LEVEL II SCOUR ANALYSIS FOR BRIDGE 33 (CASTTH00050033) on TOWN HIGHWAY 5, crossing the CASTLETON RIVER, CASTLETON, VERMONT

Open-File Report 98-542

Prepared in cooperation with
VERMONT AGENCY OF TRANSPORTATION
and
FEDERAL HIGHWAY ADMINISTRATION

LEVEL II SCOUR ANALYSIS FOR BRIDGE 33 (CASTTH00050033) on TOWN HIGHWAY 5, crossing the CASTLETON RIVER, CASTLETON, VERMONT

By ERICK M. BOEHMLER AND TIMOTHY SEVERANCE

U.S. Geological Survey Open-File Report 98-542

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Thomas J. Casadevall, Acting Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Branch of Information Services Open-File Reports Unit Box 25286 Denver, CO 80225-0286

CONTENTS

Conversion Factors, Abbreviations, and Vertical Datum	iv
Introduction and Summary of Results	
Level II summary	
Description of Bridge	
Description of the Geomorphic Setting	
Description of the Channel	
Hydrology	
Calculated Discharges	
Description of the Water-Surface Profile Model (WSPRO) Analysis	
Cross-Sections Used in WSPRO Analysis	
Data and Assumptions Used in WSPRO Model	
Bridge Hydraulics Summary	
Scour Analysis Summary	
Special Conditions or Assumptions Made in Scour Analysis	
Scour Results	
Riprap Sizing	
Selected References	18
Appendices:	
A. WSPRO input file	19
B. WSPRO output file	
C. Bed-material particle-size distribution	
•	
D. Historical data form	
E. Level I data form	
F. Scour computations	46
FIGURES	
	,
1. Map showing location of study area on USGS 1:24,000 scale map	
2. Map showing location of study area on Vermont Agency of Transportation town	
highway map	
3. Structure CASTTH00050033 viewed from upstream (September 20, 1995)	
5. Upstream channel viewed from structure CASTTH00050033 (September 20, 1993)	
6. Structure CASTTH00050033 viewed from downstream (September 20, 1995)	
7. Water-surface profiles for the 100- and 500-year discharges at structure	
CASTTH00050033 on Town Highway 5, crossing the Castleton River,	
Castleton, Vermont	
8. Scour elevations for the 100- and 500-year discharges at structure	1.
CASTTH00050033 on Town Highway 5, crossing the Castleton River,	
Castleton, Vermont	10
Custicion, Vermont.	
TARLEO	
TABLES	
1. Remaining footing/pile depth at abutments for the 100-year discharge at structure	
CASTTH00050033 on Town Highway 5, crossing the Castleton River,	
Castleton, Vermont	17
2. Remaining footing/pile depth at abutments for the 500-year discharge at structure	
CASTTH00050033 on Town Highway 5, crossing the Castleton River,	
Castleton, Vermont	17

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
•	Volume	•
cubic foot (ft ³)	0.02832	cubic meter (m ³)
	Velocity and Flow	v
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m
cubic foot per second per square mile [(ft ³ /s)/mi ²]	0.01093	cubic meter per second per square kilometer [(m ³ /s)/km ²

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	Max	maximum
D_{50}	median diameter of bed material	MC	main channel
DS	downstream	RAB	right abutment
elev.	elevation	RABUT	face of right abutment
f/p	flood plain	RB	right bank
f/p ft ²	square feet	ROB	right overbank
ft/ft	feet per foot	RWW	right wingwall
FEMA	Federal Emergency Management Agency	TH	town highway
FHWA	Federal Highway Administration	UB	under bridge
JCT	junction	US	upstream
LAB	left abutment	USGS	United States Geological Survey
LABUT	face of left abutment	VTAOT	Vermont Agency of Transportation
LB	left bank	WSPRO	water-surface profile model
LOB	left overbank	yr	year

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 33 (CASTTH00050033) ON TOWN HIGHWAY 5, CROSSING THE CASTLETON RIVER, CASTLETON, VERMONT

By Erick M. Boehmler and Timothy Severance

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure CASTTH00050033 on Town Highway 5 crossing the Castleton River, Castleton, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D.

The site is in the Champlain section of the St. Lawrence Valley physiographic province in west-central Vermont. However, the majority of the drainage area is occupied in the Taconic section of the New England province. The 36.9-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the setting is suburban. Surface cover consists of shrubs and brush with a railroad, a residential roadway, and a house with a grass lawn along the left bank. The right bank upstream is a grass lawn bordering a cemetery and is categorized as pasture. The right bank downstream surface cover is forest.

In the study area, the Castleton River has a sinuous channel with a slope of approximately 0.003 ft/ft, an average channel top width of 76 ft and an average bank height of 9 ft. The channel bed material ranges from silt and clay to cobbles with a median grain size (D_{50}) of 19.4 mm (0.064 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 20, 1995, indicated that the reach was stable.

The Town Highway 5 crossing of the Castleton River is a 41-ft-long, one-lane bridge consisting of one 37-foot steel-beam span (Vermont Agency of Transportation, written communication, March 20, 1995). The opening length of the structure parallel to the bridge face is 34 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 40 degrees to the opening while the opening-skew-to-roadway is zero degrees.

A scour hole 2.5 ft deeper than the mean thalweg depth was observed in the center of the channel under the bridge and up to 0.75 feet of scour was observed along the right abutment and the upstream right wingwall during the Level I assessment. The scour protection measure at the site included type-1 (less than 12 inches diameter), type-2 (less than 36 inches diameter) and type-3 (less than 48 inches diameter) stone fill. The type-1 stone fill was observed on the abutments and the upstream right wingwall. Type-2 stone fill was observed along both banks downstream. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E.

Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 0.7 to 7.0 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 14.9 to 20.1 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

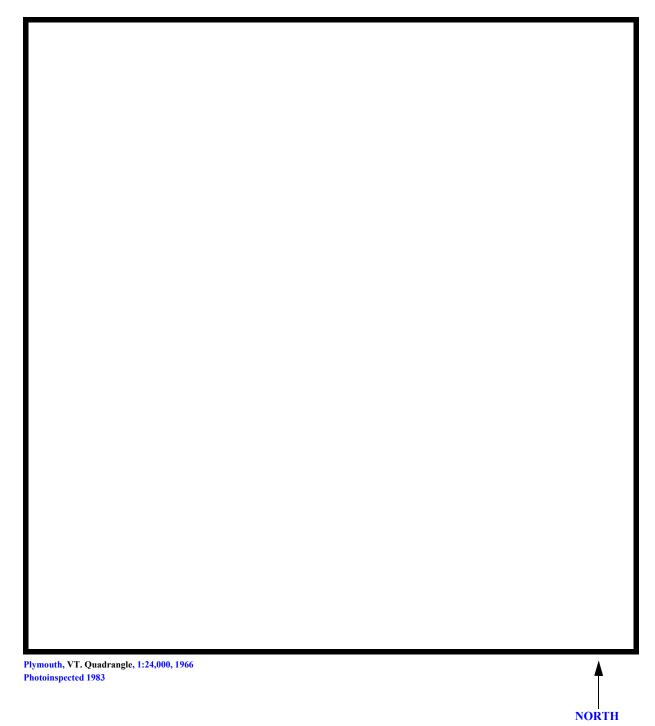
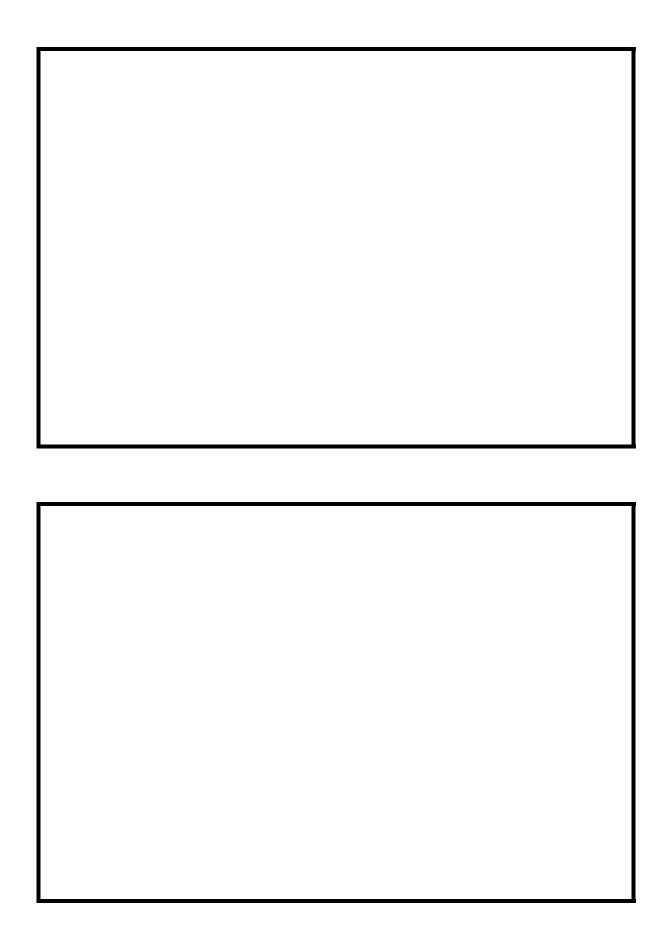



Figure 1. Location of study area on USGS 1:24,000 scale map.

