LEVEL II SCOUR ANALYSIS FOR BRIDGE 34 (JAMATH00080034) on TOWN HIGHWAY 8, crossing the WINHALL RIVER, JAMAICA, VERMONT

Open-File Report 98-539

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

U.S. Department of the Interior U.S. Geological Survey

LEVEL II SCOUR ANALYSIS FOR BRIDGE 34 (JAMATH00080034) on TOWN HIGHWAY 8, crossing the WINHALL RIVER, JAMAICA, VERMONT

By MICHAEL A. IVANOFF AND LAURA MEDALIE

U.S. Geological Survey Open-File Report 98-539

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY
Thomas J. Casadevall, Acting Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Branch of Information Services Open-File Reports Unit Box 25286 Denver, CO 80225-0286

CONTENTS

Conversion Factors, Abbreviations, and Vertical Datum	
Introduction and Summary of Results	
Level II summary	
Description of Bridge	
Description of the Geomorphic Setting	
Description of the Channel	
Hydrology	
Calculated Discharges	
Description of the Water-Surface Profile Model (WSPRO) Analysis	
Cross-Sections Used in WSPRO Analysis	
Data and Assumptions Used in WSPRO Model	
Bridge Hydraulics Summary	
Scour Analysis Summary	
Scour Results	
Riprap Sizing	
Selected References	
	10
Appendices:	
A. WSPRO input file	19
B. WSPRO output file	21
C. Bed-material particle-size distribution	28
D. Historical data form	
E. Level I data form.	
F. Scour computations	
r. Scoul computations	40
FIGURES	
1. Map showing location of study area on USGS 1:24,000 scale map	
2. Map showing location of study area on Vermont Agency of Transportation town	
highway map	
3. Structure JAMATH00080034 viewed from upstream (August 7, 1996)	
4. Downstream channel viewed from structure JAMATH00080034 (August 7, 1996)	
5. Upstream channel viewed from structure JAMATH00080034 (August 7, 1996)	<i>(</i>
6. Structure JAMATH00080034 viewed from downstream (August 7, 1996)	<i>6</i>
7. Water-surface profiles for the 100- and 500-year discharges at structure	
JAMATH00080034 on Town Highway 8, crossing the Winhall River,	
Jamaica, Vermont.	
8. Scour elevations for the 100- and 500-year discharges at structure	
JAMATH00080034 on Town Highway 8, crossing the Winhall River,	
Jamaica, Vermont.	16
TABLES	
1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
JAMATH00080034 on Town Highway 8, crossing the Winhall River,	
Jamaica, Vermont	17
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
JAMATH00080034 on Town Highway 8, crossing the Winhall River,	
Jamaica, Vermont	17

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
•	Volume	•
cubic foot (ft ³)	0.02832	cubic meter (m ³)
	Velocity and Flow	v
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m
cubic foot per second per square mile [(ft ³ /s)/mi ²]	0.01093	cubic meter per second per square kilometer [(m ³ /s)/km ²

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	Max	maximum
D_{50}	median diameter of bed material	MC	main channel
DS	downstream	RAB	right abutment
elev.	elevation	RABUT	face of right abutment
f/p	flood plain	RB	right bank
f/p ft ²	square feet	ROB	right overbank
ft/ft	feet per foot	RWW	right wingwall
FEMA	Federal Emergency Management Agency	TH	town highway
FHWA	Federal Highway Administration	UB	under bridge
JCT	junction	US	upstream
LAB	left abutment	USGS	United States Geological Survey
LABUT	face of left abutment	VTAOT	Vermont Agency of Transportation
LB	left bank	WSPRO	water-surface profile model
LOB	left overbank	yr	year

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 34 (JAMATH00080034) ON TOWN HIGHWAY 8, CROSSING THE WINHALL RIVER, JAMAICA, VERMONT

By Michael A. Ivanoff and Laura Medalie

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure JAMATH00080034 on Town Highway 8 crossing the Winhall River, Jamaica, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D.

The site is in the Green Mountain section of the New England physiographic province in southern Vermont. The 45.1-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, along the right bank, the surface cover is pasture while the immediate banks have dense woody vegetation and along the left bank the surface cover is forest.

In the study area, the Winhall River has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 109 ft and an average bank height of 4 ft. The channel bed material ranges from gravel to boulder with a median grain size (D_{50}) of 105 mm (0.346 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 7, 1996, indicated that the reach was laterally unstable with moderate to heavy fluvial erosion upstream.

The Town Highway 8 crossing of the Winhall River is a 74-ft-long, one-lane bridge consisting of one 70-foot steel-beam span (Vermont Agency of Transportation, written communication, April 6, 1995). The opening length of the structure parallel to the bridge face is 65.5 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed zero degrees to the opening and the opening-skew-to-roadway is also zero degrees.

A scour hole 2 ft deeper than the mean thalweg depth was observed in the channel under the bridge during the Level I assessment. The scour protection measures at the site included type-2 stone fill (less than 36 inches diameter) along the upstream left and right wingwalls, the upstream end of the right abutment, the upstream right bank, and the downstream left bank; type-3 stone fill (less than 48 inches diameter) along the downstream left wingwall and upstream left bank; and type-4 stone fill (less than 60 inches diameter) along the left abutment. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E.

Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 0.3 to 0.6 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge. Abutment scour ranged from 8.6 to 16.5 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

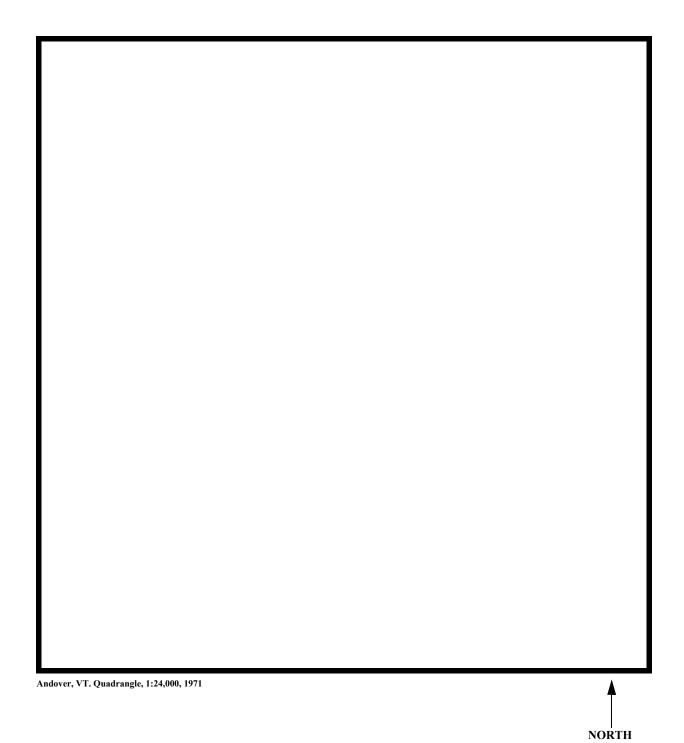
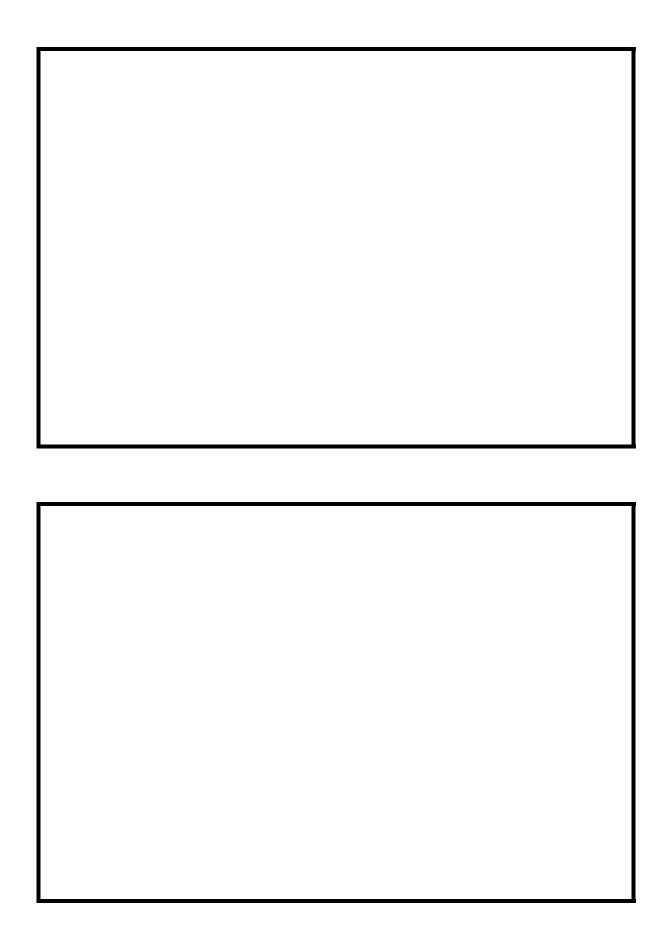



Figure 1. Location of study area on USGS 1:24,000 scale map.

LEVEL II SUMMARY

Alignment of bridge V Abutment type Stone fill on abutment	ft Bridge wing to road (on curve or service) Yes Type-2, along the right abutment. Type-2 m left wingwall.	Embankment type Date of inspection the upstream left and right was, along the entire base of the Abutments and wingwalls a	Sloping /7/96 /ringwalls and at the e left abutment. Type-3,
Alignment of bridge V Abutment type Stone fill on abutment upstream end of the standard along the downstream	ft Bridge wing to road (on curve or service) Yes Type-2, along the right abutment. Type-2 m left wingwall.	traight) Embankment type Embankment type Nate of inspection the upstream left and right was along the entire base of the Abutments and wingwalls a	Sloping /7/96 /ringwalls and at the e left abutment. Type-3,
Alignment of bridge V Abutment type Stone fill on abutment upstream end of the standard along the downstream	Yes Type-2, along tright abutment. Type-4 m left wingwall.	Curve Embankment type Date of inspection the upstream left and right was, along the entire base of the Abutments and wingwalls a	Sloping /7/96 /ringwalls and at the e left abutment. Type-3,
Abutment type Stone fill on abutment upstream end of the along the downstream	Yes Yes Type-2, along to right abutment. Type-4 m left wingwall.	Embankment type Date of inspection the upstream left and right was, along the entire base of the Abutments and wingwalls a	/7/96 ringwalls and at the e left abutment. Type-3,
upstream end of the along the downstream	Type-2, along to Type-4 abutment. Type-4 m left wingwall.	he upstream left and right was along the entire base of the Abutments and wingwalls a	e left abutment. Type-3,
along the downstrear	m left wingwall.	Abutments and wingwalls a	
			re concrete. There is a two
Is bridge skewed to j	flood flow according t	o Yes survey?	No 0 Angle
There is a moderate of	channel bend in the up	stream reach.,	,,
	n on bridge at time of Date of inspection 8/7/96	Level I or Level II site visit Percent of channel bloc ked nortzontal ly	t: Percent of Alama blocked verticativ
Level I	8/7/96	0	0
Level II	Moderate.		
Potential for de	ebris		
None were observed	d on 8/7/96.		

