (LB or RB) Type (1- perennial; 2- ephemeral) Confluence comments (eg. confluence name):
F. Geomorphic Channel Assessment
107. Stage of reach evolution - 1- Constructed 2- Stable 3- Aggraded 4- Degraded 5- Laterally unstable 6- Vertically and laterally unstable

108. Evolution comments (Channel evolution not considering bridge effects; See HEC-20, Figure 1 for geomorphic descriptors):	
-	
NO POINT BARS	
${f N}$	
-	
-	
-	
- -	
-	

109. G. Plan View Sketch							
ooint bar pb cut-bank cb	debris rip rap or stone fill	flow Q cross-section ++++++ ambient channel ——	stone wall				
cour hole	stone fill	ambient channel ——					

APPENDIX F: SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: WFAITH00030007 Town: West Fairlee

Road Number: TH 3 County: Orange

Stream: Algerine (Coppermine) Brook

Initials MAI Date: 11/13/97 Checked: ECW

Analysis of contraction scour, live-bed or clear water?

Critical Velocity of Bed Material (converted to English units) $Vc=11.21*y1^0.1667*D50^0.33$ with Ss=2.65 (Richardson and Davis, 1995, p. 28, eq. 16)

Approach Section			
Characteristic	100 yr	500 yr	other Q
Total discharge, cfs	1610	2250	0
Main Channel Area, ft2	384	756	0
Left overbank area, ft2	0	0	0
Right overbank area, ft2	0	0	0
Top width main channel, ft	67	104	0
Top width L overbank, ft	0	0	0
Top width R overbank, ft	0	0	0
D50 of channel, ft	0.3321	0.3321	0
D50 left overbank, ft			
D50 right overbank, ft			
y1, average depth, MC, ft	5.7	7.3	ERR
y1, average depth, Mc, It y1, average depth, LOB, ft	ERR	ERR	ERR
yl, average depth, ROB, ft	ERR	ERR	ERR
yi, average depth, ROB, it	EKK	EKK	EKK
Total conveyance, approach	23264	54346	0
Conveyance, main channel	23264	54346	0
Conveyance, LOB	0	0	0
Conveyance, ROB	0	0	0
Percent discrepancy, conveyance	0.0000	0.0000	ERR
Qm, discharge, MC, cfs	1610.0	2250.0	ERR
Ql, discharge, LOB, cfs	0.0	0.0	ERR
Qr, discharge, ROB, cfs	0.0	0.0	ERR
Vm, mean velocity MC, ft/s	4.2	3.0	ERR
V1, mean velocity, LOB, ft/s	ERR	ERR	ERR
Vr, mean velocity, ROB, ft/s	ERR	ERR	ERR
Vc-m, crit. velocity, MC, ft/s	10.4	10.8	N/A
Vc-1, crit. velocity, LOB, ft/s	ERR	ERR	ERR
Vc-r, crit. velocity, ROB, ft/s	ERR	ERR	ERR
Results			
Live-bed(1) or Clear-Water(0) Contr	action Sc	our?	
Main Channel	0	0	N/A
Left Overbank	N/A	N/A	N/A
Right Overbank	N/A	N/A	N/A
	/	/	/

```
Clear Water Contraction Scour in MAIN CHANNEL
y2 = (Q2^2/(131*Dm^2(2/3)*W2^2))^3(3/7) Converted to English Units
ys=y2-y bridge
(Richardson and Davis, 1995, p. 32, eq. 20, 20a)
                                                    Other O
Bridge Section
                                   0100
                                            Q500
  (Q) total discharge, cfs
                                   1610
                                            2250
                                                    0
  (Q) discharge thru bridge, cfs
                                   1610
                                            2250
                                                     0
  Main channel conveyance
                                   9900
                                            11390
                                                    0
  Total conveyance
                                   9900
                                            11390
                                                    0
Q2, bridge MC discharge,cfs
                                   1610
                                            2250
                                                    ERR
  Main channel area, ft2
                                  134
                                           149
                                                    Ω
 Main channel width (normal), ft 23.4
                                           23.4
                                                    0.0
  Cum. width of piers in MC, ft
                                 0.0
                                           0.0
                                                    0.0
W, adjusted width, ft
                                   23.4
                                            23.4
y bridge (avg. depth at br.), ft
                                                   0.00
                                  6.25
                                           7.02
```

ys, scour depth (y2-ybridge), ft -0.27 0.95 N/A

Armoring

(Federal Highway Administration, 1993)