LEVEL II SUMMARY

tructure Number	CASTTH00050033	Stream	Castleto	n River	
ounty Rutland	d	— Road —	TH 5	_ District -	3
	Descrip	otion of Bridg	je		
Bridge length	41 ft Bridge wi	14.5		ax span length ght and straight	
Alignment of br	ridge to road (on curve or s Vertical, concrete	straight) —	Curveari	Sloping near	
Abutment type	Yes	Embankm	ent type	/20/95	iy verticai
Stone fill on abu		Date of inco	n <i>act</i> ion		entire base
length of the left	t abutment, and the upstream	m end of the up	stream right	wingwall, and	type-2 along
the entire base le	ength of the upstream left v	vingwall.			
		The right abutn	nent is concr	ete and the left	abutment is
a stone wall. Th	e upstream and downstrear	n right wingwa	lls are concre	ete and the upsi	tream left
wingwall is a sto	one wall.				
			-	Yes	40
Is bridge skewe	d to flood flow according t	o Yes surve	ey?	Angle	
There is a mode	rate channel bend in the up	stream reach., A	A scour hole	hạs developed	in the
location where the	ne bend impacts the upstrea	ım right wingw	all.		
Debris accumu	lation on bridge at time of	Level I or Leve	el II site visit	f .	
_ 00100	Date of inspection 9/20/95	Percent of objective blocked not	hannal	Percent	of alamael verticativ
Level I	9/20/95	0			0
Level II	Low.				
Potential f	or debris				
	erved on 9/20/95.				
Doscriho anv fo	atures near or at the hrida	o that may affa	oct flow (incl	ludo ahsorvatia	n dato)

Description of the Geomorphic Setting

General topography The channel is located in a moderate relief valley, with irregular and						
narrow over-	banks and	d moderate	ly sloping valley w	valls on both sides.		
Geomorphic	c conditio	ns at bridg	e site: downstrean	ı (DS), upstream (US)		
Date of insp	ection	9/20/95				
DS left:	Steep c	hannel ban	k (railroad embank	ement) to a flat overba	nk.	
DS right:	Steep c	hannel ban	k to an irregular ov	verbank.		
US left:	Steep cl	nannel ban	k (railroad embank	ment) to a flat overbar	nk.	
US right:	Steep cl	nannel ban	k to an irregular ov	erbank and steep valle	ey wall.	
			Description of th	e Channel		
		76			9	
Average to	_	-	Sand to Cobbles	Average depti	Silt/Clay and Boulders	
Predominan	it bed ma	terial		Bank material	Perennial and sinuous	
with semi-all	luvial cha	nnel bound	laries and narrow p	oint bars.		
					9/20/95	
Vegetative c	o Shrubs	brush and	a few trees			
DS left:	Trees v	vith some s	hrubs and brush			
DS right:	Trees, s	shrubs, and	brush			
US left:	Short g	rass				
US right:		Ye	es			
Do banks ap	ppear stal	ole?	<u> 15 11015 1160</u> 0	wewww.unu iypi	o oj momonny unu	
date of obse	ervation.					
				-	None were observed on	
9/20/95. Describe an	y obstruc	tions in ch	annel and date of	observation.		

Hydrology

Drainage area $\frac{36.9}{}$ mi ²	
Percentage of drainage area in physiographic p	provinces: (approximate)
Physiographic province/section St. Lawrence Valley / Champlain	Percent of drainage area _5
New England / Taconic	95
Is drainage area considered rural or urban? While the drainage area is rural urbanization: residential houses are located in the vicinity of the	Rural Describe any significant the site is suburban. A railway, cemetery, and the site.
Is there a USGS gage on the stream of interest.	<u>No</u> ?
USGS gage description	
USGS gage number	. <u>.</u>
Gage drainage area	mi ²
Is there a lake/_	
Calculate	d Discharges 5,800
Q100 ft ³ /s The 10	Q500 ft ³ /s 00- and 500-year discharges are based on flood
frequency estimates available from the VTAOT d	atabase records (written communication, May,
1995) for this site. The VTAOT values were with	in a range defined by flood frequency curves
developed from several empirical methods (Bensel 1982; Potter 1957a & b. Talbet 1987). Each ourse	
1983; Potter, 1957a&b Talbot, 1887). Each curve event.	was extended graphically to the 300-year

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT)	plans) USGS survey
Datum tie between USGS survey and VTAOT plans	None. Add 91.9 feet to the USGS'
survey to obtain the National Geodetic Vertical Datum of 192	29.
Description of reference marks used to determine USGS dat	tum. RM1 is a National
Geodetic Survey Benchmark engraved "L25" on top of the up	pstream right wingwall at the
upstream end (elev. 497.49 ft, arbitrary survey datum). RM2	is the top nut on a fire hydrant on
the upstream side of TH 5 and 105 feet left of the left abutme	ent (elev. 502.54 arbitrary survey
datum).	

Cross-Sections Used in WSPRO Analysis

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXITX	0	1	Exit section
FULLV	13	2	Downstream Full-valley section (Templated from EXITX)
BRIDG	13	1	Bridge section
RDWAY	20	1	Road Grade section
APPRO	64	1	Approach section

For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Also, flow was assumed to align with the abutments in the opening. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.035 to 0.050, and overbank "n" values ranged from 0.035 to 0.065.

The starting water surface elevations for the 100- and 500-year discharges were obtained from the water surface profile at cross section "N" provided in the Flood Insurance Study (FIS) for the Town of Castleton (FEMA, 1984). For the incipient roadway-overtopping discharge, the starting water surface elevation was obtained based on a rating of the discharges and water surface elevations computed at cross section N. Each water surface elevation at section "N" from the FIS was assumed to be a satisfactory starting water surface elevation at the exit section (EXITX), which was surveyed for this hydraulic evaluation.

The approach section (APPRO) was surveyed one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This location provides a consistent method for determining scour variables.

Bridge Hydraulics Summary

Average bridge embankment elevation 497.6 Average low steel elevation 4,200 100-year discharge 497.8 Water-surface elevation in bridge opening Discharge over road ft^3/s Road overtopping? 325 Area of flow in bridge opening 10.0 ft/s Average velocity in bridge opening 12.2 Maximum WSPRO tube velocity at bridge ft/s 500.9 Water-surface elevation at Approach section with bridge 499.5 Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge 5,800 ft³/s 500-year discharge 497.8 Water-surface elevation in bridge opening Road overtopping? Discharge over road 325 ft^2 Area of flow in bridge opening 10.2 Average velocity in bridge opening 12.5 **/**s Maximum WSPRO tube velocity at bridge 502.0 Water-surface elevation at Approach section with bridge 500.9 Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge 2,380 ft^3/s Incipient overtopping discharge Water-surface elevation in bridge opening 497.1 307 Area of flow in bridge opening Average velocity in bridge opening ft/s 10.3 Maximum WSPRO tube velocity at bridge 497.9 Water-surface elevation at Approach section with bridge 497.9 Water-surface elevation at Approach section without bridge

0.0

Amount of backwater caused by bridge

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analyses for the 100- and 500-year discharges are presented in tables 1 and 2 and the scour depths are shown graphically in figure 8.

Contraction scour for the incipient roadway-overtopping discharge was computed by use of the Laursen clear-water contraction scour equation (Richardson and Davis, 1995, p. 32, equation 20). At this site, the 100-year and 500-year discharges resulted in submerged orifice flow. Contraction scour at bridges with orifice flow is best estimated by use of the Chang pressure-flow scour equation (oral communication, J. Sterling Jones, October 4, 1996). Thus, contraction scour for these discharges was computed by use of the Chang equation (Richardson and Davis, 1995, p. 145-146).

For comparison, contraction scour for the discharges resulting in orifice flow also was computed by use of the Laursen clear-water contraction scour equation and the Umbrell pressure-flow equation (Richardson and Davis, 1995, p. 144). Results from these computations are presented in appendix F.

Abutment scour was computed by use of the Froehlich equation (Richardson and Davis, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour Results

Contraction scour:	100-year discharge (S	500-year discharge cour depths in feet)	Incipient overtopping discharge
Main channel	·	• • •	
Live-bed scour	<u></u>		
Clear-water scour	6.4	7.0	0.7
Depth to armoring	N/A	N/A	3.5
Left overbank			 -
Right overbank			
Local scour:			
Abutment scour	16.6	20.0	14.9
Left abutment	19.2-	20.1-	16.1-
Right abutment			
Pier scour			
Pier 1			
Pier 2			
Pier 3			
	Riprap Sizing	ı	
	100-year discharge	500-year discharge (D 50 in feet)	Incipient overtopping discharge
Abutments:	1.9	2.0	1.1
Left abutment	1.9	2.0	1.1
Right abutment			
Piers:			
Pier 1			
Pier 2			
1 101 =			

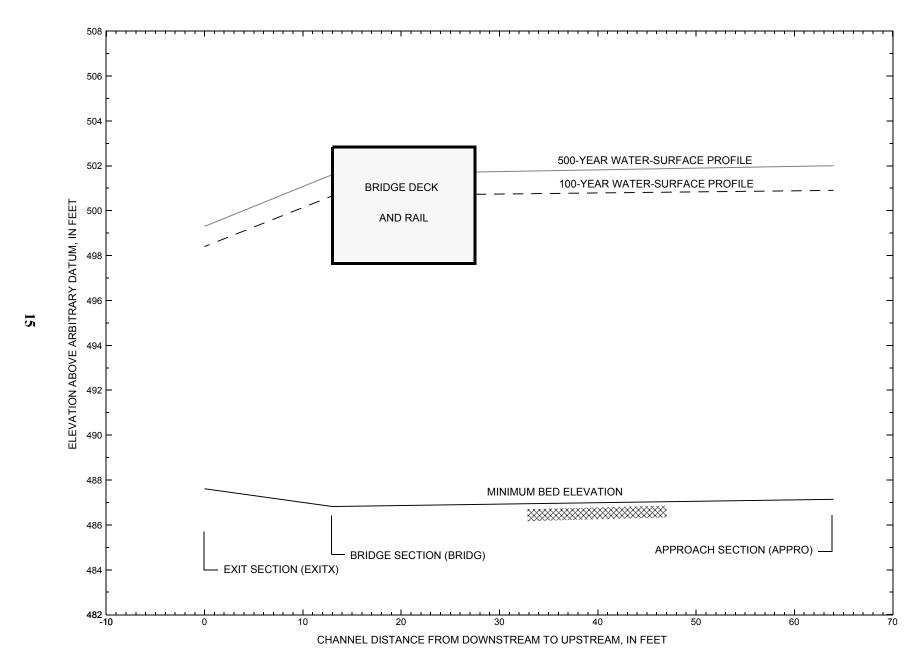


Figure 7. Water-surface profiles for the 100- and 500-year discharges at structure CASTTH00050033 on Town Highway 5, crossing the Castleton River, Castleton, Vermont.

