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ABSTRACT

This report presents water quality data for samples collected in September, 1994, September,
1996, and June, 1997 in Great Smoky Mountains National Park from the areas around the abandoned
Fontana and Hazel Creek mines in North Carolina, and the upper reaches of the West Prong of the
Little Pigeon River in Tennessee. Data include temperature, pH, specific conductance, dissolved
oxygen, alkalinity, flow, total acid soluble and dissolved major and trace element concentrations.
Data are interpreted in terms of their impact on the surrounding environment with enumeration of
remediation options around the mine sites.

STATEMENT OF PROBLEM

The U. S. Geological Survey (USGS), in cooperation with the National Park Service (NPS),
initiated a study of the factors that affect water quality associated with the abandoned Fontana and
Hazel Creek mines in Great Smoky Mountains National Park in 1996. The USGS also conducted
reconnaissance sampling in 1994. The goals of the research were to (1) assess the quality of water
within the abandoned mine workings; (2) assess the environmental impact of waters issuing from the
abandoned mines and surrounding country rock; and (3) suggest options for remediation of the sites.

Acid-mine drainage is produced by the weathering and oxidation of pyrite and other heavy-
metal sulfide ore minerals in surficial environments. Acid drainage can also occur naturally from
weathering of pyrite-bearing rocks such as the Anakeesta Schist found in the park. A key aspect of
the evaluation of the environmental impact of acid-mine drainage is the comparison of acid-mine
drainage with naturally occurring acid-rock drainage associated with the weathering of the
Anakeesta Formation. Any remediation efforts directed at mine drainage should consider the natural
background water composition in the watershed as a reference.

In some cases, acid-mine drainage problems are naturally mitigated. Dilution of acidic,
heavy metal laden streams by inflowing tributaries can quickly attenuate acid mine drainage
problems. Heavy-metal concentrations and acidity can be diluted below toxic levels over short



distances. Likewise, reducing environments such as natural wetlands can strip heavy metals from
acidic drainage by precipitating heavy-metal sulfide minerals.

PREVIOUS WORK

To date, no published reports are available on water quality associated with the abandoned
Fontana and Hazel Creek mines. However, several studies have investigated various aspects of
water quality associated with drainage from watersheds underlain by the Anakeesta Schist, and
water quality issues related to acid deposition. Abernathy and others (1984) studied the heavy-metal
concentrations of surficial sediments in Fontana Lake. Samples from the mouths of the Eagle Creek
and Hazel Creek watersheds which host the Fontana and Hazel Creek mines contain elevated zinc
and copper concentrations relative to other parts of the lake. Lesure and others (1977) reported
geochemical data for stream sediments, soils, and forest litter (ash) from the Fontana and Hazel Creek
mine areas. Flohr and others (1995) identified a number of secondary minerals at Alum Cave, which
form from the evaporation of ground waters in the sheltered environment of Alum Cave. When
wetted by heavy rains, these secondary salt minerals readily dissolve and release acid and heavy
metals to the watershed. Similar salts have been identified along the Road To Nowhere. Southworth
(1995) mapped the distribution of pyritic rocks in the southern part of the park around the mines.
Schultz (1998) mapped the distribution of pyritic rocks and landslides in the Mount Le Conte
quadrangle. Flum and Nodvin (1995) and Nodvin and others (1995) investigated the effects of acidic
atmospheric deposition on the Great Smoky Mountains ecosystem. Numerous workers have
investigated acid drainage generated by road construction in the Anakeesta Formation (Huckbee and
others, 1975; Bacon and Maas, 1979; Mathews and Morgan, 1982; Kucken and others, 1994; Byerly,
1996; Schaeffer and Clawson, 1996).

GEOLOGICAL SETTING

The bedrock geology of the Great Smoky Mountains National Park is dominated by
metamorphosed sedimentary rocks of the Ocoee Supergroup, which is between 1 billion and 545
million years old (Fig. 1; King and others, 1964). From oldest to youngest, the supergroup consists of
the Elkmont Sandstone, the Thunderhead Sandstone, the Anakeesta Formation, the Copper Hill
Formation, and the Wehutty Formation (Southworth, 1995). Also, in the Cades Cove area are
exposures of the 475 million year old (Ordovician) Jonesboro Formation (Fig. 1). The rocks of the
park represent a number of fault blocks which are bound by faults that dip shallowly to the southeast
(Southworth, 1995).

From an acid-drainage perspective, some of the most important attributes of the rock units
are their acid-buffering (neutralization) and acid-generating capacities. These characteristics are best
assessed through the mineralogy and lithogeochemistry (rock chemistry) of the units. Limestone and
dolomite units such as the Jonesboro Formation have high acid-buffering potential, but because of
their limited geographic extent, they have little effect of the overall water quality of the park. Quartz-
rich units such as the Elkmont Sandstone and the Thunderhead Sandstone may be considered
generally inert, non-reactive units with respect to acid buffering and generation. However, it is
important to realize that on a local scale, these units may contain narrow horizons that may be acid
neutralizers or acid generators.