Description of the Geomorphic Setting

General topoş	graphy	The ch	nannel is locate	d within a	moderate relief vall	ley.
Geomorphic	condition	ons at brid	dge site: downs	stream (DS), upstream (US)	
Date of insp	ection	8/7/96				
DS left:	Steep	valley wal	1			
DS right:	Moder	ately slop	ed channel ban	k to a narro	ow flood plain	
US left:	Steep v	alley wal	1			
US right:	Moder	ately slop	ed channel ban	k to a narro	ow flood plain	
			Description	of the Ch	annel	
		109)			4
Average to	•		Gravel / Cob	bles	Average depth	Sand/Gravel
Predominan	t bed ma	ıterial			Bank material	Sinuous but stable
with semi-all	uvial cha	annel bour	ndaries and a n	arrow flood	d plain.	
						8/7/96
Vegetative co	Trees a	and brush			•	
DS left:	Trees	and brush	on the immedi	ate bank w	ith short grass on th	ne flood plain
DS right:	Trees	and brush				
US left:	Trees a	and brush	on the immedi	ate bank wi	th short grass on th	ne flood plain
US right:		_]	No			
Do banks ap	pear sta	ble? Ther	e is moderate t	<u>o heavy fl</u> u	vial erosion upstrea	am with light fluyial
erosion dov	wnstrean Ervation.	1. There a	re extensively o	damaged cı	ıt-banks upstream a	and downstream.
None wer	e observo	ed on 8/7/	96.			
Describe an	y obstruc	ctions in c	channel and da	ute of obser	vation.	

Hydrology

Percentage of drainage area in physiographic provinces: (approximate) Physiographic province/section New England/Green Mountain Is drainage area considered rural or urban? None Is there a USGS gage on the stream of interest? USGS gage description USGS gage number Gage drainage area Is there a lake/p The 100- and 500-year discharges are based on a drainage area telationship. [(45.1/30.5)exp 0.67] with flood frequency estimates available from the VTAOT database (written communication, May 1995) for bridge number 40 on Jamaica. Bridge number 40 crosses the Winhall River upstream of this site and has a drainage area of 30.5 square miles. These area adjusted values are within a range defined by flood frequency curves derived from several empirical methods (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1975, Pack Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1975, Pack Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1975, Pack Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1975, Pack Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1975, Pack Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1975, Pack Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1975, Pack Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1975, Pack Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1975, Pack Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1975, Pack Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1975, Pack Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1975, Pack Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1975, Pack Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1975, Pack Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1975, Pack Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1975, Pack Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1975, Pack Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter, 1975, Pac	Drainage area $\frac{45.1}{}$ mi ²	
Is drainage area considered rural or urban? None USGS gage on the stream of interest? USGS gage description USGS gage number Gage drainage area Is there a lake/p The 100- and 500-year discharges are based on a drainage area relationship [(45.1/30.5)exp 0.67] with flood frequency estimates available from the VTAOT database (written communication, May 1995) for bridge number 40 crosses the Winhall River upstream of this site and has a drainage area of 30.5 square miles. These area adjusted values are within a range defined by flood frequency curves derived from several empirical methods (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter,	Percentage of drainage area in physiographic p	provinces: (approximate)
Is there a USGS gage on the stream of interest? USGS gage description USGS gage number Gage drainage area Is there a lake/p Is there a lake/p The 100- and 500-year discharges are based on a drainage area relationship. [(45.1/30.5)exp 0.67] with flood frequency estimates available from the VTAOT database (written communication, May 1995) for bridge number 40 in Jamaica. Bridge number 40 crosses the Winhall River upstream of this site and has a drainage area of 30.5 square miles. These area adjusted values are within a range defined by flood frequency curves derived from several empirical methods (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter,		
USGS gage description USGS gage number Gage drainage area mi ² No Is there a lake/p 14,100 Q100 Q100	None	Rural Describe any significant
USGS gage number Gage drainage area mi² No Is there a lake/p 14,100 Calculated Discharges 21,000 Q100 ft³/s The 100- and 500-year discharges are based on a drainage area relationship. [(45.1/30.5)exp 0.67] with flood frequency estimates available from the VTAOT database (written communication, May 1995) for bridge number 40 in Jamaica. Bridge number 40 crosses the Winhall River upstream of this site and has a drainage area of 30.5 square miles. These area adjusted values are within a range defined by flood frequency curves derived from several empirical methods (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter,	Is there a USGS gage on the stream of interest.	
Gage drainage area mi² No Is there a lake/p Calculated Discharges 21,000 Q100 ft³/s Q500 ft³/s The 100- and 500-year discharges are based on a drainage area relationship [(45.1/30.5)exp 0.67] with flood frequency estimates available from the VTAOT database (written communication, May 1995) for bridge number 40 in Jamaica. Bridge number 40 crosses the Winhall River upstream of this site and has a drainage area of 30.5 square miles. These area adjusted values are within a range defined by flood frequency curves derived from several empirical methods (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter,	USGS gage description	
Is there a lake/p _ Calculated Discharges 21,000 Q100 ft³/s Q500 ft³/s The 100- and 500-year discharges are based on a drainage area relationship [(45.1/30.5)exp 0.67] with flood frequency estimates available from the VTAOT database (written communication, May 1995) for bridge number 40 in Jamaica. Bridge number 40 crosses the Winhall River upstream of this site and has a drainage area of 30.5 square miles. These area adjusted values are within a range defined by flood frequency curves derived from several empirical methods (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter,	USGS gage number	
Is there a lake/p	Gage drainage area	mi^2
Q100 ft ³ /s Q500 ft ³ /s The 100- and 500-year discharges are based on a drainage area relationship.[(45.1/30.5)exp 0.67] with flood frequency estimates available from the VTAOT database (written communication, May 1995) for bridge number 40 in Jamaica. Bridge number 40 crosses the Winhall River upstream of this site and has a drainage area of 30.5 square miles. These area adjusted values are within a range defined by flood frequency curves derived from several empirical methods (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter,		
The 100- and 500-year discharges are based on a drainage area relationship [(45.1/30.5)exp 0.67] with flood frequency estimates available from the VTAOT database (written communication, May 1995) for bridge number 40 in Jamaica. Bridge number 40 crosses the Winhall River upstream of this site and has a drainage area of 30.5 square miles. These area adjusted values are within a range defined by flood frequency curves derived from several empirical methods (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter,	14,100_	21,000
drainage area relationship. [(45.1/30.5)exp 0.67] with flood frequency estimates available from the VTAOT database (written communication, May 1995) for bridge number 40 in Jamaica. Bridge number 40 crosses the Winhall River upstream of this site and has a drainage area of 30.5 square miles. These area adjusted values are within a range defined by flood frequency curves derived from several empirical methods (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter,		~ J
number 40 crosses the Winhall River upstream of this site and has a drainage area of 30.5 square miles. These area adjusted values are within a range defined by flood frequency curves derived from several empirical methods (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter,	drainage area relationship.[(45.1/30.5)exp 0.67] w	ith flood frequency estimates available from the
miles. These area adjusted values are within a range defined by flood frequency curves derived from several empirical methods (Benson, 1962; Johnson and Tasker, 1974; FHWA, 1983; Potter,		<u> </u>
•	•	
1057- 8h. T-ll-+ 1007) Fl	from several empirical methods (Benson, 1962; Jo	hnson and Tasker, 1974; FHWA, 1983; Potter,
1957a&b Talbot, 1887). Each curve was extended graphically to the 500-year event.	1957a&b Talbot, 1887). Each curve was extended	graphically to the 500-year event.

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT)	plans) USGS survey					
Datum tie between USGS survey and VTAOT plans	None. Add 562 ft to the USGS					
arbitrary survey datum to obtain the National Geodetic Vertic	cal Datum of 1929.					
Description of reference marks used to determine USGS dat	tum. RM1 is a chiseled X on					
top of the downstream end of the right abutment (elev. 498.00 ft, arbitrary survey datum). RM2						
is a chiseled X on top of the downstream end of the downstream arbitrary survey datum).	eam left wingwall (elev. 493.92 ft,					

Cross-Sections Used in WSPRO Analysis

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXITX	-74	1	Exit section
FULLV	0	2	Downstream Full-valley section (Templated from EXITX)
BRIDG	0	1	Bridge section
RDWAY	9	1	Road Grade section
APPRO	83	2	Modelled Approach section (Templated from APTEM)
APTEM	96	1	Approach section as surveyed (Used as a template)

For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.050 to 0.065, and the overbank "n" value was 0.035.

Normal depth at the exit section (EXITX) was assumed as the starting water surface. This depth was computed by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990). The slope used was 0.0158 ft/ft, which was estimated from the topographic map (U.S. Geological Survey, 1971).

The surveyed approach section (APTEM) was moved along the approach channel slope (0.032 ft/ft) to establish the modelled approach section (APPRO), one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This location provides a consistent method for determining scour variables.

Bridge Hydraulics Summary

500.5 Average bridge embankment elevation 497.6 Average low steel elevation 14,100 100-year discharge 497.7 Water-surface elevation in bridge opening Discharge over road Road overtopping? 635 Area of flow in bridge opening 11.3 Average velocity in bridge opening ft/s 14.6 Maximum WSPRO tube velocity at bridge ft/s 500.9 Water-surface elevation at Approach section with bridge 498.2 Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge 2.7 *t* 21,000 ft³/s 500-year discharge 498.0 Water-surface elevation in bridge opening Road overtopping? Discharge over road 638 Area of flow in bridge opening 11.5 Average velocity in bridge opening ft/s 13.7 **/**s Maximum WSPRO tube velocity at bridge 502.5 Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge 3.0 **t** Amount of backwater caused by bridge 4,740 ft³/s Incipient overtopping discharge Water-surface elevation in bridge opening 493.4 368 Area of flow in bridge opening 12.9 Average velocity in bridge opening ft/s 17.2 Maximum WSPRO tube velocity at bridge 497.0 Water-surface elevation at Approach section with bridge 495.0 Water-surface elevation at Approach section without bridge

2.0

Amount of backwater caused by bridge

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analyses for the 100- and 500-year discharges are presented in tables 1 and 2 and the scour depths are shown graphically in figure 8.