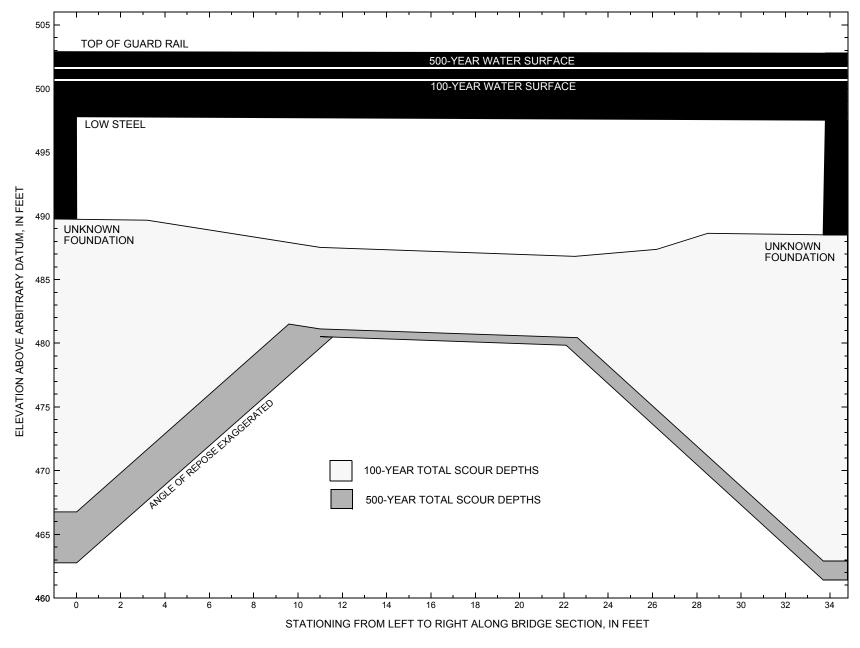


Figure 8. Scour elevations for the 100- and 500-year discharges at structure CASTTH00050033 on Town Highway 5, crossing the Castleton River, Castleton, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure CASTTH00050033 on Town Highway 5, crossing the Castleton River, Castleton, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing/pile elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				100-year	r discharge is 4,20	0 cubic-feet per se	cond				
Left abutment	0.0		497.8		489.8	6.4	16.6		23.0	466.8	
Right abutment	33.8		497.5		488.5	6.4	19.2		25.6	462.9	

^{1.}Measured along the face of the most constricting side of the bridge.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure CASTTH00050033 on Town Highway 5, crossing the Castleton River, Castleton, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing/pile elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				500-year	r discharge is 5,80	0 cubic-feet per se	econd				
Left abutment	0.0		497.8		489.8	7.0	20.0		27.0	462.8	
Right abutment	33.8		497.5		488.5	7.0	20.1		27.1	461.4	

^{1.}Measured along the face of the most constricting side of the bridge.

^{2.} Arbitrary datum for this study.

^{2.} Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M. A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Emergency Management Agency, 1984, Flood Insurance Study, Town of Castleton, Rutland County, Vermont: Washington, D.C., January 1984.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158.
- Federal Highway Administration, 1993, Stream Stability and Scour at Highway Bridges: Participant Workbook: Federal Highway Administration Report FHWA-HI-91-011.
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.
- Johnson, C.G. and Tasker, G.D.,1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Geological Survey, 1964, Poultney, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Photorevised 1972, Contour Interval, 20 feet, Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

```
U.S. Geological Survey WSPRO Input File cast033.wsp
Т1
          Hydraulic analysis for structure CASTTH00050033 Date: 25-MAR-98
Т2
Т3
          Town Highway 5 (Cemetary Road) over the Castleton River, Castleton, VT
           * * This file was generated by AWISPP v3.0.5 * *
               AWISPP - Automated WSPRO Input and Survey Processing Program
*
            * * 0.002
J11
J3
            6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
0
             4200.0
                      5800.0
                                2380.0
WS
             498.4
                      499.3
                                497.2
                     0.0033
             0.0033
*
     EXITX
XS
                 Ω
GR
             -89.7, 503.58
                               -82.7, 498.14
                                                  -68.3, 499.12
                                                                    -25.3, 501.06
GR
             -23.5, 500.34
                               -11.6, 495.92
                                                  -6.4, 493.17
                                                                     -4.4, 493.24
                                5.8, 488.87
23.2, 489.89
90.4, 498.95
                                                  9.5, 487.84
29.5, 493.43
100.6, 495.40
                                                                    13.6, 487.61
45.2, 498.97
114.3, 495.47
              0.0, 489.82
GR
              18.3, 488.14
81.4, 499.84
GR
GR
GR
             137.3, 495.72
                               152.8, 500.67
                                                  170.8, 510.93
N
             0.050
                          0.050
                                         0.065
                    -23.5
                                    45.2
SA
XS
     FULLV
                13 * * * 0.0
*
                                XSSKEW
               SRD
                       LSEL
BR
     BRIDG
               13
                     497.65
                                  0.0
                                                   3.2, 489.66
                                                                    11.0, 487.52
               0.0, 497.78
                                  0.0, 489.76
GR
                                                                    33.7, 488.51
GR
              22.5, 486.82
                                26.2, 487.37
                                                   28.5, 488.63
GR
              33.8, 497.51
                                 0.0, 497.78
*
          BRTYPE BRWDTH
                                 WWANGL
                                            WWWTD
                     29.4 * *
CD
              1
                                    61.3
                                             8.5
Ν
             0.035
*
               SRD
                      EMBWID
                                IPAVE
XR
     RDWAY
               20
                      14.5
                                 2
             -89.7, 503.58
                               -82.7, 498.14
                                                  -68.3, 499.12
                                                                    -28.8, 501.00
GR
             -20.7, 501.04
                                -4.1, 499.99
GR
                                                  -3.1, 499.65
                                                                     -2.9, 502.99
              0.0, 502.90
                                23.8, 502.78
                                                  36.8, 502.36
162.5, 501.09
                                                                      37.3, 498.93
GR
                               118.3, 499.81
196.4, 511.47
GR
              62.2, 499.46
                                                                     168.5, 500.36
             178.4, 501.21
GR
AS
     APPRO
               64
             -92.5, 503.58
                               -85.5, 498.14
                                                  -71.1, 499.12
                                                                    -31.6, 501.10
GR
GR
             -29.6, 500.35
                               -21.9, 496.99
                                                  -14.4, 492.14
                                                                    -11.3, 491.70
              -9.1, 491.55
12.8, 492.15
                                -5.8, 490.64
16.2, 489.85
                                                   0.0, 492.46
18.8, 488.41
GR
                                                                      6.0, 493.02
                                                                      22.7, 488.31
GR
                                                  37.0, 487.34
115.9, 499.02
                                                                     42.3, 489.86
              27.7, 488.39
                                35.6, 487.14
GR
                               56.4, 498.44
212.6, 512.59
GR
              49.8, 494.19
                                                                    158.2, 500.71
GR
             191.9, 502.75
N
             0.035
                       0.050
                                         0.040
                                    56.4
SA
                    -31.6
HP 1 BRIDG 497.78 1 497.78
HP 2 BRIDG 497.78 * * 3242
HP 2 RDWAY 500.66 * * 958
HP 1 APPRO 500.90 1 500.90
HP 2 APPRO 500.90 * * 4200
HP 1 BRIDG 497.78 1 497.78
HP 2 BRIDG 497.78 * * 3324
HP 2 RDWAY 501.61 * * 2474
HP 1 APPRO 502.00 1 502.00
HP 2 APPRO 502.00 * * 5800
HP 1 BRIDG 497.11 1 497.11
HP 2 BRIDG 497.11 * * 2380
HP 1 APPRO 497.87 1 497.87
HP 2 APPRO 497.87 * * 2380
ΕX
ER
```

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY WSPRO V060188 MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS

> U.S. Geological Survey WSPRO Input File cast033.wsp Hydraulic analysis for structure CASTTH00050033 Date: 25-MAR-98 Town Highway 5 (Cemetary Road) over the Castleton River, Castleton, VT *** RUN DATE & TIME: 07-14-98 13:54

CROSS-SECTION PROPERTIES: ISEQ = 3; SECID = BRIDG; SRD =

WS		# 1	AREA	3384	K	TOPW	WETP		H]	LEW	REW	QCR
497.		L	325.	3384	10.	0.	85.	1.00)	0.	34.	0.
VEL	OCITY I	DISTRI	BUTIC	N: IS	SEQ =	3;	SECID =	= BRII	OG;	SRD =		13.
	WSEL 497.78						K 33840.		Q 242.	VEL 9.96		
X STA. A(I) V(I)		0.0	37.0 4.38	4.6	15.3 10.60	6.3	14.3 11.36	7.9	14.6 L1.11	9.4	13.7 11.84	10.8
X STA. A(I) V(I)		10.8	13.7 1.79	12.1	14.0 11.57	13.5	13.6 11.89	14.8	13.6 L1.95	16.1	13.7 11.87	17.4
X STA. A(I) V(I)			13.7		13.8		13.6 11.93		13.3		13.3	
X STA. A(I) V(I)			13 8		13 7		14.7 11.04		14 5		37 4	
VEL	OCITY I	DISTRI	BUTIC	N: IS	SEQ =	4;	SECID =	= RDW	AY;	SRD =	:	20.
							K 4317.		Q 958.	VEL 5.63		
X STA. A(I) V(I)			6.3		4.9		5.3 9.00		5.4		5.8	
X STA. A(I) V(I)		-71.7	6.2 7.73	-67.9	6.9 6.91	-63.0	8.0 5.98	-55.8	17.3 2.78	39.2	4.6 10.42	42.0
X STA. A(I) V(I)			6.1		7.1		7.6 6.26		8.2		8.4	
X STA. A(I) V(I)		69.7	8.8 5.46	77.5	9.1 5.28	85.9	9.3 5.13	95.0	10.0 4.78	105.5	24.8 1.93	172.0
							s; SEC					
WS 500.	1	1 2 3	69. 766. 173.	34! 922: 900	54. 31. 08.	53. 87. 105.	54. 94. 105.					QCR 447. 12869. 1263. 10521.
VEL	OCITY I	DISTRI	BUTIC	N: IS	SEQ =	5;	SECID =	= APPI	RO; 1	SRD =		64.
	WSEL 500.90	-89	EW .1	REW 161.3	AF 1008	REA 3.6 1	K L04693.	42	Q 200.	VEL 4.16		
X STA. A(I) V(I)		-89.1 1	49.0	-12.7	39.8 5.27	-8.4	39.1 5.37	-4.5	41.7 5.03	0.1	44.4 4.73	5.5
X STA. A(I) V(I)		5.5	43.7 4.80	10.9	43.8 4.79	15.6	37.5 5.60	18.8	33.6 6.24	21.5	31.7 6.62	24.0
X STA. A(I) V(I)		24.0	33.5 6.27	26.7	35.9 5.86	29.6	35.1 5.99	32.2	35.3 5.96	34.9	34.1 6.16	37.4

37.4 40.1 43.7 48.9 35.2 39.5 45.8 93.8 5.96 5.32 4.58 2.24

X STA.