Shale units and the metamorphosed equivalents, such as the Anakeesta Formation and parts
of the Copper Hill and Wehutty formations, have extremely low acid-buffering capacity. Other
important aspects of the Anakeesta, Copper Hill, and Wehutty formations are that they contain trace
amounts of pyrite and pyrrhotite (iron-sulfide minerals) and metamorphosed organic matter, which
imparts a black color to the rocks. The weathering of pyrite from these rocks is a significant source of
acid. The ancient environment on the ocean floor where these sediments were deposited was anoxic
(oxygen-poor) which promoted the accumulation of organic matter and the formation of pyrite in the
sediments. This reducing environment is also conducive to enrichment of the sediments in heavy
metals such as copper, lead, zinc, and cadmium, among others. In turn, these may be reflected in the
modern ground and surface waters that weather these rocks. Copper-rich massive sulfide deposits
such as those at the Fontana and Hazel Creek mines and at Ducktown, TN to the southwest also form
in this type of environment. The Fontana and Hazel Creek mines are hosted by shaly portions of the
























were taken from included the small stream that flows by the mine downstream of the workings.
Only one site of surface water discharge was identified and was volumetrically insignificant. The
discharge came from the lowest portal at the mine.

Results

A general comparison of water quality among samples from the Fontana mine, the Hazel
Creek mine, streams nearby the mines, streams away from any known mineralization, and Fontana
Lake can be made by examining data presented in Table 1. Complete analyses of all water samples
are presented in Appendix 3. The waters within the mine workings generally show considerable
range in values. The most extreme values of pH and dissolved constituents are found in the
workings of the Fontana mine. The pH reached a minimum of 2.4. Dissolved sulfate ranged up to 11
g/L. Maximum values for iron (2.6 g/L), aluminum (0.14 g/L), copper (0.29 g/L), zinc (043 g/L),
and total base metals (copper + zinc + nickel + cobalt + cadmium + lead = 0.72 g /L) are all high (Figs.
6 to 8). The water quality within the workings of the Hazel Creek mine are less extreme than that of
the Fontana mine, but still well above regulatory standards. The lowest observed pH value was 3.7
from the Hazel Creek mine. The maximum dissolved concentrations from the Hazel Creek mine for
sulfate (150 mg/L), iron (7.8 mg/L), aluminum (3.3 mg /L), copper (16 mg/L), zinc (11 mg/L), and
total base metals (27.6 mg/L) range from 333 to 18 times more dilute than the maximum
concentrations from the Fontana mine (Figs. 6 to 8). Only the maximum concentration of lead is
higher from the Hazel Creek mine (0.62 mg/L) than that from the Fontana mine (0.38 mg/L). The
total solubility of lead may be controlled by the solubility of the lead-sulfate mineral, anglesite
(PbSO,), which has been identified in the gossan zone at the Hazel Creek mine. Thus, higher lead
concentrations would be expected in waters with lower sulfate concentrations. In this regard, the
sulfate concentration of the most dilute mine water in the Fontana mine (270 mg/L) is higher than the
sulfate concentration of the most concentrated mine water from the Hazel Creek mine (150 mg/L).
This is consistent with anglesite controlling lead concentrations. For both mines, alkalinities are low
(<0.1 mg/L CaCO,) and hardness values are variable (Table 1).

Surface-water effluent has only been identified at one place from each mine. In general, the
pH of the effluent (4.5 to 6.2) is higher than that of the mine waters. The concentrations of dissolved
sulfate (17 to 37 mg/L), aluminum (<6 to 1,400 ng/L), iron (14 to 270 pg/L) and total base metals (0.4
to 7.1 mg/L) are lower than the associated mine waters.

The water quality of streams which drain watersheds dominantly underlain by the
Anakeesta and Copper Hill formations away from any known mineral deposits is highly variable.
The pH values range from 4.0 to 7.0. The maximum concentrations of sulfate (10 mg/L), copper (2.2
ng/L), zinc (21.0 ug/L), and lead (0.32 pg/L) are considerably less than those for the mine waters.
The maximum concentrations of iron (6.2 mg/L) and aluminum (1.2 mg/L) are also lower, but the
disparity with mine waters is much less (Table 1). In general, the alkalinities of these streams are low
(<5.4 mg/L CaCQ,) which limits their acid-neutralizing capacity. In addition, the waters also are
very soft (hardness <10 mg/L CaCO,) which enhances the toxic effects of heavy metals on aquatic
life.