Contraction scour for the incipient roadway-overtopping discharge was computed by use of the Laursen clear-water contraction scour equation (Richardson and Davis, 1995, p. 32, equation 20). At this site, the 100- and 500-year discharges resulted in submerged orifice flow. Contraction scour at bridges with orifice flow is best estimated by use of the Chang pressure-flow scour equation (oral communication, J. Sterling Jones, October 4, 1996). Thus, contraction scour for these discharges was computed by use of the Chang equation (Richardson and Davis, 1995, p. 145-146). The streambed armoring depths computed suggest that armoring will not limit the depth of contraction scour.

For comparison, contraction scour for the discharges resulting in orifice flow also was computed by use of the Laursen clear-water contraction scour equation and the Umbrell pressure-flow equation (Richardson and Davis, 1995, p. 144). Results from these computations are presented in appendix F.

Abutment scour for the left abutment was computed by use of the Froehlich equation (Richardson and Davis, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour at the right abutment was computed by use of the HIRE equation (Richardson and Davis, 1995, p. 49, equation 29) because the HIRE equation is recommended when the length to depth ratio of the embankment blocking flow exceeds 25. The variables used by the HIRE abutment-scour equation are defined the same as those defined for the Froehlich abutment-scour equation.

Scour Results

Contraction scour:	100-year discharge (S	500-year discharge cour depths in feet)	Incipient overtopping discharge
Main channel	,~	eem mepma m jees	
Live-bed scour			
Clear-water scour	0.3	0.3	0.6
Depth to armoring	5.3	6.2	22.9
Left overbank			
Right overbank			
Local scour:			
Abutment scour	15.4	16.5	11.0
Left abutment	12.0-	12.8-	8.6-
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			
	Riprap Sizing	ı	
	100-year discharge	500-year discharge (D ₅₀ in feet)	Incipient overtopping discharge
Abutments:	2.5	2.5	2.4
	2.5	2.5	2.4
Left abutment			
Right abutment			
Piers:			
Pier 1			
Pier 2			

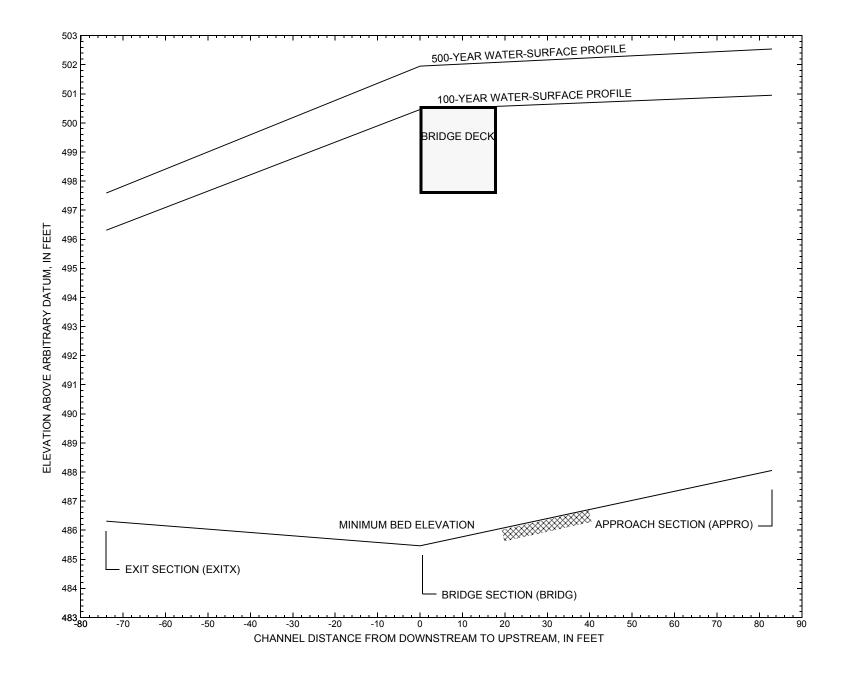


Figure 7. Water-surface profiles for the 100- and 500-year discharges at structure JAMATH00080034 on Town Highway 8, crossing the Winhall River, Jamaica, Vermont.

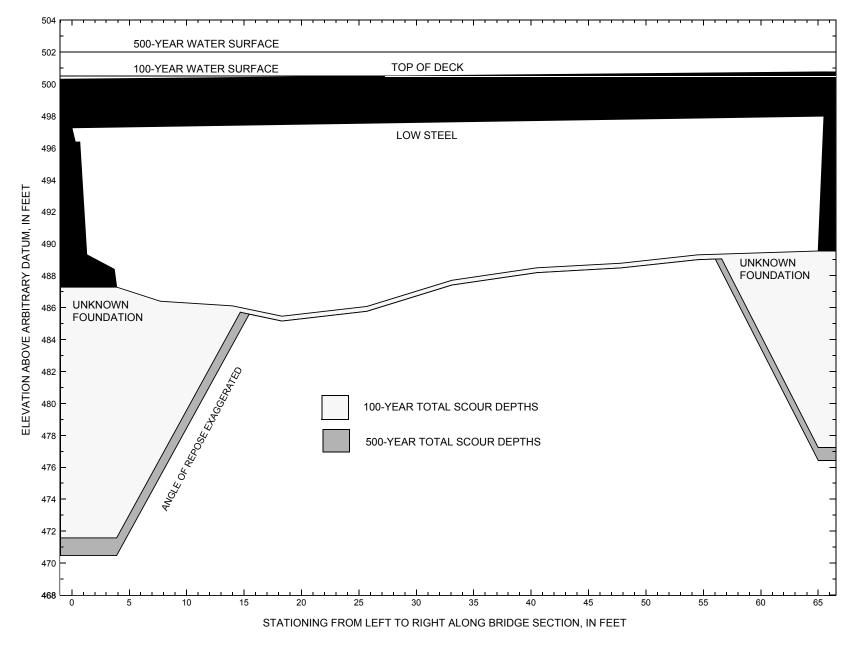


Figure 8. Scour elevations for the 100- and 500-year discharges at structure JAMATH00080034 on Town Highway 8, crossing the Winhall River, Jamaica, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure JAMATH00080034 on Town Highway 8, crossing the Winhall River, Jamaica, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing/pile elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
	100-year discharge is 14,100 cubic-feet per second										
Left abutment	0.0		497.3		487.3	0.3	15.4		15.7	471.6	
Right abutment	65.5		498.0		489.5	0.3	12.0		12.3	477.2	

^{1.} Measured along the face of the most constricting side of the bridge.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure JAMATH00080034 on Town Highway 8, crossing the Winhall River, Jamaica, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing/pile elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
	500-year discharge is 21,000 cubic-feet per second										
Left abutment	0.0		497.3		487.3	0.3	16.5		16.8	470.5	
Right abutment	65.5		498.0		489.5	0.3	12.8		13.1	476.4	

^{1.}Measured along the face of the most constricting side of the bridge.

^{2.} Arbitrary datum for this study.

^{2.} Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M. A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Emergency Management Agency, 1988, Flood Insurance Study, Town of Jamaica, Windsor County, Vermont: Washington, D.C., May 17, 1988.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158.
- Federal Highway Administration, 1993, Stream Stability and Scour at Highway Bridges: Participant Workbook: Federal Highway Administration Report FHWA-HI-91-011.
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.
- Johnson, C.G. and Tasker, G.D.,1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Geological Survey, 1971, Andover, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

```
Т1
         U.S. Geological Survey WSPRO Input File jama034.wsp
T2
          Hydraulic analysis for structure JAMATH00080034 Date: 03-MAR-98
Т3
          Bridge 34 on Town Highway 8 over the Winhall River Jamaica, VT by MAI
*
          6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
J3
*
0
          14100.0 21000.0
                             4740 0
           0.0158
                   0.0158
                            0.0158
SK
*
XS
     EXITX
            -74
           -100.4, 518.19
                             -84.7, 501.69
                                             -48.1, 496.89
GR
GR
             0.0, 492.04
                             24.9, 487.84
                                              35.6, 486.31
                                                               45.6, 486.78
GR
            61.4, 486.95
                             69.6, 487.15
                                              80.2, 487.58
                                                               84.3, 489.67
                                             159.1, 492.47
GR
            93.1, 489.54
                           113.3, 491.39
                                                              330.5, 497.32
GR
            383.9, 502.45
Ν
            0.065 0.035
                  113.3
SA
*
XS
     FULLV
               0 * * *
                          0.0000
*
*
              SRD
                             XSSKEW
                    LSEL
BR
     BRIDG
              0
                   497.62
                              0.0
GR
              0.0, 497.26
                                               0.3, 496.37
                                                                0.7, 496.37
GR
              1.3, 489.31
                              3.7, 488.40
                                               3.9, 487.28
                                                                3.9, 487.87
GR
             7.7, 486.40
                             14.0, 486.11
                                              18.3, 485.46
                                                               25.7, 486.07
GR
                             40.5, 488.49
                                              47.8, 488.78
                                                               54.5, 489.30
             33.1, 487.71
                                               0.0, 497.26
GR
            65.0, 489.54
                             65.5, 497.99
*
*
          BRTYPE BRWDTH
                           EMBSS
                                  EMBELV
                                             WWANGL
CD
                   17.9
                             2.2
                                    500.5
                                              70.9
Ν
            0.050
*
             SRD
                    EMBWID
                             TPAVE
XR
     RDWAY
             9
                      14.0
GR
            -98.2, 512.24
                             -82.7, 504.26
                                             -54.5, 500.68
GR
             0.0, 500.31
                             65.2, 500.76
                                              74.2, 500.71
                                                              113.4, 496.58
GR
            292.4, 496.39
                            356.8, 502.45
*
            -67.9, 499.89
                            211.0, 494.96
*
TX
     APTEM
               96
            -23.5, 504.44
                            -11.2, 495.42
                                               0.0, 489.27
                                                                5.1, 488.47
GR
GR
            10.0, 489.08
                             17.0, 490.01
                                              23.6, 489.44
                                                               31.1, 488.86
GR
            38.3, 488.56
                             44.0, 488.73
                                              50.0, 489.24
                                                                58.3, 489.15
                             82.5, 491.61
GR
            66.8, 489.71
                                              83.3, 494.23
                                                               92.1, 496.07
GR
            306.6, 495.54
                            384.8, 502.40
                                             390.0, 505.00
*
AS
    APPRO
              83 * * * 0.032
GТ
Ν
            0.065
                    0.035
SA
                    92.1
HP 1 BRIDG
            497.74 1 497.74
HP 2 BRIDG
            497.74 * * 7170
HP 2 RDWAY
            500.46 * * 7012
HP 1 APPRO
            500.95 1 500.95
HP 2 APPRO
            500.95 * * 14100
HP 1 BRIDG
            497.99 1 497.99
HP 2 BRIDG
            497.99 * * 7334
HP 2 RDWAY
            501.95 * * 13415
HP 1 APPRO
            502.54 1 502.54
HP 2 APPRO
            502.54 * * 21000
```