A(I) V(I)

80.9 161.3

1.81

115.9

WSPRO FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY V060188 MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS

> U.S. Geological Survey WSPRO Input File cast033.wsp Hydraulic analysis for structure CASTTH00050033 Date: 25-MAR-98 Town Highway 5 (Cemetary Road) over the Castleton River, Castleton, VT *** RUN DATE & TIME: 07-14-98 13:54

CROSS-SECTION PROPERTIES: ISEQ = 3; SECID = BRIDG; SRD =

WSEI.	SA# AREA	7 K	~ - / Τ∩ΡW W	VETD ALDH	T.EW RE	W OCR
405 50	SA# AREA 1 325	. 33840.	0.	85.	DEW KE	0.
497.78		. 33840.				
	TY DISTRIBUT					13.
V 497	VSEL LEW 7.78 0.0	REW A 33.8 32	REA 5.4 338	K 340. 3324	Q VEL . 10.22	
X STA. A(I) V(I)	0.0 37.0 4.49	4.6) 15.3) 10.87	6.3 14 11.	7.9 1.3 14 .65 11.	9.4 .6 13 39 12.	10.8 3.7 14
A(I)	10.8 13.3 12.09	7 14.0	13	3.6 13	.6 13	3.7
X STA. A(I) V(I)	17.4 13.3 12.10	18.7 7 13.8 0 12.02	20.0 13 12.	21.3 3.6 13 .23 12.	22.5 .3 13 48 12.	23.8 3.3 54
A(T)	23.8 13.8 12.03	3 13.7	14	1.7 14	.5 37	1.4
VELOCI	TY DISTRIBUT	ION: ISEQ =	4; SEC	CID = RDWAY;	SRD =	20.
7 501	NSEL LEW	REW A	REA 3.1 132	K 298. 2474	Q VEL . 6.63	
X STA. A(I) V(I)	-87.2 14.7 8.40	-80.6 7 11.9 0 10.38	-76.9 12	-72.7 2.4 13 .01 9.	-67.6 .4 14 24 8.	-61.4 60
X STA. A(I) V(I)	-61.4 15.7 7.86	-53.4 7 18.5 6 6.69	-40.9 27 4.	-8.5 7.3 19 .53 6.	41.3 .6 12 32 9.	46.4 2.8 66
X STA. A(I) V(I)	46.4 15.8 7.81	52.9 3 16.8 L 7.34	60.3 17	68.7 7.9 17 .90 7.	77.1 .5 18	86.1 8.3 76
X STA. A(I) V(I)	86.1 18.6 6.66	95.6 5 19.0 6.52	105.5 19 6.	116.1 9.6 20 .30 6.	128.3 .5 48 05 2.	179.1 8.4 56
CROSS-	SECTION PROPE	ERTIES: ISE	Q = 5;	SECID = APP	RO; SRD =	64.
WSEL	SA# AREA 1 133 2 863 3 299 1294	K 9569 111996 20073 141638.	TOPW W 59. 88. 123. 1270. 22	NETP ALPH 60. 95. 123.	LEW RE	QCR 1131. 15335. 2639. 0. 14712.
VELOCI	TY DISTRIBUT	ION: ISEQ =	5; SEC	CID = APPRO;	SRD =	64.
V 502	NSEL LEW 2.00 -90.5	REW A	REA 4.4 1416	K 538. 5800	Q VEL . 4.48	
X STA. A(I) V(I)	-90.5 91.2 3.18	-58.2 2 145.6 3 1.99	-12.4 49 5.	-7.7 9.4 49 .87 5.	-3.2 .6 52 85 5.	2.2 2.6 51
X STA. A(I) V(I)		8.3 1 54.8 1 5.29				
X STA. A(I) V(I)	24.4 44.1 6.5	27.6 L 44.8 7 6.47	30.8 43 6.	33.9 3.8 43 .62 6.	36.8 .0 46 74 6.	40.1 5.4 24
X STA. A(I) V(I)		44.1 9 62.5 2 4.64				

FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS WSPRO V060188

> U.S. Geological Survey WSPRO Input File cast033.wsp Hydraulic analysis for structure CASTTH00050033 Date: 25-MAR-98 Town Highway 5 (Cemetary Road) over the Castleton River, Castleton, VT *** RUN DATE & TIME: 07-14-98 13:54

С	ROSS-	SECTION	N PROPER	TIES:	ISEÇ	2 = 3	; SEC	ID = I	BRIDG;	SRD	=	13.
	WSEL	SA# 1	AREA	43698	8.	34.	50.					QCR 5258.
49	7.11		307.	43698	8.	34.	50.	1.00)	0.	34.	5258.
V	ELOCI	TY DIST	TRIBUTIO	N: IS	EQ =	3;	SECID :	= BRII	OG; S	RD =	1	.3.
			LEW 0.0									
X STA A(I V(I)	0 .	43.5 2.74	5.7	12.7 9.40	7.3	12.6 9.44	8.7	12.6 9.47	10.1	12.1 9.82	11.3
X STA A(I V(I)	11.	11.8 10.07	12.6	12.0 9.95	13.8	12.2 9.79	15.0	12.1	16.3	12.2 9.76	17.5
X STA A(I V(I)	17	12.0 9.94									
X STA A(I V(I)	23	11.6 10.26	24.5	11.7	25.7	12.5 9.52	27.0	13.0 9.18	28.4	45.3 2.63	33.8
С	ROSS-	SECTION	N PROPER	TIES:	ISEÇ) = 5	; SEC	ID = A	APPRO;	SRD	=	64.
	WSEL	SA# 2	AREA		K	TOPW	WETP	ALPI	H L	ΕW	REW	QCR
		SA# 2	AREA		K	TOPW	WETP	ALPI	H L	ΕW	REW	
49	WSEL	SA# 2	AREA	50378 50378	K 8. 8.	TOPW 79. 79.	WETP 86. 86.	ALPI	H L	EW	REW	QCR 7388. 7388.
49	WSEL 7.87 ELOCI W	SA# 2 TY DIST	AREA 513. 513.	50378 50378 N: ISI REW	K 8. 8. EQ =	TOPW 79. 79. 5;	WETP 86. 86. SECID =	ALPH 1.00	H L D -2 RO; S	EW 4. RD = VEL	REW 56.	QCR 7388. 7388.
49 V	WSEL 7.87 ELOCI W 497	SA# 2 TY DIST SEL .87	AREA 513. 513. FRIBUTIO	50378 50378 N: ISI REW 55.5	K 8. 8. EQ = AF 512	TOPW 79. 79. 5; REA 2.6	WETP 86. 86. SECID : K 50378.	ALPF 1.00 = APPF 23	H I I I I I I I I I I I I I I I I I I I	4. RD = VEL 4.64 3.0	REW 56.	QCR 7388. 7388. 64.
49 V X STA A(I	WSEL 7.87 ELOCI W 497	SA# 2 TY DIST SEL .87 -23	AREA 513. 513. CRIBUTIO LEW 23.9	50374 50378 N: ISI REW 55.5	K 8. 8. EQ = AF 512 24.3	TOPW 79. 79. 5; REA 2.6 -5.9	WETP 86. 86. SECID: K 50378.	ALPH 1.00 = APPH 23 -2.2	H L 0 -2 RO; S Q 380. 28.7 4.14	EW 4. PRD = VEL 4.64 3.0	REW 56.	QCR 7388. 7388. 64.
49 V X STA A(I V(I X STA A(I	WSEL 7.87 ELOCI W 497 .)) .))	SA# 2 TY DIST SEL .87 -23	AREA 513. 513. TRIBUTIO LEW -23.9 9 55.2 2.16	50376 50377 N: ISI REW 55.5 -9.5	K 8. 8. EQ = AF 512 24.3 4.89 24.4	TOPW 79. 79. 5; REA 2.6 -5.9	WETP 86. 86. SECID: K 50378. 24.7 4.83 20.6 5.77	ALPH 1.00 = APPH 23 -2.2 19.6	H I I I I I I I I I I I I I I I I I I I	4. RD = VEL 4.64 3.0 21.7	REW 56. 6 30.7 3.88 18.5 6.44 20.1	QCR 7388. 7388. 44. 9.1

WSPRO FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY V060188 MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS

XSID:CODE		LEW					CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	НО	ERR	FR#	VEL	
EXITX:XS	*****	-83.	505.	1.32	****	499.72	497.57	4200.	498.40
0.	*****	146.	40722.	1.23	****	*****	0.79	8.31	

===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS. "APPRO" KRATIO = 1.66

===255 ATTEMPTING FLOW CLASS 3 (6) SOLUTION.
WS3N, LSEL = 498.72 497.65

<><<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>>

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

BRIDG:BR 13. 0. 325. 1.54 **** 499.32 494.60 3242. 497.78 13. ***** 34. 33840. 1.00 **** ****** 0.57 9.96

TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB 1. **** 6. 0.800 0.000 497.65 ***** ***** ******

XSID:CODE SRD FLEN HF VHD EGL ERR Q WSEL RDWAY:RG 20. 37. 0.06 0.33 501.17 0.00 958. 500.66

Q WLEN LEW REW DMAX DAVG VMAX VAVG HAVG CAVG LT: 357. 62. -86. -3. 2.5 1.0 5.7 5.7 1.5 3.1 RT: 601. 117. 37. 172. 1.7 0.9 5.4 5.6 1.4 3.0

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

APPRO:AS 22. -89. 1009. 0.33 0.10 501.23 495.59 4200. 500.90 64. 25. 161. 104690. 1.21 0.00 0.00 0.40 4.16

M(G) M(K) KQ XLKQ XRKQ OTEL

<><<END OF BRIDGE COMPUTATIONS>>>>

FIRST USER DEFINED TABLE.

XSID: CODE	SRD	LEW	REW	Q	K	AREA	VEL	WSEL
EXITX:XS	0.	-83.	146.	4200.	40722.	505.	8.31	498.40
FULLV:FV	13.	-83.	147.	4200.	44330.	545.	7.71	498.72
BRIDG:BR	13.	0.	34.	3242.	33840.	325.	9.96	497.78
RDWAY:RG	20.**	*****	357.	958.*	*****	*****	2.00	500.66
APPRO:AS	64.	-89.	161.	4200.	104690.	1009.	4.16	500.90

SECOND USER DEFINED TABLE.

XSID: CODE	E CRWS	FR#	YMIN	XAMY	HF	HO	VHD	EGL	WSEL
EXITX:XS	497.57	0.79	487.61	510.93**	*****	****	1.32	499.72	498.40
FULLV:FV	*****	0.73	487.61	510.93	0.13	0.00	1.14	499.86	498.72
BRIDG:BR	494.60	0.57	486.82	497.78**	*****	****	1.54	499.32	497.78
RDWAY:RG	******	*****	498.14	511.47	0.06**	****	0.33	501.17	500.66
APPRO:AS	495.59	0.40	487.14	512.59	0.10	0.00	0.33	501.23	500.90

WSPRO FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY V060188 MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

EXITX:XS ***** -84. 627. 1.76 ***** 501.06 498.72 5800. 499.30 0. ***** 149. 50864. 1.32 **** ****** 0.95 9.25

===125 FR# EXCEEDS FNTEST AT SECID "FULLV": TRIALS CONTINUED.

FNTEST,FR#,WSEL,CRWS = 0.80 0.91 499.72 498.72

===110 WSEL NOT FOUND AT SECID "FULLV": REDUCED DELTAY.

WSLIM1, WSLIM2, DELTAY = 498.80 510.93 0.50

===115 WSEL NOT FOUND AT SECID "FULLV": USED WSMIN = CRWS.