The water quality of streams near the mines, both upstream and downstream of the mine
workings, is variable. The pH ranges from 5.5 to 7.8. In general, the concentrations of dissolved
constituents are intermediate between those of the mine waters and those of the streams away from
known mining activity. The most notable exceptions to this generalization are that the maximum
concentration of iron and aluminum in the streams away from the mines (6,200 and 1,200 ug/L,
respectively) are higher than those for the streams near the mines (47 and 18 pug/L, respectively).
Presumably, this exception reflects areas of anomalous, natural “acid-rock drainage” within the
Anakeesta Formation away from the mine sites.

Fontana Lake, the ultimate destination of waters draining the mine areas, is near neutral in
pH (6.7 to 8.1). Like the streams in the park, it is characterized by low alkalinity (4.0 to 6.4 mg/L
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CaCO,) and low hardness (4.4 to 5.9 mg/L CaCO;). Sulfate (1.3 to 1.8 mg/L), aluminum (2.8 to 12.0
pg/L), iron (<0.05 pg/L), and total base metal (0.5 to 2.0 ug/L) concentrations are low. With regards
to surface water impacts on the lake from the mines, the composition of lake less than 3 m from the
mouth of the small stream that flows past the Fontana mine (sample FM-11-2) is indistinguishable
from samples from the center of the lake (FL-1) and the bottom of Fontana Dam (FL-2). This
observation suggests that surface-water impacts on the lake are minimal to non-existent because no
compositional gradient was observed.

Controls on Water Chemistry

The primary control on the concentration of dissolved constituents is provided by the solids
(rocks and minerals) that are sources of these elements. For example, aluminum occurs
mineralogically in silicate minerals that comprise the host rocks of the ore deposits. No significant
aluminum is found in the ore sulfide minerals. Therefore, for both the mine waters and the streams
away from the mines, aluminum is derived from the reaction of acid generated from the weathering
of pyrite, or from atmospheric deposition, with the aluminous silicate minerals in the host rocks, such
as feldspars, micas, and clays. Because of the single source of aluminum, the aluminous host rocks,
the concentration of aluminum in all water samples, regardless of whether they are mine waters or
streams, lie on a linear trend that is negatively correlated with pH (Fig. 6a). Likewise, iron is
dominantly derived from the weathering of iron-sulfide minerals such as pyrite and pyrrhotite,
although minor contributions may come from iron-silicate minerals such as biotite, amphibole, and
chlorite, or iron-oxide minerals such as magnetite or hematite. The concentration of iron in all
samples is negatively correlated with pH (Fig. 6b). The greater scatter observed at higher pH
compared to the data for aluminum probably reflects either minor contributions from iron-silicate
minerals and(or) the influence of oxidation and reduction reactions on the solubility of iron.

The base metals, zinc, copper, cobalt, nickel, cadmium, and lead, show a different behavior
(Fig. 7). The concentration of total base metals from both mine waters and streams away from the
mines show an inverse correlation with pH. However, for a given pH, the mine waters contain more
heavy metals than the streams draining pyritic country rocks away from the mines. The same
observations hold true for individual heavy metals, such as zinc and lead (Fig. 8). At the mines, the
mineralogical sources of heavy metals are dominated by ore-sulfide minerals. Copper, zinc, and lead
are the major metals in minerals such as chalcopyrite (CuFeS,), sphalerite (ZnS), and galena (PbS),
whereas cobalt, nickel, and cadmium occur as minor elements in the ore-sulfide minerals. In pyritic
country rocks such as the Anakeesta Schist, the heavy metals do not occur as discrete heavy-metal
minerals. Instead they occur as trace elements in pyrite, which itself is a trace mineral in these rocks,
and in rock-forming silicate minerals. Because of the mineralogical differences of the heavy-metal
hosts between the mines and the watersheds away from the mines, the reactivity of these minerals
and “geoavailability” of these elements is different as well. Ore minerals at the mines such as
pyrrhotite, chalcopyrite, sphalerite, and galena are very reactive. In contrast, pyrite is somewhat less
reactive, and rock-forming silicate minerals are fairly non-reactive in low-temperature acidic
solutions. Thus, this difference in mineralogical reactivity is probably a major control on the
differences in dissolved heavy-metal concentrations between these two geochemical settings.
Another important factor that may explain these differences is that the ores are significantly enriched
in heavy metals compared to the pyritic country rocks. However, it should be noted that the average
heavy-metal concentration of “black” shales such as the Anakeesta schist is over 400 mg/kg (Vine
and Tourtelot, 1970), which is approximately 10,000 times more concentrated than the most
concentrated water samples from watersheds away from the mines.