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

U.S. Geological Survey WSPRO Input File jama034.wsp Hydraulic analysis for structure JAMATH00080034 Date: 03-MAR-98 Bridge 34 on Town Highway 8 over the Winhall River Jamaica, VT by MAI *** RUN DATE & TIME: 03-26-98 10:06 CROSS-SECTION PROPERTIES: ISEQ = 3; SECID = BRIDG; SRD = AREA K TOPW WETP ALPH 635. 55730. 22. 126. REW QCR WSEL SA# AREA LEW 19184. 55730. 22. 126. 1.00 0. 635. 65. 19184. VELOCITY DISTRIBUTION: ISEQ = 3; SECID = BRIDG; SRD = LEW REW AREA K Q VEL 0.0 65.5 635.1 55730. 7170. 11.29 497.74 X STA. 8.7 11.4 14.0 16.5 29.1 29.8 29.0 28.6 12.31 12.03 12.35 12.52 0.0 75.4 A(I) V(I) 4.76 X STA. 18.9 21.4 23.9 26.4 29.1 29.0 29.1 30.2 29.5 12.38 12.33 11.86 12.14 31.9 28.9 A(I) V(I) 12.39 X STA. 35.0 38.5 42.1 45.1 30.3 33.2 33.9 27.2 2 11.83 10.80 10.57 13.17 14 31.9 25.3 A(T) V(T) 11.83 14.16 9 50.7 53.6 56.6 59.6 24.6 24.8 25.1 25.3 46.7 14.55 14.47 14.26 14.18 7.68 X STA. 47.9 A(T) V(T) VELOCITY DISTRIBUTION: ISEQ = 4; SECID = RDWAY; SRD = K WSEL LEW REW AREA K Q VEL 500.46 -22.1 335.7 874.3 81522. 7012. 8.02 VEL 97.4 39.0 39.4 38.6 38.5 3.60 9.00 8.89 9.08 9.11 X STA. A(I) 159.0 168.9 178.6 188.6 198.2 X STA. 38.8 38.2 39.5 38.4 37.3 9.03 9.18 8.88 9.14 9.40 A(I) V(I) 207.6 216.8 226.3 235.8 245.2 X STA. 36.7 38.0 37.9 37.7 38.6 9.55 9.23 9.24 9.29 9.09 A(T) V(I) 264.1 273.3 282.7 291.9 37.4 37.4 38.0 37.5 90.1 9.38 9.39 9.22 9.36 3.89 X STA. A(I) V(I) CROSS-SECTION PROPERTIES: ISEQ = 5; SECID = APPRO; SRD = 83. AREA K TOPW WETP ALPH LEW REW QCR 1172. 124481. 111. 117. 21562. 1386. 170961. 281. 281. 17475. 2558. 295442. 392. 399. 1.02 -19. 373. 36767. WSEL SA# 500 95 VELOCITY DISTRIBUTION: ISEQ = 5; SECID = APPRO; SRD = 83. WSEL LEW REW AREA K Q VEL 500.95 -19.3 373.0 2558.0 295442. 14100. 5.51 0.3 6.1 16.4 27.1 36.7 202.3 124.2 125.3 120.3 123.2 3.48 5.68 5.62 5.86 5.72 X STA. A(I) V(I) 46.4 56.6 67.4 80.3 104.3 125.5 124.5 128.8 139.9 148.0 113.4 5.66 5.47 5.04 4.76 6.22 X STA. A(I) V(I) 125.5 146.3 167.0 187.3 207.0 226.8 112.1 113.2 111.6 109.7 110.9 6.29 6.23 6.32 6.43 6.36 X STA. A(I) V(I) 226.8 246.1 265.2 283.8 302.4 373.0 X STA. 109.2 108.9 106.6 108.1 217.7 6.46 6.47 6.61 6.52 3.24 A(I) V(I)

U.S. Geological Survey WSPRO Input File jama034.wsp Hydraulic analysis for structure JAMATH00080034 Date: 03-MAR-98 Bridge 34 on Town Highway 8 over the Winhall River Jamaica, VT by MAI *** RUN DATE & TIME: 03-26-98 10:06 CROSS-SECTION PROPERTIES: ISEQ = 3; SECID = BRIDG; SRD = K TOPW WETP ALPH 50263. 0. 148. 50263. 0. 148. 1.00 WSEL SA# AREA LEW REW OCR 638. 638. 0. VELOCITY DISTRIBUTION: ISEQ = 3; SECID = BRIDG; SRD = 0. LEW REW AREA K Q VEL 0.0 65.5 637.9 50263. 7334. 11.50 497.99 X STA. 7.4 10.0 12.4 14.9 61.3 27.6 27.2 27.7 26.8 5.98 13.27 13.48 13.26 13.68 0.0 A(I) V(I) X STA. 19.4 21.7 24.0 26.4 26.8 27.1 27.8 27.6 13.69 13.55 13.18 13.28 17.2 26.8 A(I) V(I) 13.67 31.5 27.7 28.9 13.24 12.71 .5 34.4 37.5 28.9 29.9 30.3 12.71 12.27 12.09 30.3 X STA. 28.9 30.5 A(T) V(T) 13.24 12.04 . 47.5 50.9 54.7 58.4 31.0 30.7 32.3 31.5 58.5 11.84 11.94 11.34 11.66 6.27 X STA. 44.1 A(T) V(T) 11.84 VELOCITY DISTRIBUTION: ISEQ = 4; SECID = RDWAY; SRD = K REW AREA WSEL LEW 501.95 -64.5 351.5 1460.9 149063. 13415. 9.18 -64.5 103.0 119.5 130.0 140.6 268.3 82.9 56.5 57.3 57.1 2.50 8.09 11.87 11.70 11.75 X STA. A(I) 2 161.8 172.4 183.1 193.6 57.6 57.5 58.2 57.4 54.0 11.65 11.67 11.53 11.69 12.42 X STA. A(I) 203.5 213.3 223.6 233.8 X STA. 53.3 56.8 55.9 55.5 56.7 12.59 11.80 12.01 12.08 11.82 A(T)
 2
 264.4
 274.4
 284.5
 294.8

 56.5
 55.2
 56.1
 57.2
 151.0

 11.87
 12.16
 11.95
 11.72
 4.44
 X STA. 351.5 A(I) V(I) CROSS-SECTION PROPERTIES: ISEQ = 5; SECID = APPRO; SRD = 83. A# AREA K TOPW WETP ALPH LEW REW QCR 1 1351. 155374. 114. 120. 26427. 2 1846. 267296. 294. 294. 26255. 3196. 422670. 407. 414. 1.04 -21. 386. 49901. WSEL SA# 502 54 VELOCITY DISTRIBUTION: ISEQ = 5; SECID = APPRO; SRD = 83. LEW REW AREA K Q VEL -21.5 385.9 3196.5 422670. 21000. 6.57 502.54 .5 7.3 19.6 31.6 42.6 261.4 165.7 162.9 157.2 165.8 4.02 6.34 6.44 6.68 6.33 X STA. A(I) V(I) 54.5 66.7 81.3 104.9 124.9 144.2 167.0 179.8 179.0 138.7 135.4 6.29 5.84 5.87 7.57 7.76 X STA. A(I) V(I) 144.2 163.3 182.4 201.0 219.5 237.8 134.2 135.1 132.9 133.0 132.0 7.82 7.77 7.90 7.89 7.95 X STA. A(I) X STA. A(I) V(I)

U.S. Geological Survey WSPRO Input File jama034.wsp
Hydraulic analysis for structure JAMATH00080034 Date: 03-MAR-98
Bridge 34 on Town Highway 8 over the Winhall River Jamaica, VT by MAI
*** RUN DATE & TIME: 03-26-98 10:06
CROSS-SECTION PROPERTIES: ISEQ = 3; SECID = BRIDG; SRD = 0.

WSEL	SA#	AREA	K	TOPW	WETP	ALPH	LEW	REW	QCR
	1	368.	31877.	64.	74.				4989.
493.45		368.	31877.	64.	74.	1.00	1.	65.	4989.

VELOCITY	DISTRIBUTION:	TSEO =	3 .	SECID = BRIDG	. SRD =	0

		WSEL	LEW	REW	ARE	ΞA	K	Q	VEL	
		493.45	0.9	65.2	367.	. 6	31877.	4740.	12.89	
Х	STA.		0.9	7.7		9.7		11.8	13.9	15.9
	A(I)		36.6	1	L4.8		15.0	14.8	15	. 3
	V(I)		6.48	15	5.98		15.76	16.05	15.5	51
Х	STA.		15.9	17.8		19.7		21.6	23.6	25.5
	A(I)		14.5	1	L4.8		15.0	15.2	14	. 4
	V(I)		16.30	15	5.99		15.85	15.56	16.4	10
Х	STA.		25.5	27.4		29.7		32.3	35.3	38.6
	A(I)		13.8	1	L5.6		16.2	17.0	17	. 5
	V(I)		17.19	15	5.23		14.61	13.94	13.5	56
Х	STA.		38.6	42.4		46.2		50.5	55.6	65.2
	A(I)		18.7	1	L8.7		19.9	21.6	38	. 2
	V(I)		12.65	12	2.67		11.93	10.98	6.2	21

CROSS-SECTION PROPERTIES: ISEQ = 5; SECID = APPRO; SRD = 83.

WSEL	SA#	AREA	K	TOPW	WETP	ALPH	LEW	REW	QCR
	1	739.	60071.	106.	111.				11076.
	2	359.	20193.	236.	236.				2510.
496.97		1098.	80264.	342.	346.	1.07	-14.	328.	10775.

VELOCITY DISTRIBUTION: ISEQ = 5; SECID = APPRO; SRD = 83.

		WSEL	L	EW	REW	AF	REA	I	K	Q	VEL		
		496.97	-13	. 9	327.6	1097	7.6	80264	. 4	740.	4.32		
Х	STA.	-	-13.9		2.5		7.4		12.7		18.7		24.5
	A(I)			80.2		42.8		43.9		45.1		45.4	
	V(I)			2.95		5.54		5.40		5.25		5.22	
Х	STA.		24.5		29.9		34.8		39.8		44.6		49.8
	A(I)			43.9		42.8		43.1		42.4		43.5	
	V(I)			5.40		5.54		5.50		5.58		5.45	
Х	STA.		49.8		55.0		60.2		65.8		72.1		79.9
	A(I)			42.5		42.6		44.6		46.5		50.8	
	V(I)			5.58		5.56		5.31		5.10		4.66	
Х	STA.		79.9		148.4		196.6		237.7		276.6		327.6
	A(I)		1	16.9		72.9		66.8		67.2		73.6	
	V(I)			2.03		3.25		3.55		3.53		3.22	

U.S. Geological Survey WSPRO Input File jama034.wsp Hydraulic analysis for structure JAMATH00080034 Date: 03-MAR-98 Bridge 34 on Town Highway 8 over the Winhall River Jamaica, VT by MAI *** RUN DATE & TIME: 03-26-98 10:06

XSID: CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL	

EXITX:XS ***** -42. 1437. 1.50 ***** 497.81 495.72 14100. 496.31 -74. ***** 295. 112099. 1.00 **** ****** 0.84 9.82

===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS.