WSLIM1, WSLIM2, CRWS = 498.80 510.93 498.72

===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS. "APPRO" KRATIO = 1.84

===255 ATTEMPTING FLOW CLASS 3 (6) SOLUTION. WS3N,LSEL = 499.72 497.65

<>><RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

BRIDG:BR 13. 0. 325. 1.62 ***** 499.40 494.71 3324. 497.78 13. ****** 34. 33840. 1.00 ***** ******* 0.58 10.22

TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB 1. **** 6. 0.800 0.000 497.65 ***** ***** ******

XSID:CODE SRD FLEN HF VHD EGL ERR Q WSEL RDWAY:RG 20. 37. 0.06 0.37 502.31 0.00 2474. 501.61

 Q
 WLEN
 LEW
 REW
 DMAX
 DAVG
 VMAX
 VAVG
 HAVG
 CAVG

 LT:
 912.
 84.
 -87.
 -3.
 3.5
 1.6
 7.0
 6.7
 2.3
 3.1

 RT:
 1562.
 142.
 37.
 179.
 2.7
 1.7
 7.0
 6.6
 2.4
 3.0

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

APPRO:AS 22. -90. 1294. 0.37 0.12 502.37 496.78 5800. 502.00 64. 27. 179. 141522. 1.20 0.00 0.00 0.39 4.48

M(G) M(K) KQ XLKQ XRKQ OTEL

<><<END OF BRIDGE COMPUTATIONS>>>>

FIRST USER DEFINED TABLE.

LEW REW XSID: CODE SRD AREA VEL WSEL EXITX:XS 5800. 50864. 0. -84. 149. 627. 9.25 499.30 56406. 702. 8.26 499.72 33840. 325. 10.22 497.78 13. -85. 0. FULLV:FV 150. 5800. BRTDG:BR 13. 34. 3324. 20.***** 2474.********* RDWAY:RG 912. 2.00 501.61 5800. 141522. 1294. 4.48 502.00 APPRO:AS 64. -90. 179.

SECOND USER DEFINED TABLE.

XSID: CODE CRWS FR# YMIN YMAX HF HO VHD EGL 0.95 487.61 510.93****** EXITX:XS 498.72 1.76 501.06 499.30 FULLV: FV 498.72 0.91 487.61 510.93 0.15 0.00 1.50 501.22 499.72 0.58 486.82 497.78******** 1.62 499.40 497.78 BRIDG:BR 494.71 RDWAY:RG ********** 498.14 511.47 0.06***** 0.37 502.31 501.61 496.78 0.39 487.14 512.59 0.12 0.00 0.37 502.37 502.00 APPRO:AS

WSPRO FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY V060188 MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

EXITX:XS ***** -15. 374. 0.77 **** 497.97 495.02 2380. 497.20 0. ***** 142. 29097. 1.22 **** ****** 0.65 6.36

===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS.
"APPRO" KRATIO = 1.67

===220 FLOW CLASS 1 (4) SOLUTION INDICATES POSSIBLE PRESSURE FLOW.
WS3,WSIU,WS1,LSEL = 497.11 497.79 497.87 497.65

===245 ATTEMPTING FLOW CLASS 2 (5) SOLUTION.

===250 INSUFFICIENT HEAD FOR PRESSURE FLOW.

YU/Z, WSIU, WS = 1.10 498.61 498.68

===270 REJECTED FLOW CLASS 2 (5) SOLUTION.

<><<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>>

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

BRIDG:BR 13. 0. 307. 0.93 0.07 498.04 493.37 2380. 497.11 13. 13. 34. 43677. 1.00 0.00 0.00 0.45 7.75

TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB
1. **** 1. 1.000 ****** 497.65 ***** ***** ******

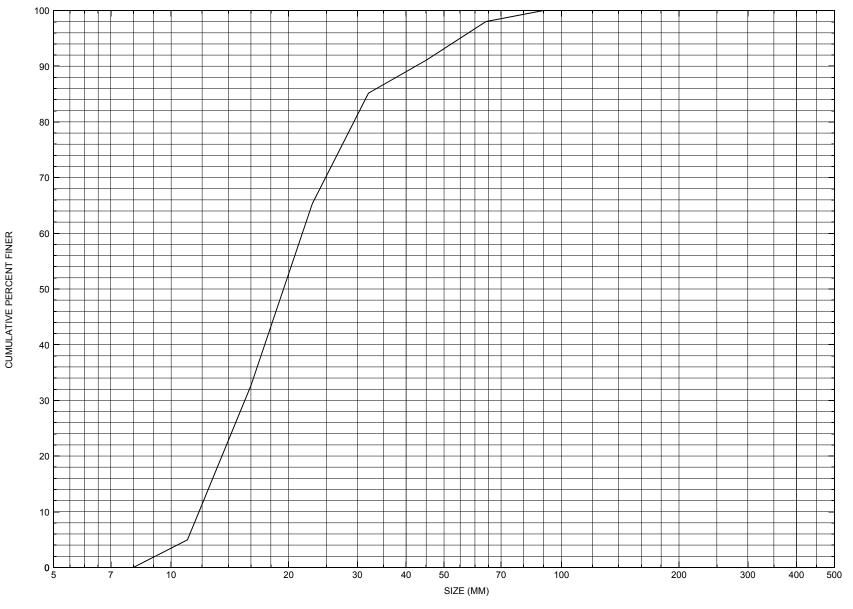
XSID:CODE SRD FLEN HF VHD EGL ERR Q WSEL RDWAY:RG 20. <*** EMBANKMENT IS NOT OVERTOPPED>>>>

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

APPRO:AS 22. -24. 513. 0.34 0.08 498.21 493.95 2380. 497.87 64. 25. 56. 50390. 1.00 0.09 0.00 0.32 4.64

M(G) M(K) KQ XLKQ XRKQ OTEL 0.576 0.304 35052. 6. 40. 497.79

<><<END OF BRIDGE COMPUTATIONS>>>>


FIRST USER DEFINED TABLE.

LEW XSID: CODE SRD REW Ω AREA VEL WSEL 29097. 374. EXITX:XS 2380. 142. 0. -15. 6.36 497.20 13. 390. FULLV: FV -15. 142. 2380. 30463. 6.10 497.36 380. 43677. 0.****** 34. 13. 0. 34. 20.******** BRIDG: BR 2380. 307. 7.75 497.11 0. RDWAY·RG 2.00****** APPRO:AS 64. -24. 56. 2380. 50390. 513. 4.64 497.87

XSID:CODE XLKQ XRKQ KQ APPRO:AS 6. 40. 35052.

SECOND USER DEFINED TABLE.

APPENDIX C: BED-MATERIAL PARTICLE-SIZE DISTRIBUTION

Appendix C. Bed material particle-size distribution for a pebble count in the channel approach of structure CASTTH00050033, in Castleton, Vermont.

APPENDIX D: HISTORICAL DATA FORM

Structure Number CASTTH00050033

General Location Descriptive

Data collected by (First Initial, Full last name) E. BOEHMLER

Date (MM/DD/YY) __03 / _20 / _95

Highway District Number (1 - 2; nn) 03

Town (FIPS place code; I - 4; nnnnn) 11950

Waterway (1 - 6) CASTLETON RIVER

Route Number TH005

Topographic Map Poultney

Latitude (1 - 16; nnnn.n) 43367

County (FIPS county code; I - 3; nnn) ___021

Mile marker (*I* - 11; nnn.nnn) <u>000000</u>

Road Name (I - 7): _-

Vicinity (/ - 9) 0.15 MI TO JCT W TH1

Hydrologic Unit Code: 02010001

Longitude (*i* - 17; *nnnnn.n*) **73112**

Select Federal Inventory Codes

FHWA Structure Number (/ - 8) __10110300331103

Maintenance responsibility (*I* - 21; nn) 03 Maximum span length (*I* - 48; nnnn) 0037

Year built (1 - 27; YYYY) 1908 Structure length (1 - 49; nnnnnn) 000041

Average daily traffic, ADT (I - 29; nnnnnn) 000050 Deck Width (I - 52; nn.n) 145

Year of ADT (1 - 30; YY) 92 Channel & Protection (1 - 61; n) 5

Opening skew to Roadway (*I* - 34; nn) ____ 00 Waterway adequacy (*I* - 71; n) ___ 7

Operational status (I - 41; X) R Underwater Inspection Frequency (I - 92B; XYY) N

Structure type (*I - 43; nnn*) <u>302</u> Year Reconstructed (*I - 106*) <u>1972</u>

Approach span structure type (I - 44; nnn) __000 __ Clear span (nnn.n ft) __034.0

Number of spans (I - 45; nnn) 001 Vertical clearance from streambed (nnn.n ft) 010.0

Number of approach spans (*I - 46; nnnn*) 0000 Waterway of full opening (*nnn.n ft*²) 340.0

Comments:

The structural inspection report of 7/13/94 indicates the structure is a single span, steel beam type bridge. The right abutment and its wingwalls are concrete while the left abutment is "laid-up" cut-stone blocks. The right abutment is reported as having areas of spalling and heavy concrete scaling along the bottom of the wall. The left abutment has cracks, breaks, voids, and displacement of the stone reported. Settlement of the left abutment has occurred, reportedly. Its wingwalls are in a condition similar to that of the abutment concrete. The report notes scour along the left abutment, which has created a 3 foot long segment where the stone blocks have fallen out from the wall. Furthermore, scour is reported (Continued, page 33)

	Brid	ge Hydro	ologic Da	ata		
Is there hydrologic data availabl	e? <u>N</u> if	No, type ctrl	-nh VTA	OT Draina	age area (m	าi²): <u>-</u>
Terrain character:						
Stream character & type: _						
Streambed material:						
Discharge Data (cfs): Q _{2.33}						
Record flood date (MM / DD / YY):						
Estimated Discharge (cfs): lce conditions (Heavy, Moderate, Li						
The stage increases to maximum						
The stream response is (<i>Flashy, I</i>	_		•	voi rapiary j.		
Describe any significant site cor	- , ,			m that ma	y influence	the stream's
stage: -	•				,	
Watershed storage area (in perce	<i>'</i> ——					
The watershed storage area is:		ainly at the h e site)	eadwaters; 2	?- uniformly (distributed; 3	-immediatly upstream
Water Surface Elevation Estima	tes for Exi	sting Struc	ture:			
Peak discharge frequency	Q _{2.33}	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀	
	-2.33	-	25	-50	- 100	
Water surface elevation (ft))						
Velocity (ft / sec)	-	-	-	-	-	
		1	1			I
Long term stream bed changes:	-					
Is the roadway overtopped below	w the Q ₁₀₀	? (Yes, No,	Unknown):	<u>U</u>	Frequenc	cy: <u>-</u>
Relief Elevation (#):	Discha	arge over r	oadway at	$Q_{100} (ft^3/s)$	sec):	_
Are there other structures nearb	y? (Yes, No	o, Unknown)	: <u>U</u> If No	o or Unknow	n, type ctrl-n	os
Upstream distance (miles):		Town:			_ Year Bui	lt:
Highway No. :	Structu	ıre No. : <u>-</u>	Stru	ucture Typ	e: <u>-</u>	
Clear span (ft): Clear He	eight (#):	· F	ull Waterw	ay (ft²): <u>-</u>	,	