As noted above, the saturation of mine waters with respect to the lead-sulfate mineral
anglesite (PbSO,) and its precipitation appears to be an important control that limits the concentration
of lead in the mine waters. Sorption is another important process that can both limit the dissolved
concentrations of metal, and aid in the transport of heavy metals away from point sources. The
importance of sorption processes to the transport of heavy metals can be assessed qualitatively by
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comparing filtered and unfiltered splits of water samples. The filtered split (FA) represents the
“true” dissolved composition of the water. (Note that some fine colloids can pass through 0.22 and
0.45 um filters.) The unfiltered split (RA) represents a combination of both the dissolved composition
and the composition sorbed onto particulates suspended in the water. The most common inorganic
particulates include aluminous clay minerals weathered from the rock, and hydrous iron oxides and
amorphous silica precipitated from the waters. The importance of sorption processes can be assessed
by plotting the difference in concentration of a given element in the unfiltered and filtered splits
against the filtered concentration of the sample (Fig. 9). In Figure 9, positive “unfiltered - filtered”
values indicate samples where particulates are playing an important role. For aluminum and iron,
particulates, probably clay minerals and hydrous iron oxides, respectively, appear to be especially
important at low concentrations (Fig. 9a, c¢). Similarly for copper and zinc, sorption onto particulates
may be important at low concentrations (Fig. 9b, d). In contrast, sorption onto particulates appears to
be important for lead at high concentrations (Fig. 9f).

Comparison with Other Massive Sulfide Deposits

The mine waters of the abandoned Fontana and Hazel Creek mines are best described as
“intermediate” in composition when compared to the spectrum of waters associated with other
massive sulfide deposits. The two extremes of this spectrum are represented by the Iron Mountain
deposit in northern California and the Bald Mountain deposit in northern Maine (Figs. 6 to 8). Iron
Mountain is an U.S.E.P.A. Superfund site, from which world-record ultra-low pH values (less than -1)
and high total dissolved solids have been documented (Alpers et al., 1994). The extreme conditions at
Iron Mountain can be attributed the unique combination of its hydrologic and climatic setting. The
bulk of the deposit is located in the unsaturated zone. The area has a distinct wet and dry season and
a high mean annual temperature which promotes evaporative concentration of the mine waters.
None of these conditions are representative of the southern Appalachian mountains.

Bald Mountain in northern Maine, is the other end of the spectrum. It is a large massive
sulfide deposit that was discovered in the late 1970’s in an area that has had no historic mining
activity. Therefore, ground- and surface-water data from this area represent natural background
values. These data are extremely important for assessing the environmental impact of mining by
providing a pre-mining perspective on water chemistry. Although Bald Mountain is at a more
northerly latitude than the Great Smoky Mountains National Park, the seasonal variations of
precipitation should be somewhat analogous to those of the park.

The mine waters of the Fontana and Hazel Creek mines clearly fail to reach the extreme
conditions observed at Iron Mountain (Figs. 6 to 8) which would be expected from the differences in
the hydrologic and climatic settings. Compared to Bald Mountain (unpublished USGS data), the
Fontana and Hazel creek mine waters have lower pH values and higher concentrations in general
(Figs. 6 to 8). The most notable exception is the considerable overlap in iron values (Fig. 6b).
Interestingly, waters from the streams around the mines are virtually indistinguishable from the Bald
Mountain waters as are two of the three samples of mine effluent for most elements. Waters from
streams in the park away from the mines have pH values that are much lower than those at Bald
Mountain. However, dissolved metals from these streams are indistinguishable from Bald Mountain.

Environmental Impact

The environmental impact of the mine waters from the Fontana and Hazel Creek mines on
the surrounding ecosystem should be assessed relative to both modern and pre-mining conditions.
Modern conditions are evaluated in a straightforward fashion from available data. However, pre-
mining conditions are more problematic. Two approaches to determine this are used in the present
study. First, streams were sampled in the park away from areas of known mining activity. In the
park, this approach is especially important because the Anakeesta and Copper Hill formations are
known natural acid producers. Any attempt to remediate water conditions to arbitrary standards of
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lower acidity or lower metal concentrations than these waters would disturb the Great Smoky
Mountains ecosystem because the ecosystem has been adapting to these conditions for thousands or
millions of years.

Second, ground- and surface-water samples around the unmined Bald Mountain massive
sulfide deposit in northern Maine provide a reference for natural background conditions around an
example of this type of deposit under eastern climatic conditions. Data from Bald Mountain may
provide the most accurate perspective on the compositions of pre-mining ground and surface water.
The ground surrounding the Fontana and Hazel Creek deposits should have had elevated
concentrations of heavy metals which should have been reflected in the composition of pre-mining
surface waters draining these areas. Therefore, waters draining watersheds underlain by the
Anakeesta Formation away from the mines will probably provide an unrealistically low background
for mineralized areas. As with the watersheds underlain by the Anakeesta and Copper Hill
formations away from areas of known mining activity, the local ecosystem would have been adapting
to these water compositions. Thus, any attempt to alter the local water chemistry away from these
baseline conditions would also disturb the natural, pre-mining ecosystem.