"FULLV" KRATIO = 1.56

FULLV:FV 74. -55. 1962. 0.81 0.75 498.56 ****** 14100. 497.74 0. 74. 335. 175314. 1.01 0.00 0.00 0.57 7.19

<<<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>

===255 ATTEMPTING FLOW CLASS 3 (6) SOLUTION.

WS3N.LSEL = 497.74 497.62

<><<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

BRIDG:BR 74. 0. 635. 1.98 ***** 499.73 495.04 7170. 497.74 0. ***** 65. 55620. 1.00 ***** ******* 0.64 11.29

TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB 4. **** 6. 0.800 0.000 497.62 ***** ***** ******

XSID:CODE SRD FLEN HF VHD EGL ERR Q WSEL RDWAY:RG 9. 69. 0.16 0.48 501.27 0.01 7012. 500.46

 Q
 WLEN
 LEW
 REW
 DMAX
 DAVG
 VMAX
 VAVG
 HAVG
 CAVG

 LT:
 102.
 44.
 -22.
 22.
 0.1
 0.1
 4.0
 31.3
 0.9
 2.8

 RT:
 6910.
 259.
 77.
 336.
 4.1
 3.4
 9.6
 7.9
 4.2
 3.1

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEI SRD FLEN REW K ALPH HO ERR FR# VEL

APPRO:AS 65. -19. 2558. 0.48 0.60 501.43 497.68 14100. 500.95 83. 87. 373. 295486. 1.02 0.00 0.01 0.38 5.51

FIRST USER DEFINED TABLE.

Q XSID: CODE SRD LEW REW K AREA VEL WSEL 295. 14100. 112099. EXITX:XS -74. -42. 1437. 9.82 496.31 335. 14100. 175314. FULLV:FV 0. -55. 1962. 7.19 497.74 0. 0. 65. 7170. 55620. 635. 11.29 497.74 9.****** 102. 7012. 0.******* 2.00 500.46 83. -19. 373. 14100. 295486. 2558. 5.51 500.95 BRIDG:BR RDWAY:RG APPRO: AS

SECOND USER DEFINED TABLE.

U.S. Geological Survey WSPRO Input File jama034.wsp Hydraulic analysis for structure JAMATH00080034 Date: 03-MAR-98 Bridge 34 on Town Highway 8 over the Winhall River Jamaica, VT by MAI *** RUN DATE & TIME: 03-26-98 10:06

XSID: CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL	

EXITX:XS ***** -53. 1902. 1.91 ***** 499.50 497.11 21000. 497.59 -74. ***** 333. 166971. 1.01 **** ******* 0.88 11.04

===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS. "FULLV" KRATIO = 1.55

APPRO:AS 83. -17. 2019. 1.69 0.70 501.23 ****** 21000. 499.54 83. 83. 357. 203157. 1.00 0.28 0.00 0.79 10.40

<><<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>

===255 ATTEMPTING FLOW CLASS 3 (6) SOLUTION.

WS3N.LSEL = 499.13 497.62

<><<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

BRIDG:BR 74. 0. 638. 2.06 **** 500.05 495.14 7334. 497.99 0. ***** 66. 50263. 1.00 **** ***** 0.65 11.50

TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB 4. **** 6. 0.800 0.000 497.62 ***** ***** ******

XSID:CODE SRD FLEN HF VHD EGL ERR Q WSEL RDWAY:RG 9. 69. 0.17 0.70 503.06 -0.01 13415. 501.95

 Q
 WLEN
 LEW
 REW
 DMAX
 DAVG
 VMAX
 VAVG
 HAVG
 CAVG

 LT:
 1094.
 93.
 -65.
 29.
 1.6
 1.4
 7.0
 8.4
 2.5
 2.9

 RT:
 12321.
 323.
 29.
 352.
 5.6
 4.1
 10.9
 9.3
 5.2
 3.2

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSE.
SRD FLEN REW K ALPH HO ERR FR# VEL

APPRO:AS 65. -21. 3196. 0.70 0.90 503.23 498.72 21000. 502.54 83. 93. 386. 422547. 1.04 0.00 -0.01 0.42 6.57

FIRST USER DEFINED TABLE.

Q XSID: CODE SRD LEW REW K AREA VEL 333. 21000. 166971. EXITX:XS -74. -53. 1902. 11.04 497.59 FULLV:FV 0. -65. 349. 21000. 258294. 2519. 8.34 499.13 638. BRIDG:BR 7334. 11.50 497.99 0. 66. 50263. 0. 9.****** 1094. 13415.************** 2.00 501.95 83. -21. 386. 21000. 422547. 3196. 6.57 502.54 RDWAY:RG APPRO: AS

SECOND USER DEFINED TABLE.

U.S. Geological Survey WSPRO Input File jama034.wsp
Hydraulic analysis for structure JAMATH00080034 Date: 03-MAR-98
Bridge 34 on Town Highway 8 over the Winhall River Jamaica, VT by MAI
 *** RUN DATE & TIME: 03-26-98 10:06

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

EXITX:XS ***** -13. 638. 0.88 **** 494.24 492.59 4740. 493.36 -74. ***** 191. 37697. 1.03 **** ****** 0.75 7.43

===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS. "FULLV" KRATIO = 1.60

FULLV:FV 74. -25. 910. 0.43 0.73 494.97 ****** 4740. 494.54 0. 74. 232. 60332. 1.01 0.00 -0.01 0.49 5.21

<>>>> ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>

===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS.
"APPRO" KRATIO = 0.60

===215 FLOW CLASS 1 SOLUTION INDICATES POSSIBLE ROAD OVERFLOW.

WS1,WSSD,WS3,RGMIN = 496.96 0.00 493.46 496.39

===260 ATTEMPTING FLOW CLASS 4 SOLUTION.

===240 NO DISCHARGE BALANCE IN 15 ITERATIONS.

WS,QBO,QRD = 496.77 4740. 0.

===280 REJECTED FLOW CLASS 4 SOLUTION.

===245 ATTEMPTING FLOW CLASS 2 (5) SOLUTION.

===250 INSUFFICIENT HEAD FOR PRESSURE FLOW.

YU/Z,WSIU,WS = 1.05 498.13 498.27

===270 REJECTED FLOW CLASS 2 (5) SOLUTION.

<><<<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

BRIDG:BR 74. 1. 368. 2.67 1.38 496.12 493.27 4740. 493.45 0. 74. 65. 31892. 1.03 0.49 0.00 0.97 12.89

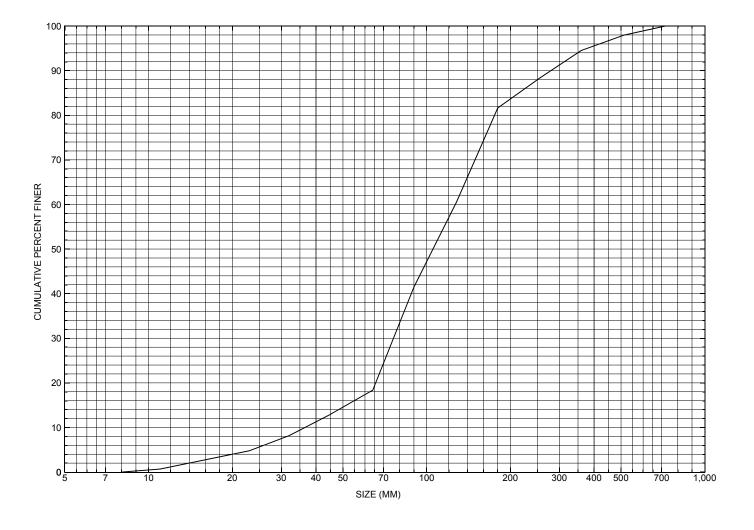
TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB 4. **** 1. 0.984 ****** 497.62 ****** ****** ******

XSID:CODE SRD FLEN HF VHD EGL ERR Q WSEL RDWAY:RG 9. <-<<<EMBANKMENT IS NOT OVERTOPPED>>>>

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

APPRO:AS 65. -14. 1099. 0.31 0.60 497.28 493.60 4740. 496.97 83. 68. 328. 80383. 1.07 0.57 0.01 0.44 4.31

M(G) M(K) KQ XLKQ XRKQ OTEL 0.356 0.405 47588. 11. 75. 496.73


FIRST USER DEFINED TABLE.

XSID: CODE SRD T.EW REW 0 K AREA VEL WSEL EXITX:XS -74. -13. 191. 4740. 37697. 638. 7.43 493.36 4740. FIII.I.V · FV 0. -25. 232. 60332. 910. 5.21 494.54 BRIDG:BR 0. 1. 65. 4740. 31892. 368. 12.89 493.45 9.****** 0. RDWAY:RG 0. 0. 2.00****** 1099. 4.31 496.97 APPRO:AS 83. -14. 328. 4740. 80383. 4.31 496.97

XSID:CODE XLKQ XRKQ KQ APPRO:AS 11. 75. 47588.

SECOND USER DEFINED TABLE.

APPENDIX C: BED-MATERIAL PARTICLE-SIZE DISTRIBUTION

Appendix C. Bed material particle-size distribution for a pebble count in the channel approach of structure JAMATH00080034, in Jamaica, Vermont.