Downstream distance (miles): Town: Year Built: Highway No. : Structure No. : Structure Type:
Clear span (#): Clear Height (#): Full Waterway (#²):
Comments: through the bridge along the centerline of the stream. The streambed is composed of stones and silt. There is a log across part of the channel upstream from the structure and another tree is hanging over the channel downstream. The majority of the flow is noted to proceed along the upstream right wingwall, and then makes a sharp bend through the structure impacting the left abutment.
USGS Watershed Data
Watershed Hydrographic Data
Drainage area (DA) 36.87 mi^2 Lake/pond/swamp area 0.29 mi^2 Watershed storage (ST) 1.1 $\%$
Bridge site elevation 400 ft Headwater elevation 2726 ft Main channel length 8.46 mi
10% channel length elevation $\phantom{00000000000000000000000000000000000$
Watershed Precipitation Data
Average site precipitation in Average headwater precipitation in
Maximum 2yr-24hr precipitation event (124,2) _ in
Average seasonal snowfall (Sn) ft

Bridge Plan Data									
Are plans available? NIf no, type ctrl-n pl Date issued for construction (MM / YYYY): / Project Number Minimum channel bed elevation: Low superstructure elevation: USLAB DSLAB USRAB DSRAB									
Benchmark location description: NO BENCHMARK INFORMATION									
Reference Point (MSL, Arbitrary, Other): Datum (NAD27, NAD83, Other):									
Foundation Type: 4 (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown)									
If 1: Footing Thickness Footing bottom elevation:									
If 2: Pile Type: <u>-</u> (<i>1-Wood; 2-Steel or metal; 3-Concrete</i>) Approximate pile driven length: <u>-</u> If 3: Footing bottom elevation: <u>-</u>									
Is boring information available? N If no, type ctrl-n bi Number of borings taken:									
Foundation Material Type: 3 (1-regolith, 2-bedrock, 3-unknown)									
Briefly describe material at foundation bottom elevation or around piles: NO FOUNDATION MATERIAL INFORMATION									
Comments: NO PLANS									

Cross-sectional Data

Is cross-sectional data available? Yes If no, type ctrl-n xs

Source (FEMA, VTAOT, Other)? VTAOT

The elevation and station measurements are in feet. This cross section was dated 7/7/92 and Comments: attached to a bridge inspection report. The elevation coordinate was taken from the surveyed points used in this report. They line-up at the low chord points.

Station	0	10	17.33	23.66	34.00	-	-	-	-	-	-
Feature	LAB	-	-	-	RAB	-	-	-	-	-	-
Low chord elevation	497.79	497.71	497.65	497.60	497.51	-	-	-	-	-	-
Bed elevation	490.04	487.29	487.15	487.10	488.43	-	-	-	-	-	-
Low chord to bed	7.75	10.42	10.50	10.50	9.08	-	-	-	-	-	-
Station	-	-	-	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	-	-	-	-	-	-	-	-
Low chord to bed	-	-	-	-	-	-	-	-	-	-	-

Source (FEMA, VTAOT, Other)? ____

Comments: -

1											
Station	-	-	ı	-	-	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	ı	ı	-	-	-	ı	-	-	-
Low chord to bed	-	-	ı	ı	-	-	-	ı	-	-	-
Station	•	-	ı	ı	•	•	•	ı	•	•	-
Feature	-	-	1	1	-	•	-	1	-	•	-
Low chord elevation	-	-	1	1	-	•	-	1	-	•	-
Bed elevation	-	-	-	1	-	-	-	-	-	-	-
Low chord to bed	-	_	-	-	-	-	-	-	-	-	_

APPENDIX E:

LEVEL I DATA FORM

Structure Number CASTTH00050023

Qa/Qc Check by: MAI Date: 10/25/95

Computerized by: MAI Date: 10/25/95

EMB Date: 4/29/98 Reviewd by:

A. General Location Descriptive

. Data collected by (First Initial, Full last name) T. Severance	Date (MM/DD/YY) 09 / 20 / 1995
--	--------------------------------

2. Highway District Number 03 County_Rutland (021) Waterway (1 - 6) Castleton River

Mile marker 0 Town Castleton (11950)

Road Name Cemetery Road Hydrologic Unit Code: <u>02</u>010001

Route Number TH 5 3. Descriptive comments:

This bridge is located 0.15 mile from the junction of Town Highway 1.

B. Bridge Deck Observations

- 4. Surface cover... LBUS_2___ RBDS 6 Overall 5 RBUS $\underline{2}$ LBDS $\underline{2}$ (2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland)
- 5. Ambient water surface... US 1 UB 1 DS 1 (1- pool; 2- riffle)
- 6. Bridge structure type 1 (1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other)
- 7. Bridge length 41.0 (feet)

Span length 37.0 (feet) Bridge width 14.5 (feet)

Road approach to bridge:

8. LB 2 RB 2 (0 even, 1- lower, 2- higher)

9. LB 2 RB 2 (1- Paved, 2- Not paved)

10. Embankment slope (run / rise in feet / foot): US left -- US right --

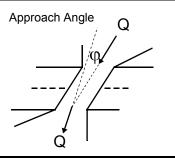
	Pr	otection	12 Erasian	14 Soverity	
	11.Type	12.Cond.	13.Erosion	14.Seventy	
LBUS		-	2	1	
RBUS		-	2	1	
RBDS	_0	-	2	1	
LBDS	_0	-	2	1	

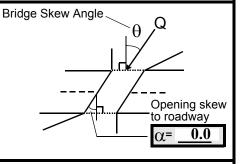
Bank protection types: **0**- none; **1**- < 12 inches; **2-** < 36 inches; **3-** < 48 inches;

4- < 60 inches; **5**- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped;

3- eroded; 4- failed


Erosion: 0 - none: 1- channel erosion: 2road wash; 3- both; 4- other


Erosion Severity: **0** - none: **1**- slight: **2**- moderate:

3- severe

Channel approach to bridge (BF):

16. Bridge skew: 40 15. Angle of approach: 40

17. Channel impact zone 1:

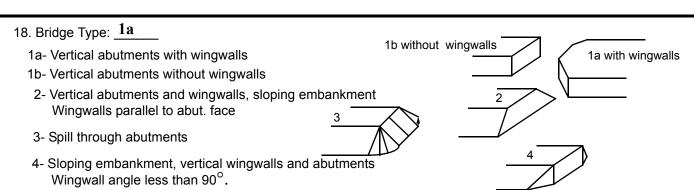
Exist? $\underline{\mathbf{Y}}$ (Y or N)

Where? RB (LB, RB)

Severity 2

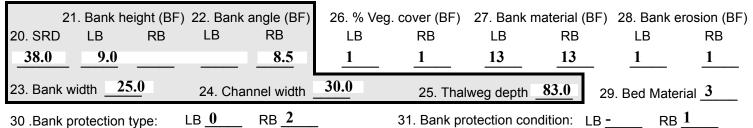
Range? 0 feet US (US, UB, DS) to 60 feet US

Channel impact zone 2:


Exist? \mathbf{Y} (Y or N)

Where? LB (LB, RB)

Severity 1


Range? 0 feet US (US, UB, DS) to 60 feet DS

Impact Severity: **0**- none to very slight; **1**- Slight; **2**- Moderate; **3**- Severe

- 19. Bridge Deck Comments (surface cover variations, measured bridge and span lengths, bridge type variations, approach overflow width, etc.)
- 4. The surface cover generally is suburban. A railroad bed follows the left bank of the river near this site. In addition to the railroad downstream, the surface cover consists primarily of shrubs and brush. A cemetary and TH 5 occupy the upstream right overbank. On the upstream left overbank, a residential neighborhood was observed with a house and a local roadway following the river. Forest covers the downstream right overbank.
- 7. The span length and deck width measured were 36.0 feet and 15.0 feet, respectively.
- 13. Some slumping is evident at the base of the up- and downstream left road embankments.

C. Upstream Channel Assessment

SRD - Section ref. dist. to US face % Vegetation (Veg) cover: **1**- 0 to 25%; **2**- 26 to 50%; **3**- 51 to 75%; **4**- 76 to 100% Bed and bank Material: **0**- organics; **1**- silt / clay, < 1/16mm; **2**- sand, 1/16 - 2mm; **3**- gravel, 2 - 64mm;

4- cobble, 64 - 256mm; **5**- boulder, > 256mm; **6**- bedrock; **7**- manmade

Bank Erosion: **0**- not evident; **1**- light fluvial; **2**- moderate fluvial; **3**- heavy fluvial / mass wasting

Bank protection types: $\mathbf{0}$ - absent; $\mathbf{1}$ - < 12 inches; $\mathbf{2}$ - < 36 inches; $\mathbf{3}$ - < 48 inches; $\mathbf{4}$ - < 60 inches; $\mathbf{5}$ - wall / artificial levee

Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

- 32. Comments (bank material variation, minor inflows, protection extent, etc.):
- 27. Silty / clay in upper layer with gravel below.
- 30. Right bank protection extends 65 feet upstream of the upstream right wingwall.