With regards to the modern, local ecosystem, the mine waters are clearly elevated in terms of
acidity and dissolved constituents relative to the surrounding streams and Fontana Lake. There is
also considerable overlap in terms of pH with streams away from known areas of mining (Figs. 6 to
8). However, effluent has only been observed from one point at the Fontana mine and one point at
the Hazel Creek mine. The flow rates from both are small (<12 L/minute) compared to flow from the
small streams that flow past the Fontana (up to 300 L /minute) and Hazel Creek (as much as 200
L/minute) mines. For pH, the mine effluent overlaps the range defined by watersheds away from
the mines; the effluent is slightly more acidic than waters from Bald Mountain, Maine. For most
metals, the concentration of the effluent is slightly elevated relative to the concentration in
watersheds away from the mines. Two of the three samples of effluent are similar to the natural
waters around Bald Mountain.

Dilution of the effluent waters also appears to be an effective, naturally mitigating process.
In June 1997, effluent from the Fontana mine was near neutral (6.2) and was rapidly diluted
downstream to a pH of 6.7, which was indistinguishable from the lake (Fig. 4). Effluent from the
Hazel Creek mine was acidic (4.5), but was rapidly diluted to a near neutral value of 6.5 (Fig. 5).
Furthermore, as discussed above, the composition of Fontana Lake at the mouth of the small stream
that flows past the workings of the Fontana mine (FM-11-2) was indistinguishable from the
composition of the lake at the bottom of Fontana Dam (FL-2) in June 1997, which suggests that the
impact of the stream on the lake is minimal to non-existent.

The water quality of ground-water effluent from the mines is difficult to assess. The
underground workings of the Fontana mine reach well below the lake, but their greater density due
to their high concentration of dissolved solids would tend to make them sink relative to dilute
ground waters beneath the lake. Therefore, ground-water input to the lake from the mine workings
would qualitatively seem unlikely. In addition, the mine waters of the Fontana mine are near
saturation with respect to dissolved oxygen. Flow out of the mine workings through the surrounding
aquifer should rapidly reduce the oxidation state of the waters which would tend to strip metals from
the solution and naturally mitigate poor water quality.

It is also important to consider the environmental impact in terms of toxicity limits for fresh
water aquatic ecosystems. The toxicity of many heavy metals, such as copper, zinc, cadmium, and
lead, is increased in waters having low hardness values, such as the waters in the Great Smoky
Mountains National Park. For the present discussion, acute toxicity limits (Criterion Maximum
Concentrations, as defined by U.S.EP.A., 1996) were calculated for copper, zinc, cadmium, and lead,
assuming a hardness of 4.8 mg/L equivalent CaCO,, which is the average hardness for watersheds
away from areas of mining activity in the park. The toxicity of aluminum for brook trout is complex
and is related to both pH and dissolved calcium concentrations (Mount and others, 1988). Mount
and others (1988) found 25 % percent mortality of adult brook trout in low pH (4.42 to 5.60) waters
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with greater than 0.407 mg/L aluminum. All mine waters exceed these toxicity limits (Table 1; Figs.
6a, 8a, and 8b). For the mine effluent, the limits are exceeded for zinc and lead for all samples; for
aluminum, samples are both above and below the limit (Fig. 6a). The data from the streams away
from mining areas are significant because they show that many of the samples naturally exceed the
toxicity limits for aluminum (Fig. 6a) and zinc (Fig. 8a). In other words, parts of some of these
watersheds may stress higher-order aquatic life. It is important to note that the zinc toxicity limits are
generic for freshwater aquatic ecosystems and that individual species within the park may be more
tolerant to higher concentrations. All samples of Fontana Lake fall below the toxicity limits.

REMEDIATION OPTIONS

The selection of a remediation option must consider the potential impact on the environment,
not only of the existing problem, but also of the potential resulting effects of the remediation option.
Key considerations for the Fontana and Hazel Creek mines are that (1) surface-water effluent from
the mines has only been identified from one point at each mine; (2) the volume of the effluent from
each mine is roughly 5 % of the flow of the stream into which it drains; (3) natural dilution of the
effluent by these streams is relatively rapid such that elevated concentrations of heavy metals, sulfate,
and acidity were not identified in Fontana Lake near the mouth of the stream that flows past the
Fontana mine workings; (4) the composition of the mine effluent is similar to water in streams away
from areas of known mining activity; and (5) the composition of mine effluent is similar to natural
ground and surface waters around the unmined Bald Mountain massive sulfide deposit in northern
Maine.