APPENDIX D: HISTORICAL DATA FORM

Structure Number JAMATH00080034

General Location Descriptive						
Data collected by (First Initial, Full last name) M. Ivanoff						
Date (MM/DD/YY) <u>04</u> / <u>06</u> / <u>95</u>						
Highway District Number (I - 2; nn) 02	County (FIPS county code; I - 3; nnn)025					
Town (FIPS place code; I - 4; nnnnn) 36175	Mile marker (I - 11; nnn.nnn) <u>000000</u>					
Waterway (1 - 6) Winhall Brook	Road Name (I - 7):					
Route Number TH08	Vicinity (1 - 9) At the jct. of TH 8 & TH 4.					
Topographic Map Londonderry	Hydrologic Unit Code: 01080107					
Latitude (I - 16; nnnn.n) 43094	Longitude (i - 17; nnnnn.n) 72496					

Select Federal Inventory Codes

FHWA Structure Number (1 - 8) 10130900341309	<u> </u>
Maintenance responsibility (I - 21; nn)03	Maximum span length (I - 48; nnnn) 0070
Year built (I - 27; YYYY) 1939	Structure length (I - 49; nnnnnn) <u>000074</u>
Average daily traffic, ADT (I - 29; nnnnnn) 000050	Deck Width (I - 52; nn.n) 140
Year of ADT (1 - 30; YY)91	Channel & Protection (I - 61; n) 7
Opening skew to Roadway (I - 34; nn)00	Waterway adequacy (I - 71; n) 7
Operational status (I - 41; X) A	Underwater Inspection Frequency (I - 92B; XYY) N
Structure type (1 - 43; nnn) <u>302</u>	Year Reconstructed (I - 106)
Approach span structure type (I - 44; nnn)000	Clear span (nnn.n ft)
Number of spans (I - 45; nnn) 001	Vertical clearance from streambed (nnn.n ft) 10.0
Number of approach spans (I - 46; nnnn) 0000 Comments:	Waterway of full opening (nnn.n ft²)

The structural inspection report of 09/15/93 indicates the structure is a steel beam type bridge with a timber deck. The right abutment has some minor stains along the bottom. The left abutment has a new concrete facing along the lower portion of wall, and along both wingwalls. This new concrete doesn't have any cracking. There is stone fill around the left abutment. The waterway takes a slight turn through the structure. It has had previous scour problems along the left abutment which have been corrected. The streambed material consists of stone and boulders.

	Brid	ge Hydro	ologic Da	ata		
Is there hydrologic data availabl	e? <u>N</u> if	No, type ctrl	-nh VTA	OT Draina	age area (m	าi²): <u>-</u>
Terrain character:						
Stream character & type: _						
Streambed material:						
Discharge Data (cfs): Q _{2.33}						
Record flood date (MM / DD / YY):						
Estimated Discharge (cfs): lce conditions (Heavy, Moderate, Li						
The stage increases to maximum						
The stream response is (<i>Flashy, I</i>	•		•	voi rapiary j.		
Describe any significant site cor	- , ,			m that ma	y influence	the stream's
stage: -	•				,	
Watershed storage area (in perce	<i>'</i> ——					
The watershed storage area is:		ainly at the h e site)	eadwaters; 2	?- uniformly (distributed; 3	-immediatly upstream
Water Surface Elevation Estima	tes for Exi	sting Struc	ture:			
Peak discharge frequency	Q _{2.33}	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀	
	-2.33	-	25	-50	- 100	
Water surface elevation (ft))						
Velocity (ft / sec)	-	-	-	-	-	
		1	1			I
Long term stream bed changes:	-					
Is the roadway overtopped below	w the Q ₁₀₀	? (Yes, No,	Unknown):	<u>U</u>	Frequenc	cy: <u>-</u>
Relief Elevation (#):	Discha	arge over r	oadway at	$Q_{100} (ft^3/s)$	sec):	_
Are there other structures nearb	y? (Yes, No	o, Unknown)	: <u>U</u> If No	o or Unknow	n, type ctrl-n	os
Upstream distance (miles):		Town:			_ Year Bui	lt:
Highway No. :	Structu	ıre No. : <u>-</u>	Stru	ucture Typ	e: <u>-</u>	
Clear span (ft): Clear He	eight (#):	· F	ull Waterw	ay (ft²): <u>-</u>	,	

Downstream distance (miles): Town:	Year Ruilt [.]
Highway No. : - Structure No. : - Structure Type:	
Clear span (#): Clear Height (#): Full Waterway (#²):	
Comments:	4
-	
USGS Watershed Data	
USGS Watershed Data	
Watershed Hydrographic Data	
Drainage area (DA) $\frac{45.07}{1.1}$ mi ² Lake/pond/swamp area $\frac{0.51}{1.1}$	<u>l</u> mi ²
Watershed storage (ST) 1.1 %	
Bridge site elevation 1043 ft Headwater elevation 3281	ft
Main channel length mi	2.422
10% channel length elevation <u>1161</u> ft 85% channel length el	levation <u>2402</u> ft
Main channel slope (S)110.84 ft / mi	
Watershed Precipitation Data	4
Average site precipitation in Average headwater precipita	ation in
Maximum 2yr-24hr precipitation event (124,2) in	
Average seasonal snowfall (Sn) ft	
· /	

Bridge Plan Data
Are plans available? N If no, type ctrl-n pl Date issued for construction (MM / YYYY): / Project Number Minimum channel bed elevation: Low superstructure elevation: USLAB DSLAB USRAB DSRAB Benchmark location description: NO BENCHMARK INFORMATION
Reference Point (MSL, Arbitrary, Other): Datum (NAD27, NAD83, Other): Foundation Type: (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown) If 1: Footing Thickness Footing bottom elevation: If 2: Pile Type: (1-Wood; 2-Steel or metal; 3-Concrete) Approximate pile driven length: If 3: Footing bottom elevation: Is boring information available? If no, type ctrl-n bi
Comments: NO PLANS

Cross-sectional Data

Is cross-sectional data available? Yes If no, type ctrl-n xs

Source (FEMA, VTAOT, Other)? FEMA

Comments: The station and elevation measurements are in feet.

Station	170	184	200	202	224	238	-	-	-	-	-
Feature	LAB	-	-	-	-	RAB	-	-	-	-	-
Low chord elevation	1060	1060	1060	1060	1060	1060	-	-	1	1	-
Bed elevation	1047.6	1048.1	1048.2	1048.9	1049.9	1052.8	ı	ı	ı	ı	-
Low chord to bed	12.4	11.9	11.8	11.1	10.1	7.2	ı	ı	ı	ı	-
Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	1	1	-	-	1	1	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low chord to bed	-	-	-	-	-	-	-	-	-	-	-

Source (FEMA, VTAOT, Other)? ____

Comments: -

Station Feature Low chord elevation Bed elevation Low chord to bed Station Feature Low chord elevation Bed elevation Low chord to bed

APPENDIX E:

LEVEL I DATA FORM

U. S. Geological Survey Bridge Field Data Collection and Processing Form

Structure Number JAMATH00080034

Qa/Qc Check by: EW Date: 10/3/96

Computerized by: EW Date: 10/4/96

MAI_ Date: 4/14/98 Reviewd by:

A.	General	Location	Descri	ptive
----	---------	----------	--------	-------

Data collected by (First Initial, Full last name) $ {f I} $	Ĺ.	Medalie	Date	(MM/DD/YY)	08	1	07	/ 19	96
---	----	---------	------	------------	----	---	-----------	------	----

Road Name -

Hydrologic Unit Code: 01080107

2. Highway District Number 02

Mile marker 000000 County Windham (025) Town Jamaica (36175)

Waterway (I - 6) Winhall Brook Route Number TH08

3. Descriptive comments:

This site is located at the junction with TH 4.

B. Bridge Deck Observations

- 4. Surface cover... LBUS 6 RBDS 4 RBUS 4 LBDS 6 (2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland)
- 5. Ambient water surface... US 1 UB 1 DS 1 (1- pool; 2- riffle)
- 6. Bridge structure type 1 (1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other)
- 7. Bridge length 74 ____ (feet)

Span length 70 (feet) Bridge width 14 (feet)

Road approach to bridge:

8. LB 2 RB 1 (0 even, 1- lower, 2- higher)

9. LB 2 RB 2 (1- Paved, 2- Not paved)

10. Embankment slope (run / rise in feet / foot): US right 1.7:1 2.6:1 US left

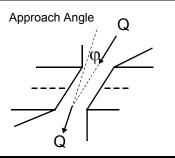
	Pr	otection	40 [14 Coverity		
	11.Type	12.Cond.	13.Erosion	14.Severity		
LBUS		-	0	-		
RBUS	_0	_	2	1		
RBDS	_0		2	2		
LBDS	_0		0	-		

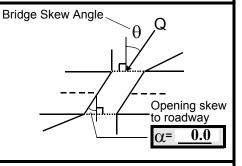
Bank protection types: **0**- none; **1**- < 12 inches; **2-** < 36 inches; **3-** < 48 inches;

4- < 60 inches; **5**- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped;

3- eroded; 4- failed


Erosion: 0 - none: 1- channel erosion: 2road wash; 3- both; 4- other


Erosion Severity: **0** - none: **1**- slight: **2**- moderate:

3- severe

Channel approach to bridge (BF):

16. Bridge skew: 0 15. Angle of approach: 0

17. Channel impact zone 1:

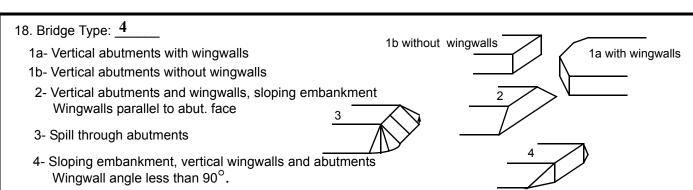
Exist? \mathbf{Y} (Y or N)

Where? LB (LB, RB)

Severity 2

Range? 325 feet US (US, UB, DS) to 75 feet US

Channel impact zone 2:


Exist? \mathbf{Y} (Y or N)

Where? RB (LB, RB)

Severity 2

Range? 280 feet DS (US, UB, DS) to 400 feet DS

Impact Severity: 0- none to very slight; 1- Slight; 2- Moderate; 3- Severe

- 19. Bridge Deck Comments (surface cover variations, measured bridge and span lengths, bridge type variations, approach overflow width, etc.)
- 4: Along the right bank, upstream and downstream, the surface cover is mostly lawn.
- 5: The stream is pooled from 35 ft upstream to the upstream bridge face.
- 7: The measured bridge dimensions are bridge length is 72.6 ft; span length is 65.3 ft; and bridge width is 14.1 ft.
- 14: The right bank road wash erosion is moderately severe. The road approach to the bridge is built up on fill and steep slopes exists on either side of it.

C. Upstream Channel Assessment

2	1. Bank heig	ght (BF)	22. Bank	angle (BF)	26. % Veg	. cover (BF)	27. Bank n	naterial (BF)	28. Bank e	erosion (BF)
20. SRD	LB	RB	LB	RB	LB	RB	LB	RB	LB	RB
82.5	6.0			4.5	4	3	435	342	2	3
23. Bank w	vidth 30.0)	24. Cha	nnel width	25.0	25. Thal	weg depth	103.5	9. Bed Mate	rial <u>45</u>
30 Bankin	rotection tvi	ne.	LB 3	RB 2		31. Bank pr	otection con	dition: LB 1	RB	1

SRD - Section ref. dist. to US face % Vegetation (Veg) cover: 1- 0 to 25%; 2- 26 to 50%; 3- 51 to 75%; 4- 76 to 100%

Bed and bank Material: **0**- organics; **1**- silt / clay, < 1/16mm; **2**- sand, 1/16 - 2mm; **3**- gravel, 2 - 64mm;

4- cobble, 64 - 256mm; 5- boulder, > 256mm; 6- bedrock; 7- manmade

Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting

Bank protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

- 32. Comments (bank material variation, minor inflows, protection extent, etc.):
- #27: The right bank protection extends from the bridge face to 48 ft upstream. The left bank protection extends from the bridge face to 51 ft upstream.