33. Point/Side bar present? Y (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 96 35. Mid-bar width: 5
36. Point bar extent: 88 feet US (US, UB) to 116 feet US (US, UB, DS) positioned 80 %LB to 100 %RB
37. Material: <u>32</u>
38. Point or side bar comments (Circle Point or Side; Note additional bars, material variation, status, etc.):
This is a gravel point bar with more sand at the US end. A second point bar is located along the right bank from 133 to 167 feet US. The width is 5 feet at the mid-bar distance of 153 feet US and the bar is positioned
80% left to 100% right banks. There is grass covering the bar.
39. Is a cut-bank present? Y (Y or if N type ctrl-n cb) 40. Where? LB (LB or RB)
41. Mid-bank distance: 95 42. Cut bank extent: 50 feet US (US, UB) to 130 feet US (US, UB, DS)
43. Bank damage: 3 (1- eroded and/or creep; 2- slip failure; 3- block failure)
44. Cut bank comments (eg. additional cut banks, protection condition, etc.):
Tree roots are exposed with a number of smaller trees leaning into the channel. Much of the finer material has
been washed away, leaving gravel along the base of the left bank.
45 lo channel coour propont? V (Activity) 46 Mid accur dictance: 18
45. Is channel scour present? Y (Y or if N type ctrl-n cs) 46. Mid-scour distance: 18
47. Scour dimensions: Length 82 Width 12 Depth: 2 Position 50 %LB to 100 %RB 48. Scour comments (eg. additional scour areas, local scouring process, etc.):
The bed is primarily gravel with little (0.2 feet) to no penetration along the scoured section. A mucky layer
overlies the gravel along the left bank. There is 1 foot of penetration in areas before hitting gravel; material
washes into the channel from the bank and confluence.
49. Are there major confluences? Y (Y or if N type ctrl-n mc) 50. How many? 1
51. Confluence 1: Distance $\underline{14}$ 52. Enters on \underline{LB} (LB or RB) 53. Type $\underline{1}$ (1- perennial; 2- ephemeral)
Confluence 2: Distance Enters on (LB or RB) Type (1- perennial; 2- ephemeral)
54. Confluence comments (eg. confluence name):
A ditch enters 10 feet US of the US end of the US left wingwall. The ditch runs along and between the railroad
embankment and stream channel.
D. Under Bridge Channel Assessment
55. Channel restraint (BF)? LB $\frac{2}{2}$ $(1-natural bank; 2-abutment; 3-artificial levee)$
(* ************************************
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF)
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF) LB RB LB RB LB RB
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF)
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF) LB RB LB RB LB RB LB RB
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF) LB RB LB RB LB RB 53.5 55. 59. Channel width 60. Thalweg depth 90.0 63. Bed Material 64. Erosion (BF)
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF) LB RB LB RB LB RB LB RB 53.5 59. Channel width 60. Thalweg depth 63. Bed Material 64. Erosion (BF)
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF) LB RB LB RB LB RB 53.5 55. 59. Channel width 60. Thalweg depth 90.0 63. Bed Material 64. Erosion (BF)
56. Height (BF) 57 Angle (BF) LB RB LB RB 53.5 2.5 59. Channel width 60. Thalweg depth 90.0 Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2- sand, 1/16 - 2mm; 3- gravel, 2 - 64mm; 4- cobble, 64 - 256mm; 5- boulder, > 256mm; 6- bedrock; 7- manmade Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting 64. Comments (bank material variation, minor inflows, protection extent, etc.):
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF) LB RB LB RB LB RB 53.5 59. Channel width 60. Thalweg depth 63. Bed Material Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2- sand, 1/16 - 2mm; 3- gravel, 2 - 64mm; 4- cobble, 64 - 256mm; 5- boulder, > 256mm; 6- bedrock; 7- manmade Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting 64. Comments (bank material variation, minor inflows, protection extent, etc.): 21 A scour-hole is positioned along the right half of the channel and bed material is composed of fine gravel and
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF) 63. Erosion (BF) 65. Erosi
56. Height (BF) 57 Angle (BF) 61. Material (BF) 62. Erosion (BF) LB RB LB RB LB RB 53.5 59. Channel width 60. Thalweg depth 63. Bed Material Bed and bank Material: 0- organics; 1- silt / clay, < 1/16mm; 2- sand, 1/16 - 2mm; 3- gravel, 2 - 64mm; 4- cobble, 64 - 256mm; 5- boulder, > 256mm; 6- bedrock; 7- manmade Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting 64. Comments (bank material variation, minor inflows, protection extent, etc.): 21 A scour-hole is positioned along the right half of the channel and bed material is composed of fine gravel and

65. Debris and Ice	Is there debris accumulation?	(Y or N) 66. Where? Y	(1- Upstream; 2- At bridge; 3- Both
	_	• • • • • •	(1- Low; 2- Moderate; 3- High)

69. Is there evidence of ice build-up? ___ (*Y or N*)

Ice Blockage Potential N (1- Low; 2- Moderate; 3- High)

70. Debris and Ice Comments:

70 **1**

There is debris located US along the left bank. A fallen tree mentioned in the structural inspection dated 7/13/94 has been removed.

<u>Abutments</u>	71. Attack ∠(BF)	72. Slope ∠ (Qmax)	73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76.Exposure depth	77. Material	78. Length
LABUT		40	90	2	0	-	-	90.0
RABUT	2	0	90	1	ı	2	2	34.0

Pushed: LB or RB

Toe Location (Loc.): 0- even, 1- set back, 2- protrudes

Scour cond.: 0- not evident; 1- evident (comment); 2- footing exposed; 3-undermined footing; 4- piling exposed; 5- settled; 6- failed

Materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.):

0.5

1.2

1

74. The right abutment footing is exposed at the downstream end. Beyond 2 feet in either direction the footing is covered by stone fill. The downstream end of the right wingwall is met by bank protection covered with sand.

80. Wingwalls:

	Exist?	Material?	Scour Condition?	Scour depth?	Exposure depth?	81. Angle?	Length?
USLWW:					-	34.0	
USRWW:	Y		2		0	3.0	
						4 6 -	
DSLWW:	-		-		Y	16.5	
DSRWW:	1		2		0.75	16.5	

Wingwall angle DSRWW USLWW

USLWW

USLWW

USLWW

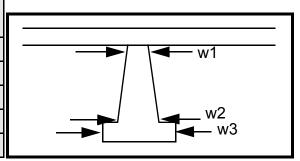
Wingwall materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

82. Bank / Bridge Protection:

Location	USLWW	USRWW	LABUT	RABUT	LB	RB	DSLWW	DSRWW
Туре	1.25	-	Y	-	2	2	2	2
Condition	N	-	1	-	1	2	1	3
Extent	-	-	0	2	1	1	1	-

Bank / Bridge protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank / Bridge protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed


Protection extent: 1- entire base length; 2- US end; 3- DS end; 4- other

83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):

Piers:

84. Are there piers? <u>Th</u> (*Y or if N type ctrl-n pr*)

					,		
85.							
Pier no.	width (w) feet			elev	vation (e) feet		
	w1	w2	w3	e@w1	e@w2	e@w3	
Pier 1				90.0	14.5	35.0	
Pier 2		-		20.0	1	30.0	
Pier 3	8.0	-	-	-	-	-	
Pier 4	-	-	-	-	-	-	

Level 1 Pier Descr.	1	2	3	4
86. Location (BF)	e	cov-	wall	detect
87. Type	upst	ered	has	pro-
88. Material	ream	by	par-	tec-
89. Shape	left	slum	tially	tion.
90. Inclined?	wing	ped	falle	DS
91. Attack ∠ (BF)	wall	eart	n	right
92. Pushed	pro-	h/	into	wing
93. Length (feet)	-	-	-	-
94. # of piles	tec-	grass	the	wall-
95. Cross-members	tion	•	chan	no
96. Scour Condition	is	DS	nel-	pro-
97. Scour depth	most	left	unab	tec-
98. Exposure depth	ly	wing	le to	tion

LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP

1- Solid pier, 2- column, 3- bent

1- Wood; 2- concrete; 3- metal; 4- stone

1- Round; 2- Square; 3- Pointed

Y- yes; N- no

LB or RB

0- none; 1- laterals; 2- diagonals; 3- both

0- not evident; 1- evident (comment);

2- footing exposed; 3- piling exposed; 4- undermined footing; 5- settled; 6- failed

99. Pier comments (eg. undern detected, but unable to per are reducing and eliminati	netrate hard earth (1	road wash path) som	e slate (flat) pieces	•
N				
100.	E. Downstrea	am Channel Ass	essment	
Bank height (BF) SRD LB RB	Bank angle (BF) LB RB	% Veg. cover (BF) LB RB	Bank material (B LB RB 	F) Bank erosion (BF) LB RB
Bank width (BF)	Channel width	<u>-</u> Tha	lweg depth <u>-</u>	Bed Material <u>-</u>
Bank protection type (Qmax):	LB <u>-</u> RB <u>-</u>	· · ·		LB <u>-</u> RB <u>-</u>
SRD - Section ref. dist. to US is Bed and bank Material: 0- orga 4- cob Bank Erosion: 0- not evident; Bank protection types: 0- abse Bank protection conditions: 1- Comments (eg. bank material va	anics; 1- silt / clay, < 1/ ble, 64 - 256mm; 5- bo 1- light fluvial; 2- model nt; 1- < 12 inches; 2- < good; 2- slumped; 3- e	16mm; 2 - sand, 1/16 - 2 ulder, > 256mm; 6 - bed rate fluvial; 3 - heavy fluv : 36 inches; 3 - < 48 inch roded; 4 - failed	mm; 3- gravel, 2 - 64. rock; 7 - manmade rial / mass wasting	
- - -				
-				
-				
-				
-				
-				
-				
101. <u>Is a drop structure</u> 103. Drop: <u>-</u> feet 105. Drop structure comments of the structure c	104. Structure n	naterial: <u>-</u> (1 - steel s	102. Distance: _ - heet pile; 2 - wood pil	feet le; 3- concrete; 4- other)
-				
-				

106. Point/Side bar present? - (Y or I	N. if N type ctrl-n pb)Mic	d-bar distance: _=	Mid-bar width:
Point bar extent: feet (US, UB, DS) to Material: Point or side bar comments (Circle Point or Side; no			
-	,,	, , , , , , , , , , , , , , , , , , , ,	,
-			
-			
-			
Is a cut-bank present? N (Y or if N type Cut bank extent: RS feet (US, UB, DS) to Bank damage: (1- eroded and/or creep; 2- sc Cut bank comments (eg. additional cut banks, protections)	feet (US, UE lip failure; 3 - block failur	3, DS)	-bank distance: <u>PIE</u>
Is channel scour present? (Y or if N Scour dimensions: Length 2 Width 5 De Scour comments (eg. additional scour areas, local set 432 3 3 1	epth: 5 Po	d-scour distance: $\frac{1}{2}$ ositioned $\frac{1}{2}$ %LB to $\frac{1}{2}$	
Are there major confluences? 1 (Yo	or if N type ctrl-n mc)	How many? The	r
Confluence 1: Distance e is Enters			
Confluence 2: Distance <u>pro-</u> Enters		_	
Confluence comments (eg. confluence name):			
along both left and right banks for greater the Stone fill lines the channel bed from 0 to 70 fe		eam.	
Stone ini lines the channel bed from 0 to 70 fe	eet DS.		
E Goomor	phic Channel A	eeneemont	
	phic Channel A		
107. Stage of reach evolution	1- Construct 2- Stable 3- Aggraded 4- Degraded 5- Laterally 6- Vertically	d d	

lescriptors):	nents (Channel evolution n	ot considering bridge	e enecis, see nec-	-20, Figure 1 for geor	погрпіс
N					

	109. G. Plan View Sketch							
point bar (pb)	debris	flow Q	stone wall					
cut-bank cb scour hole	rip rap or stone fill	cross-section ++++++ ambient channel ——	other wall					
VII)								

APPENDIX F: SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: CASTTH00050033 Town: Castleton Road Number: TH 5 (Cemetary Road) County: Rutland

Stream: Castleton River

Initials EMB Date: 4/29/98 Checked: MAI

Analysis of contraction scour, live-bed or clear water?