Numerous remediation options are commonly considered for abandoned massive sulfide
mines. The most relevant ones to the Fontana and Hazel Creek mines include the addition of base
additives, utilization of covers and caps, and collection and treatment of contaminants. While no
specific recommendations are made for the abandoned mines in the park, a brief critique of each
option is provided as an aid for National Park Service decision makers. It should also be noted that
significant ground instability was noted around the mine sites, especially at the Hazel Creek mine,
during the sampling visits, which bears on the physical safety of park visitors. Although no
recommendations regarding this aspect of the mine sites are discussed, this issue should also be
addressed by decision makers. Remediation options for the mines include, but are not limited to:

1. Limestone neutralization of mine waters;
2. Resource recovery;

3. Ground water interception;

4. Air sealing;

5. Mine plugging;

6. Artificial wetland construction;

7. Combined alternatives; and

8. No Action.

Limestone neutralization of mine waters and resource recovery provide a means of
neutralizing acid and removing heavy metals. These options require the treatment of the waters
within the workings which do not appear to pose a current threat to the surrounding ecosystem. In
higher iron waters, such as those in the Fontana and Hazel Creek mines, limestone amendment
eventually can become coated by hydrous iron-oxides which will isolate it from reaction with the
mine waters and reduce its effectiveness. Resource recovery may not be cost effective and requires
maintenance in perpetuity.

Ground-water inception, air sealing, and mine plugging provide a means of limiting the
essential acid-mine drainage ingredients of water and oxygen. Ground-water interception is
impractical at the Fontana and Hazel Creek mines because of the significant depths of the mine
workings. Air sealing would also prove impractical because of the size of the mine workings. This
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option would also destroy bat habitats and the landscape. At present, surface water effluent flows
from a single point from each mine. Mine plugging could alter greatly the ground-water hydrology
of the area and produce multiple point sources at each mine rather than the single point source
present today at each mine which appears to have minimal effect on the ecosystem.

The construction of artificial wetlands provides a means of stripping heavy metals and
acidity from the contaminated waters. The establishment of wetlands would alter the natural ecology
of the mine areas. Furthermore, comparison of the mine effluent and adjacent streams with natural
ground and surface waters around the unmined Bald Mountain deposit in Maine suggests that the
modern waters around the mines may be quite similar in composition to their pre-mining natural
conditions. Combined alternatives are subject to the same inherent problems that affect the
individual methodologies.

The “no action” option clearly offers the greatest cost advantage, but may also represent the
scientifically soundest alternative because natural processes currently operating at the mines appear
to attenuate drainage problems to near “normal” background levels as defined by the data from
watersheds away from mining activity within the park, and from the area surrounding the
geologically similar, unmined Bald Mountain deposit in Maine. Thus, any attempt to “treat” the
effluent from the mines could result in adversely changing the water chemistry of the adjacent
streams away from their natural, pre-mining conditions and negatively impact the natural ecology.
Note that the physical safety of park visitors around the abandoned mine sites should be evaluated as
a separate issue independent of the environmental remediation options.
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APPENDIX 1: FIELD AND ANALYTICAL METHODS

Water samples were collected in one-liter high-density polyethylene bottles that were
doubly-rinsed with sample water prior to collection. Samples were divided into four splits for
chemical analysis: two for cation analysis, one for anion analysis, and one for alkalinity
determination. The cations splits included filtered and unfiltered aliquots. Samples were filtered
through 0.45 pm nitrocellulose filters (or 0.22 um filters as noted in Appendix 3). Cation splits were
made and stored at ambient temperature in acid-washed (10 % HCI) high-density polyethylene
bottles and preserved with 1 drop of ultra-pure nitric acid per each 10 ml of sample. Anion and
alkalinity splits were stored in high-density polyethylene bottles that were not acid-washed and were
kept on ice until time of analysis.

On-site measurements at the time of collection included air temperature, water temperature,
pH, specific conductance, dissolved oxygen, dissolved ferrous iron, dissolved total iron, dissolved
sulfate, dissolved nitrate, and water-flow rate. The pH was measured using an Orion 230A pH meter
with a 91-07probe, calibrated with pH = 4.00 and 7.00 buffer solutions. Specific conductance was
measured with an Orion 135 specific conductance meter. Dissolved oxygen concentrations were
determined with Chemetrix high-range ampoules. Dissolved total iron, ferrous iron, sulfate, and
nitrate concentrations were determined in the field using a Hach DR2000 spectrophotometer.
Alkalinity samples were analyzed by Gran titration with 0.18 N H,SO,.