33. Point/Side bar present? Y (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 40 35. Mid-bar width: 38
36. Point bar extent: 60 feet DS (US, UB) to 110 feet DS (US, UB, DS) positioned 45 %LB to 90 %RB
37. Material: <u>435</u>
38. Point or side bar comments (Circle Point) or Side; Note additional bars, material variation, status, etc.):
A larger point bar exists along the right bank at the sharp bend from 260 ft upstream to at least 500 ft upstream. It consists mostly of cobbles.
apstream. It consists mostly of cobbles.
39. Is a cut-bank present? Y (Y or if N type ctrl-n cb) 40. Where? LB (LB or RB)
41. Mid-bank distance: 296 42. Cut bank extent: 325 feet US (US, UB) to 60 feet US (US, UB, DS)
43. Bank damage: 3 (1- eroded and/or creep; 2- slip failure; 3- block failure)
44. Cut bank comments (eg. additional cut banks, protection condition, etc.):
45. Is channel scour present? Y (Y or if N type ctrl-n cs) 46. Mid-scour distance: 168
47. Scour dimensions: Length $\underline{2}$ Width $\underline{2}$ Depth : $\underline{1}$ Position $\underline{0}$ %LB to $\underline{10}$ %RB
47. Scour dimensions: Length 2 Width 2 Depth: 1 Position 9 %LB to 10 %RB 48. Scour comments (eg. additional scour areas, local scouring process, etc.):
At 256 ft upstream, there are many local areas of scour around boulders. The area is 15 ft in length, 2 ft wide
and 1 ft deep.
40 Are there major confluences? No (Varifallana atria ma) 50 Hamman 2 -
49. Are there major confluences? N (Y or if N type ctrl-n mc) 50. How many? - (4. normalists 2. arthurnary)
51. Confluence 1: Distance 52. Enters on (LB or RB) 53. Type (1- perennial; 2- ephemeral)
Confluence 2: Distance Enters on (LB or RB) Type (1- perennial; 2- ephemeral) 54. Confluence comments (eg. confluence name):
NO MAJOR CONFLUENCES
D. Under Bridge Channel Assessment
55. Channel restraint (BF)? LB 2 (1- natural bank; 2- abutment; 3- artificial levee)
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF)
LB RB LB RB LB RB
82.5 2 7
58. Bank width (BF) - 59. Channel width - 60. Thalweg depth 90.0 63. Bed Material -
Bed and bank Material: 0 - organics; 1 - silt / clay, < 1/16mm; 2 - sand, 1/16 - 2mm; 3 - gravel, 2 - 64mm; 4 - cobble, 64 - 256mm;
5- boulder, > 256mm; 6- bedrock; 7- manmade
Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting
64. Comments (bank material variation, minor inflows, protection extent, etc.): 43
43

65. Debris and Ice Is there debris accumulation? ____ (Y or N) 66. Where? N ___ (1- Upstream; 2- At bridge; 3- Both)

67. Debris Potential ____ (1- Low; 2- Moderate; 3- High)

68. Capture Efficiency 2____ (1- Low; 2- Moderate; 3- High)

69. Is there evidence of ice build-up? $\underline{2}$ (Y or N)

Ice Blockage Potential Y (1- Low; 2- Moderate; 3- High)

70. Debris and Ice Comments:

2

68: The island and wide point bar in front of the upstream bridge face can block movement of debris and ice.

69: There is significant scrapping of the roots exposed on the right bank cut-bank, 320 ft downstream, that suggests ice damage.

<u>Abutments</u>	71. Attack ∠(BF)	72. Slope ∠ (Qmax)	73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76.Exposure depth	77. Material	78. Length
LABUT		0	90	2	2	-	1	90.0
RABUT	1	0	90	1	1	2	1	65.5

Pushed: LB or RB

Toe Location (Loc.): 0- even, 1- set back, 2- protrudes

Scour cond.: 0- not evident; 1- evident (comment); 2- footing exposed; 3-undermined footing; 4- piling exposed; 5- settled; 6- failed

Materials: **1-** Concrete; **2-** Stone masonry or drywall; **3-** steel or metal; **4-** wood

79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.):

-1

74: The RABUT has areas of spalling along the bottom, up to 4 inches of concrete has eroded from the face of the abutment.

76: The LABUT footing is exposed with some stone fill on it; the maximum exposure depth along the footing is 1 ft.

80. Wingwalls:

	Exist?	Material?	Scour Condition?	Scour depth?	Exposure depth?	Angle?	Length?
USLWW:						65.5	
USRWW:	\mathbf{Y}		1		2	2.5	
DSLWW:			0.5		<u>Y</u>	18.0	_
DSRWW:	1		1			18.0	

USRWW Wingwall length

Q
Wingwall angle
DSRWW DSLWW

Wingwall materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

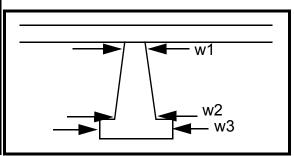
82. Bank / Bridge Protection:

Location	USLWW	USRWW	LABUT	RABUT	LB	RB	DSLWW	DSRWW
Туре	-	0	N	-	1	1	1	1
Condition	Y	-	-	-	1	1	1	2
Extent	1	-	-	2	2	4	2	-

Bank / Bridge protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank / Bridge protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

Protection extent: 1- entire base length; 2- US end; 3- DS end; 4- other


83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):

3

Piers:

84. Are there piers? <u>#80</u> (Y or if N type ctrl-n pr)

85. Pier no.	widt	h (w) fe	eet	elevation (e) feet		
	w1	w2	w3	e@w1	e@w2	e@w3
Pier 1				65.0	23.5	80.0
Pier 2	4.0			75.0	17.0	-
Pier 3	-	-	-	-	-	-
Pier 4	-	-	-	-	-	-

Level 1 Pier Descr.	1	2	3	4
86. Location (BF)	: The	upstre	the	barely
87. Type	USL	am	dow	scou
88. Material	WW	end.	nstre	red;
89. Shape	is	The	am	a 4
90. Inclined?	badl	USR	end	inch
91. Attack ∠ (BF)	y	WW	for 8	squa
92. Pushed	spall	foot-	ft.	re
93. Length (feet)	-	-	-	-
94. # of piles	ed	ingis	The	area
95. Cross-members	and	expo	DSL	at
96. Scour Condition	erod	sed	ww	the
97. Scour depth	ed at	only	is	upst
98. Exposure depth	the	at	just	ream

LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP

1- Solid pier, 2- column, 3- bent

1- Wood; 2- concrete; 3- metal; 4- stone

1- Round; 2- Square; 3- Pointed

Y- yes; N- no

LB or RB

0- none; 1- laterals; 2- diagonals; 3- both

0- not evident; 1- evident (comment);

2- footing exposed; 3- piling exposed; 4- undermined footing; 5- settled; 6- failed

	99. Pier comments (eg. undermined penetration, protection and protection extent, unusual scour processes, etc.): end.
	ciiu.
	F. Daymatusan Ohamal Assessment
	100. E. Downstream Channel Assessment
	Bank height (BF) Bank angle (BF) % Veg. cover (BF) Bank material (BF) Bank erosion (BF)
	SRD LB RB LB RB LB RB LB RB
	Bank width (BF)
ſ	Bank protection type (Qmax): LB _ RB _ Bank protection condition: LB _ RB _ SRD - Section ref. dist. to US face % Vegetation (Veg) cover: 1- 0 to 25%; 2- 26 to 50%; 3- 51 to 75%; 4- 76 to 100%
	Bed and bank Material: 0 - organics; 1 - silt / clay, < 1/16mm; 2 - sand, 1/16 - 2mm; 3 - gravel, 2 - 64mm; 4 - cobble, 64 - 256mm; 5 - boulder, > 256mm; 6 - bedrock; 7 - manmade
	Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting Bank protection types: 0- absent; 1- < 12 inches; 2- < 36 inches; 3- < 48 inches; 4- < 60 inches; 5- wall / artificial levee
	Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed
(Comments (eg. bank material variation, minor inflows, protection extent, etc.): -
	-
	- -
	-
	- -
	_
	- -
	_
	- -
	-
	101. <u>Is a drop structure present?</u> - (Y or N, if N type ctrl-n ds) 102. Distance: - feet 104. Structure material: - (1- steel sheet pile; 2- wood pile; 3- concrete; 4- other)
	105. Drop structure comments (eg. downstream scour depth):
	- -
	- -
	- -
	-

106. Point/Side bar present? - (Y or N. if N type ctrl-n pb)Mid-bar distance: - Mid-bar width: -				
Point bar extent: feet (US, UM) Material:	<i>JB, DS)</i> to <u>-</u> feet <u>-</u>	(US, UB, DS) position	ned <u>-</u> %LB to <u>-</u> %RB	
Point or side bar comments (Circle Point	or Side; note additional b	ars, material variation, sta	itus, etc.):	
-				
-				
Is a cut-bank present? - (Y) Cut bank extent: RS feet (US, UE) Bank damage: (1- eroded and/or of) Cut bank comments (eg. additional cut bank	3, DS) to feet creep; 2 - slip failure; 3 - b	_ (US, UB, DS) lock failure)	Mid-bank distance: PIE	
Is channel scour present? Scour dimensions: Length 2 Width Scour comments (eg. additional scour area 435 2 0 1	324 Depth: 23	Positioned 1 %		
Are there major confluences?	(Y or if N type ctr	-n mc) How many	? <u>The</u>	
Confluence 1: Distance <u>left</u>		_		
Confluence 2: Distance pro-		or RB) Type <u>tion</u>	_ (1 - perennial; 2 - ephemeral)	
Confluence comments (eg. confluence na extends from the downstream bridg	,	ноот		
extends from the downstream bridg	t fact to 32 ft downst	ream.		
F. G	Seomorphic Cha	nnel Assessment		
107. Stage of reach evolution		Constructed		

- 2- Stable3- Aggraded4- Degraded5- Laterally unstable6- Vertically and laterally unstable

lescriptors):	nents (Channel evolution r	iot considering bridge	enecis; see HEC-20,	, rigure i loi geomor	ЛПС
N					

	109. G. P	Plan View Sketch	-	-
point bar pb cut-bank cb	debris rip rap or stone fill	flow Q cross-section ++++++	stone wall	
scour hole	stone fill	ambient channel ——		

APPENDIX F: SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: JAMATH00080034 Town: Jamaica Road Number: TH 8 County: Windham

Stream: Whinhall River

Initials MAI Date: 03/24/98 Checked: RLB

Analysis of contraction scour, live-bed or clear water?