Critical Velocity of Bed Material (converted to English units) $Vc=11.21*y1^0.1667*D50^0.33$ with Ss=2.65 (Richardson and others, 1995, p. 28, eq. 16)

Approach	Section

Characteristic	100 yr	500 yr	other Q
Total discharge, cfs Main Channel Area, ft2 Left overbank area, ft2 Right overbank area, ft2 Top width main channel, ft Top width L overbank, ft Top width R overbank, ft D50 of channel, ft D50 left overbank, ft D50 right overbank, ft	4200 766 69 173 87 53 105 0.0636	5800 863 133 299 88 59 123 0.0636	2380 513 0 0 79 0 0 0.0636
y1, average depth, MC, ft y1, average depth, LOB, ft y1, average depth, ROB, ft		9.8 2.3 2.4	6.5 ERR ERR
Total conveyance, approach Conveyance, main channel Conveyance, LOB Conveyance, ROB Percent discrepancy, conveyance Qm, discharge, MC, cfs Ql, discharge, LOB, cfs Qr, discharge, ROB, cfs	104693 92231 3454 9008 0.0000 3700.1 138.6 361.4		50378 0 0 0.0000
Vm, mean velocity MC, ft/s Vl, mean velocity, LOB, ft/s Vr, mean velocity, ROB, ft/s Vc-m, crit. velocity, MC, ft/s Vc-l, crit. velocity, LOB, ft/s Vc-r, crit. velocity, ROB, ft/s	4.8 2.0 2.1 6.4 ERR ERR	5.3 2.9 2.7 6.5 ERR ERR	

Results

Live-bed(1) or Clear-Water(0) Contraction Scour?
Main Channel 0 0

Armoring

(Federal Highway Administration, 1993)

Downstream bridge face property	100-yr	500-yr	Other Q
Q, discharge thru bridge MC, cfs	3242	3324	2380
Main channel area (DS), ft2	325.4	325.4	307.3
Main channel width (normal), ft	33.8	33.8	33.8
Cum. width of piers, ft	0.0	0.0	0.0
Adj. main channel width, ft	33.8	33.8	33.8
D90, ft	0.1387	0.1387	0.1387
D95, ft	0.1801	0.1801	0.1801
Dc, critical grain size, ft	0.2204	0.2317	0.1355
Pc, Decimal percent coarser than Dc	0.017	0.014	0.104

Depth to armoring, ft $$\rm N/A\ N/A\ 3.50\]$

```
Clear Water Contraction Scour in MAIN CHANNEL
```

```
y2 = (Q2^2/(131*Dm^2(2/3)*W2^2))^3(3/7) Converted to English Units
ys=y2-y bridge
(Richardson and others, 1995, p. 32, eq. 20, 20a)
Bridge Section
                                   Q100
                                            Q500
                                                     Other Q
  (Q) total discharge, cfs
                                   4200
                                            5800
                                                     2380
  (Q) discharge thru bridge, cfs
                                   3242
                                            3324
  Main channel conveyance
                                            33840
                                                     43698
                                   33840
  Total conveyance
                                   33840
                                            33840
                                                     43698
Q2, bridge MC discharge, cfs
                                   3242
                                            3324
                                                     2370
  Main channel area, ft2
                                   325
                                            325
                                                     307
  Main channel width (normal), ft
                                   33.8
                                            33.8
                                                     33.8
  Cum. width of piers in MC, ft
                                   0.0
                                            0.0
                                                     0.0
W, adjusted width, ft
                                   33.8
                                            33.8
                                                     33.8
y bridge (avg. depth at br.), ft
                                   9.63
                                            9.63
                                                     9.09
Dm, median (1.25*D50), ft
                                   0.0795
                                            0.0795
                                                     0.0795
y2, depth in contraction,ft
                                   12.75
                                            13.03
                                                     9.75
ys, scour depth (y2-ybridge), ft
                                                     0.66
Pressure Flow Scour (contraction scour for orifice flow conditions)
Chang pressure flow equation
                                   Hb+Ys=Ca*abr/Vc
Cq=1/Cf*Cc Cf=1.5*Fr^0.43 (<=1)
                                 Cc=SQRT[0.10(Hb/(ya-w)-0.56)]+0.79 (<=1)
Umbrell pressure flow equation
(Hb+Ys)/ya=1.1021*[(1-w/ya)*(Va/Vc)]^0.6031
(Richardson and other, 1995, p. 144-146)
                                                     OtherO
                                            0500
Q, total, cfs
                                   4200
                                            5800
                                                     2380
Q, thru bridge MC, cfs
                                   3242
                                            3324
                                                     2380
Vc, critical velocity, ft/s
                                  6.43
                                            6.55
                                                     6.11
Va, velocity MC approach, ft/s
                                                     4.64
                                   4.83
                                            5.31
Main channel width (normal), ft
                                   33.8
                                            33.8
                                                     33.8
Cum. width of piers in MC, ft
                                  0.0
                                            0.0
                                                     0.0
W, adjusted width, ft
                                   33.8
                                            33.8
                                                     33.8
qbr, unit discharge, ft2/s
                                            98.3
                                   95.9
                                                     70.4
Area of full opening, ft2
                                   325.4
                                            325.4
                                                     307.3
Hb, depth of full opening, ft
                                   9.63
                                            9.63
                                                     9.09
Fr, Froude number, bridge MC
                                   0.57
                                            0.58
Cf, Fr correction factor (<=1.0)
                                                     0.00
                                   1.00
                                            1.00
**Area at downstream face, ft2
                                   N/A
                                            N/A
                                                     N/A
**Hb, depth at downstream face, ft N/A
                                            N/A
                                                     N/A
**Fr, Froude number at DS face
                                   ERR
                                            ERR
                                                     ERR
**Cf, for downstream face (<=1.0) N/A
                                            N/A
                                                     N/A
Elevation of Low Steel, ft
                                  497.65
                                            497.65
                                                     Ω
Elevation of Bed, ft
                                   488.02
                                            488.02
                                                     -9.09
Elevation of Approach, ft
                                   500.9
                                            502
                                                     Ω
Friction loss, approach, ft
                                  0.1
                                            0.12
                                                     Ω
Elevation of WS immediately US, ft 500.80
                                            501.88
                                                     0.00
ya, depth immediately US, ft
                                   12.78
                                            13.86
                                                     9.09
Mean elevation of deck, ft
                                   502.67
                                            502.67
w, depth of overflow, ft (>=0)
                                                     0.00
                                   0.00
                                            0.00
Cc, vert contrac correction (<=1.0) 0.93
                                            0.91
                                                     1.00
**Cc, for downstream face (<=1.0) ERR
                                            ERR
                                                     ERR
Ys, scour w/Chang equation, ft
                                   6.43
                                            6.95
Ys, scour w/Umbrell equation, ft
                                   2.22
                                            3.84
                                                     N/A
**=for UNsubmerged orifice flow using estimated downstream bridge face properties.
**Ys, scour w/Chang equation, ft N/A
                                           N/A
                                                     N/A
**Ys, scour w/Umbrell equation, ft N/A
                                            N/A
In UNsubmerged orifice flow, an adjusted scour depth using the Laursen
equation results and the estimated downstream bridge face properties
can also be computed (ys=y2-ybridgeDS)
  y2, from Laursen's equation, ft 12.75
                                            13.03
                                                     9.75
   WSEL at downstream face, ft
                                   - -
   Depth at downstream face, ft
                                   N/A
                                            N/A
                                                     N/A
Ys, depth of scour (Laursen), ft
                                 N/A
                                            N/A
                                                     N/A
```

Abutment Scour

Froehlich's Abutment Scour $Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1$ (Richardson and others, 1995, p. 48, eq. 28)

Characteristic	Left Abu 100 yr Ç	ıtment 2 500 yr Q	Other Q	Right Ab		Other Q
(Qt), total discharge, cfs a', abut.length blocking flow, ft Ae, area of blocked flow ft2 Qe, discharge blocked abut.,cfs (If using Qtotal_overbank to obta Ve, (Qe/Ae), ft/s ya, depth of f/p flow, ft	4200 31.6 147.6 ain Ve, le 3.11 4.67	5800 31.6 191.21 	2380 23.9 116.3 407.4 ank and e 3.50 4.87	4200 22.6 164.4 enter Ve a 3.55 7.27	5800 22.6 177.8 and Fr mar 3.85 7.87	2380 21.7 137.3 607.5 nually) 4.42 6.33
Coeff., K1, for abut. type (1.0, K1 $$	verti.; 0	0.82, vert 1	i. w/ win 1	gwall; 0. 0.82	55, spill 0.82	thru) 0.82
Angle (theta) of embankment (<90	if abut.	points DS	; >90 if	abut. poi	nts US)	
theta K2	90 1.00	90 1.00	90 1.00	90 1.00	90 1.00	90 1.00
Fr, froude number f/p flow	0.316	0.318	0.280	0.363	0.356	0.310
ys, scour depth, ft	16.62	19.95	14.94	19.16	20.14	16.12
HIRE equation $(a'/ya > 25)$ ys = $4*Fr^0.33*y1*K/0.55$ (Richardson and others, 1995, p. 49	9, eq. 29)					
a'(abut length blocked, ft) y1 (depth f/p flow, ft) a'/y1 Skew correction (p. 49, fig. 16) Froude no. f/p flow Ys w/ corr. factor K1/0.55: vertical vertical w/ ww's spill-through	31.6 4.67 6.77 1.00 0.32 ERR ERR ERR	31.6 6.05 5.22 1.00 0.32 ERR ERR ERR	23.9 4.87 4.91 1.00 0.28 ERR ERR ERR	22.6 7.27 3.11 1.00 0.36 ERR ERR ERR	22.6 7.87 2.87 1.00 0.36 ERR ERR ERR	21.7 6.33 3.43 1.00 0.31 ERR ERR ERR
Abutment riprap Sizing						
Isbash Relationship D50=y*K*Fr^2/(Ss-1) and D50=y*K*(Fr^2)^0.14/(Ss-1) (Richardson and others, 1995, p112, eq. 81,82)						
Characteristic	Q100	Q500	Other Q	Q100	Q500	Other Q
Fr, Froude Number y, depth of flow in bridge, ft	0.57 9.63	0.58 9.63	0.45 9.09	0.57 9.63	0.58 9.63	0.45 9.09
Median Stone Diameter for riprap at Fr<=0.8 (vertical abut.) Fr>0.8 (vertical abut.)	t: left ab 1.93 ERR	outment 2.00 ERR	1.14 ERR	right ab 1.93 ERR	outment, f 2.00 ERR	t 1.14 ERR