Cations were analyzed at U.S. Geological Survey (Central Mineral Resources Team)
laboratories in Denver, CO, by inductively-coupled plasma mass spectrometry (ICP-MS) and (or)
inductively-coupled plasma atomic emission spectrometry (ICP-AES). ICP-MS was extremely useful
in this study because of its ability to determine as many as 70 elements directly in the sample with
detection limits in the sub-part-per-billion range and linear range of nine orders of magnitude or
more without the need for dilution. Calibration for this extensive elemental coverage is
accomplished by using a standard containing known concentration of some of the elements across the
elemental mass range to construct a response curve for the instrument. By using the response
derived curve, the degree of ionization, and the natural isotopic abundance, quantitative estimates of
concentration for all elements can be made in samples without the need of a calibration standard for
every element. The main limitations of the technique come from drift due to clogging of sampling
orifices, changes in ion transfer efficiencies due to sample matrix effects, plasma conditions,
nebulizer, or electronics, and isobaric interference from polyatomic or doubly charged ions. Internal
standards are used to correct for drift; interference is minimized by selection of isotope used for
determination or by mathematical correction. Anions were analyzed at U.S. Geological Survey
(Water Resources Division) laboratories in Ocala, FL by ion chromatography (chloride, and sulfate)
and by ion-selective electrode (fluoride).
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APPENDIX 2: DESCRIPTIONS OF SAMPLE SITES

ACT-1: 35° 38" 44.5”N; 83° 26" 35.1" W ; TN; drip water from rock face along Alum Cave Trail
approximately 100 m down hill from Alum Cave. Flow rate = 0.6 L /min.

ACT-2: 35° 38" 35.7”; 83° 26" 27.8”; TN; small flow crossing Alum Cave Trail at an elevation of
approximately 4600 feet. Flow rate = 6 L/min. Small channel with orange floc joins main
channel below the trail. Sample taken below confluence of two channels.

ACT-2b: 35° 38" 35.7”; 83° 26" 27.8”; TN; source pool, above trail on east side of debris flow, for small
channel with orange floc. Flow rate = 2.5 L/min.

ACT-3: TN; small flow along side of Alum Creek Trail, below Arch Rock and Huggins Hell Slide.
Flow rate = 18 L /min.

CCAC-1:35° 35.654' N, 83° 45.753' W; TN; Anthony Creek, at footbridge above confluence with
Maynard Creek; Cades Cove area.

FC-1: 35°28.648' N, 83° 45.960' W; NC; Eagle Creek at high-water line of Fontana Lake .

FC-2: 35°28.648' N, 83°45.960' W; NC; Eagle Creek just below inflow from adit (FM-9-2).

FC-3: 35°28.648' N, 83° 45.960' W; NC; Seep on East side of Eagle Creek near small waterfall; above
Fontana Lake and below Fontana Mine (same site as FM-9-2).

FC-4: 35°28.648' N, 83° 45.960' W; NC; Eagle Creek 70 m upstream from last fenced adit of Fontana
Mine.

FL-1: 35° 26.979' N, 83° 47.3' W; NC; middle of Fontana Lake.

FL-2: 35°26.788' N, 83° 48.360' W; TN, NC; Tennessee River below Fontana dam at campground; 421
m elevation.

FM-1-1: 35°28.648' N, 83° 45.960' W; NC; Eagle Creek near uppermost fenced entrance to Fontana
Mine; flow rate = 20 L/min (same site as FM-1-2).

FM-1-2: 35° 28.648' N, 83° 45.960' W; NC; Eagle Creek near uppermost fenced entrance to Fontana
Mine; flow rate = 300 L/min (same site as FM-1).

FM-2-1: 35° 28.648' N, 83° 45.960' W; NC; Water in main adit at base of wooden ladder inside
lowermost fenced entrance to Fontana Mine (same site as FM-2-2).

FM-2-2: 35° 28.648' N, 83° 45.960' W; NC; Water in main adit at base of wooden ladder inside
lowermost fenced entrance to Fontana Mine (same site as FM-2).

FM-3-1: 35° 28.648' N, 83° 45.960' W; NC; Eagle Creek at 120 m upstream from seep sample FM-4;
near lowermost opening to Fontana Mine.

FM-4-1: 35° 28.648' N, 83° 45.960' W; NC; Eagle Creek below seep 40 m upstream from high water
mark; floc in stream; Fontana Mine area; flow rate = 25 L/min.

FM-5-2: 35° 28.648' N, 83° 45.960' W; NC; Large pond at far end of Fontana Mine adit.

FM-6-2; 35° 28.648' N, 83° 45.960' W; NC; Water flowing down terrace on west wall of adit; near FM-
5-2.

FM-7-2: 35° 28.648' N, 83° 45.960' W; NC; Dark red pool under wooden bench along west wall of
Fontana Mine main adit.

FM-8-2: 35° 28.648' N, 83° 45.960' W; NC; Water dripping from stalactite in Fontana Mine adit.

FM-9-2: 35° 28.648' N, 83° 45.960' W; NC; Seep on East side of Eagle Creek near small waterfall; above
Fontana Lake and below Fontana Mine (same site as FC-3).

FM-10-2: 35° 28.648' N, 83° 45.960' W; NC; Eagle Creek, below site of sample FM-9-2.