Critical Velocity of Bed Material (converted to English units) $Vc=11.21*y1^0.1667*D50^0.33$ with Ss=2.65 (Richardson and Davis, 1995, p. 28, eq. 16)

Approach Section			
Characteristic	100 yr	500 yr	other Q
Total discharge, cfs	14100	21000	4740
Main Channel Area, ft2	1172	1351	739
Left overbank area, ft2	0	0	0
Right overbank area, ft2	1386	1846	359
Top width main channel, ft	111	114	106
Top width L overbank, ft	0	0	0
Top width R overbank, ft	281	294	236
D50 of channel, ft	0.3456	0.3456	0.3456
D50 left overbank, ft			
D50 right overbank, ft			
yl, average depth, MC, ft	10.6	11.9	7.0
yl, average depth, LOB, ft	ERR	ERR	ERR
y1, average depth, ROB, ft	4.9	6.3	1.5
Total conveyance, approach	295442	422670	80264
Conveyance, main channel	124481	155374	60071
Conveyance, LOB	0	0	0
Conveyance, ROB	170961	267296	20193
Percent discrepancy, conveyance	0.0000	0.0000	0.0000
Qm, discharge, MC, cfs	5940.9	7719.6	3547.5
Ql, discharge, LOB, cfs	0.0	0.0	0.0
Qr, discharge, ROB, cfs	8159.1	13280.4	1192.5
Vm, mean velocity MC, ft/s	5.1	5.7	4.8
Vl, mean velocity, LOB, ft/s	ERR	ERR	ERR
Vr, mean velocity, ROB, ft/s	5.9	7.2	3.3
Vc-m, crit. velocity, MC, ft/s	11.7	11.9	10.9
Vc-l, crit. velocity, LOB, ft/s	ERR	ERR	ERR
Vc-r, crit. velocity, ROB, ft/s	ERR	ERR	ERR
Results			
Live-bed(1) or Clear-Water(0) Contr	action Sc	our?	
Main Channel	0	0	0
Left Overbank	N/A	N/A	N/A
Right Overbank	N/A	N/A	N/A

Clear Water Contraction Scour in MAIN CHANNEL

 $y2 = (Q2^2/(131*Dm^(2/3)*W2^2))^(3/7)$ Converted to English Units $ys=y2-y_bridge$ (Richardson and Davis, 1995, p. 32, eq. 20, 20a)

Bridge Section	Q100	Q500	Other Q
(Q) total discharge, cfs	14100	21000	4740
(Q) discharge thru bridge, cfs	7170	7334	4740
Main channel conveyance	55730	50263	31877
Total conveyance	55730	50263	31877
Q2, bridge MC discharge,cfs	7170	7334	4740
Main channel area, ft2	635	638	368
Main channel width (normal), ft	65.5	65.5	64.3
Cum. width of piers in MC, ft	0.0	0.0	0.0
W, adjusted width, ft	65.5	65.5	64.3
<pre>y_bridge (avg. depth at br.), ft</pre>	9.70	9.74	5.72
Dm, median (1.25*D50), ft	0.432	0.432	0.432
y2, depth in contraction,ft	8.80	8.98	6.27
ys, scour depth (y2-ybridge), ft	-0.89	-0.76	0.56

Pressure Flow Scour (contraction scour for orifice flow conditions)

Chang pressure flow equation $Hb+Ys=Cq*qbr/Vc \\ Cq=1/Cf*Cc \quad Cf=1.5*Fr^0.43 \ (<=1) \quad Cc=SQRT[0.10(Hb/(ya-w)-0.56)]+0.79 \ (<=1) \\ Umbrell pressure flow equation \\ (Hb+Ys)/ya=1.1021*[(1-w/ya)*(Va/Vc)]^0.6031 \\ (Richardson and Davis, 1995, p. 144-146)$

	0100	0500	OtherO
Q, total, cfs	14100	21000	4740
Q, thru bridge MC, cfs	7170	7334	4740
Vc, critical velocity, ft/s	11.65	11.88	10.87
Va, velocity MC approach, ft/s	5.07	5.71	4.80
Main channel width (normal), ft	65.5	65.5	64.3
Cum. width of piers in MC, ft	0.0	0.0	0.0
W, adjusted width, ft	65.5	65.5	64.3
qbr, unit discharge, ft2/s	109.5	112.0	73.7
Area of full opening, ft2	635.1	637.9	367.6
Hb, depth of full opening, ft	9.70	9.74	5.72
Fr, Froude number, bridge MC	0.64	0.65	0
Cf, Fr correction factor (<=1.0)	1.00	1.00	0.00
**Area at downstream face, ft2	N/A	N/A	N/A
**Hb, depth at downstream face, ft	N/A	N/A	N/A
**Fr, Froude number at DS face	ERR	ERR	ERR
**Cf, for downstream face (<=1.0)	N/A	N/A	N/A

Elevation of Low Steel, ft	497.62	497.62	497.62
Elevation of Bed, ft	487.92	487.88	491.90
Elevation of Approach, ft	500.95	502.54	0
Friction loss, approach, ft	0.6	0.9	0
Elevation of WS immediately US, ft	500.35	501.64	0.00
ya, depth immediately US, ft	12.43	13.76	-491.90
Mean elevation of deck, ft	500.53	500.53	500.53
w, depth of overflow, ft (>=0)	0.00	1.11	0.00
<pre>Cc, vert contrac correction (<=1.0)</pre>	0.94	0.93	ERR
**Cc, for downstream face (<=1.0)	0.79	0.79	ERR
Ys, scour w/Chang equation, ft	0.31	0.34	N/A
Ys, scour w/Umbrell equation, ft	-1.41	-0.47	N/A

Armoring

(Federal Highway Administration, 1993)

Downstream bridge face property	100-yr	500-yr	Other Q
Q, discharge thru bridge MC, cfs	7170	7334	4740
Main channel area (DS), ft2	635.1	637.9	367.6
Main channel width (normal), ft	65.5	65.5	64.3
Cum. width of piers, ft	0.0	0.0	0.0
Adj. main channel width, ft	65.5	65.5	64.3
D90, ft	0.9164	0.9164	0.9164
D95, ft	1.2364	1.2364	1.2364
Dc, critical grain size, ft	0.5440	0.5632	0.8931
Pc, Decimal percent coarser than Dc	0.234	0.213	0.105
Depth to armoring, ft	5.34	6.24	22.93

Abutment Scour

Froehlich's Abutment Scour $Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1$ (Richardson and Davis, 1995, p. 48, eq. 28)

110 a cincii c		Kigiic A	butillent	
r Q 500 yr	Q Other Q	100 yr Q	500 yr Q	Other Q
0 21000	4740	14100	21000	4740
21.5	14.8	307.5	320.4	262.4
12 160.7	72.38	817.94	879.96	499.48
	213.88			1684.39
, leave Qe	blank and	enter Ve	and Fr m	anually)
4.02	2.95	5.69	6.94	3.37
7.47	4.89	2.66	2.75	1.90
.; 0.82, ve	erti. w/ w	ingwall; 0	.55, spi	llthru)
0.82	0.82	0.82	0.82	0.82
) 3 1	r Q 500 yr 21000 21.5 42 160.7 2, leave Qe 3 4.02 7.47 4.; 0.82, v	00 21000 4740 8 21.5 14.8 42 160.7 72.38 213.88 e, leave Qe blank and 8 4.02 2.95 8 7.47 4.89 4.; 0.82, verti. w/ w	r Q 500 yr Q Other Q 100 yr Q 00 21000 4740 14100 8 21.5 14.8 307.5 42 160.7 72.38 817.94 213.88 2, leave Qe blank and enter Ve 8 4.02 2.95 5.69 8 7.47 4.89 2.66 6.; 0.82, verti. w/ wingwall; 0	r Q 500 yr Q Other Q 100 yr Q 500 yr Q 00 21000 4740 14100 21000 8 21.5 14.8 307.5 320.4 42 160.7 72.38 817.94 879.96 213.88 2, leave Qe blank and enter Ve and Fr m 8 4.02 2.95 5.69 6.94 9 7.47 4.89 2.66 2.75 6.; 0.82, verti. w/ wingwall; 0.55, spi

⁻⁻Angle (theta) of embankment (<90 if abut. points DS; >90 if abut. points US)

theta K2	90 1.00	90 1.00	90 1.00	90 1.00	90 1.00	90 1.00
Fr, froude number f/p flow	0.218	0.235	0.235	0.435	0.474	0.431
ys, scour depth, ft	15.41	16.53	10.96	25.64	27.84	19.53
HIRE equation (a'/ya > 25) ys = 4*Fr^0.33*y1*K/0.55 (Richardson and Davis, 1995, p. 49,	eq. 29)					
a'(abut length blocked, ft)	19.3	21.5	14.8	307.5	320.4	262.4
y1 (depth f/p flow, ft)	7.28	7.47	4.89	2.66	2.75	1.90
a'/y1	2.65	2.88	3.03	115.60	116.66	137.85
Skew correction (p. 49, fig. 16)	1.00	1.00	1.00	1.00	1.00	1.00
Froude no. f/p flow	0.22	0.24	0.24	0.44	0.47	0.43
Ys w/ corr. factor K1/0.55:						
vertical	ERR	ERR	ERR	14.70	15.61	10.48
vertical w/ ww's	ERR	ERR	ERR	12.05	12.80	8.60
spill-through	ERR	ERR	ERR	8.08	8.59	5.77

Abutment riprap Sizing

Isbash Relationship D50=y*K*Fr^2/(Ss-1) and D50=y*K*(Fr^2)^0.14/(Ss-1) (Richardson and Davis, 1995, p112, eq. 81,82)

Characteristic	Q100	Q500	Other Q	Q100	Q500	Other Q
Fr, Froude Number	0.64	0.65	0.97	0.64	0.65	0.97
y, depth of flow in bridge, ft	9.70	9.74	5.72	9.70	9.74	5.72
Median Stone Diameter for riprap	at: left	abutment		right	abutment,	ft
Fr<=0.8 (vertical abut.)	2.46	2.54	ERR	2.46	2.54	ERR
Fr>0.8 (vertical abut.)	ERR	ERR	2.37	ERR	ERR	2.37