Dm, median (1.25*D50), ft

y2, depth in contraction,ft

Downstream bridge face property Q, discharge thru bridge MC, cfs	100-yr 1610	500-yr 2250	Other Q N/A
Main channel area (DS), ft2	134	149	0
Main channel width (normal), ft	23.4	23.4	0.0
Cum. width of piers, ft	0.0	0.0	0.0
Adj. main channel width, ft	23.4	23.4	0.0
D90, ft	1.5110	1.5110	1.5110
D95, ft	1.9750	1.9750	1.9750
Dc, critical grain size, ft	0.9897	1.4805	ERR
Pc, Decimal percent coarser than Dc	0.219	0.107	0.000
Depth to armoring, ft	10.61	37.18	ERR

Abutment Scour Froehlich's Abutment Scour Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1 (Richardson and Davis, 1995, p. 48, eq. 28)

Left Abutment Right Abutment
Characteristic 100 yr Q 500 yr Q Other Q 100 yr Q 500 yr Q Other Q

(Qt), total discharge, cfs 1610 2250 0 1610 2250 0

0.415125 0.415125 0

5.98

7.97

ERR

a', abut.length blocking flow, ft Ae, area of blocked flow ft2 Qe, discharge blocked abut.,cfs (If using Qtotal_overbank to obta Ve, (Qe/Ae), ft/s ya, depth of f/p flow, ft		33.5 215.6 549.52 ave Qe bl 2.55 6.44	0 0 0 ank and e ERR ERR	21.5 65.25 75.25 nter Ve a: 1.15 3.03	49.1 224.29 342.61 nd Fr man 1.53 4.57	0 0 0 ually) ERR ERR		
Coeff., K1, for abut. type (1.0, K1	verti.; 0 0.82	.82, vert	i. w/ win 0.82	gwall; 0. 0.82	55, spill 0.82	thru) 0.82		
Angle (theta) of embankment (<90 ^L theta K2	if abut. 90 1.00	points DS 90 1.00	; >90 if 90 1.00	abut. poi 90 1.00	nts US) 90 1.00	90 1.00		
Fr, froude number f/p flow	0.253	0.177	ERR	0.117	0.126	ERR		
ys, scour depth, ft	11.31	14.91	N/A	6.57	11.24	N/A		
HIRE equation $(a'/ya > 25)$ ys = $4*Fr^0.33*y1*K/0.55$ (Richardson and others, 1995, p. 49, eq. 29)								
a'(abut length blocked, ft)	23	33.5	0	21.5	49.1	0		
y1 (depth f/p flow, ft)	4.24	6.44	ERR	3.03	4.57	ERR		
a'/y1	5.42	5.21	ERR	7.08	10.75	ERR		
Skew correction (p. 49, fig. 16)	1.00	1.00	1.00	1.00	1.00	1.00		
Froude no. f/p flow Ys w/ corr. factor K1/0.55:	0.25	0.18	N/A	0.12	0.13	N/A		
vertical	ERR	ERR	ERR	ERR	ERR	ERR		
vertical w/ ww's	ERR	ERR	ERR	ERR	ERR	ERR		
spill-through	ERR	ERR	ERR	ERR	ERR	ERR		

Abutment riprap Sizing

Isbash Relationship D50=y*K*Fr^2/(Ss-1) and D50=y*K*(Fr^2)^0.14/(Ss-1) (Richardson and Davis, 1995, p112, eq. 81,82)

Characteristic	Q100	Q500	Other Q	Q100	Q500	Other Q
Fr, Froude Number y, depth of flow in bridge, ft	0.85 6.25	1 7.02	0	0.85 6.25	1 7.02	0
Median Stone Diameter for riprap			0.00		abutment,	
<pre>Fr<=0.8 (vertical abut.) Fr>0.8 (vertical abut.)</pre>	ERR 2.50	ERR 2.94	0.00 ERR	ERR 2.50	ERR 2.94	0.00 ERR