FM-11-2: 35° 28.648’ N, 83° 45.960' W; NC; Fontana Lake; near shore with fallen leaves below surface;
a few feet East of outlet of Eagle Creek.

FM-12-2: 35° 28.688' N, 83° 46.134' W; NC; Ecoah Branch stream; East of Eagle Creek; green moss on
rocks; flow rate = 3500 L/min.

HCM-1-1: 35° 30.001' N, 83° 41.776' W; NC; Stagnant water in main adit of Hazel Creek Mine; 896 m
elevation (same site as HCM-1-2).

HCM-1-2: 35° 30.001' N, 83° 41.776' W; NC; Stagnant water in main adit of Hazel Creek Mine; 896 m
elevation (same site as HCM-1).

HCM-2-1: 35° 30.001' N, 83° 41.776' W; NC; Pool at adit having bat gate at Hazel Creek Mine;
decaying leaves and algae in pool (same site as SUG-1).

HCM-3-1: 35° 30.001' N, 83° 41.776' W; NC; Little Sugar Fork below mine waste at Hazel Creek Mine;
838 m elevation; flow rate = 200 L/min (same site as HCM-3-2; SCLF-1).
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HCM-3-2:35°30.001" N, 83° 41.776' W; NC; Little Sugar Fork below mine waste at Hazel Creek Mine;
838 m elevation (same site as HCM-3-1; SCLF-1).

HCM-4-2: 35° 30.001' N, 83° 41.776' W; NC; Shallow pool off main adit in Hazel Creek Mine tunnel;
red hardpan and floc on bed.

HCM-5-2: 35° 30.001' N, 83° 41.776' W; NC; Water above boards covering main mine shaft; Hazel
Creek Mine.

HCM-6-2: 35° 30.001' N, 83° 41.776' W; NC; Drip water from stalactite above main mine shaft; Hazel
Creek Mine.

HCM-7-2: 35° 30.001' N, 83° 41.776' W; NC; Adit water on east side of stream at stream level; Hazel
Creek Mine; flow rate = 12 L /min.

HHS-1-R1: 35° 38.335' N, 83° 26.285' W; TN; pool among boulders from flow seeping from Huggins
Hell Slide, approximately 30 m west of footbridge leading to the bottom of Arch Rock; flow
rate = 25 L/ min (same site as HHS-R1-2).

HHS-R1-2: 35° 38.335' N, 83° 26.285' W; TN; pool among boulders from flow seeping from Huggins
Hell Slide; approximately 30 m west of footbridge leading to the bottom of Arch Rock.

NPS 66: 35° 38.3' N, 83° 29.2' W TN; West Prong Little Pigeon River at footbridge near Chimneys
picnic area; 817 m elevation; Mount Le Conte Area.

NPS 72: 35°37.997' N, 83° 28.190' W; TN; Road Prong just above confluence of Road Prong and
Walker Camp Prong; below small falls; Mt. Le Conte area.

NPS 74: 35°37.753' N, 83° 27.028' W; TN; Walker Camp Prong at bridge on Alum Cave Trail.

NPS 75: 35°37.792' N, 83° 26.958' W; TN; Alum Creek at bridge on Alum Cave Trail; 50 m from NPS-
74; 1164 m elevation.

NPS-237: 35°37.488' N, 83° 25.017' W; TN; Walker Camp Prong bridge on U.S. 441; 1375 m elevation.

RTN-1: 35° 27.347' N, 83° 29.425' W; NC; drip water from roadcut in Wehutty Formation on the Road
to Nowhere; east of Noland Creek and west of Peach Tree Creek. Flow rate =1 L/min.

RTN-3: 35° 27.299' N, 83° 28.962' W; NC; Peachtree Creek north of the Road to Nowhere 0.4 miles
within the GSMNP boundary; 646 m elevation; rapid flow.

SCLF-1: 35° 30.001' N, 83° 41.776' W, NC; Little Fork of Sugar Fork of Hazel Creek, near bottom of
tailings pile.

SUG-1:35°30.001' N, 83° 41.776' W; NC; Pool at adit having bat gate at Hazel Creek Mine (same site
as HCM-2-1).

STYX-1:35°38.437' N, 83° 26.027' W; TN; Styx Creek at footbridge on Alum Cave Trail (same site as
STYX-1-R1; STYX-R1-2).

STYX-1-R1: 35° 38.437' N, 83° 26.027' W; TN; Styx Creek at footbridge on Alum Cave Trail; flow rate =
10,900 L/min (same site as STYX-1; STYX-R1-2).

STYX-R1-2: 35° 38.437' N, 83° 26.027' W; TN; Styx Creek at footbridge on Alum Cave Trail (same site
as STYX-1; STYX-1-R1).

STYX-2: Styx Creek 30 m downstream from confluence with Huggins Hell Slide chute, below Arch
Rock.
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