LEVEL II SCOUR ANALYSIS FOR BRIDGE 32 (BURKTH00440032) on TOWN HIGHWAY 44, crossing ROUNDY BROOK, BURKE, VERMONT

Open-File Report 98-554

Prepared in cooperation with
VERMONT AGENCY OF TRANSPORTATION
and
FEDERAL HIGHWAY ADMINISTRATION

LEVEL II SCOUR ANALYSIS FOR BRIDGE 32 (BURKTH00440032) on TOWN HIGHWAY 44, crossing ROUNDY BROOK, BURKE, VERMONT

By MICHELLE M. SERRA AND ERICK M. BOEHMLER

U.S. Geological Survey Open-File Report 98-554

Prepared in cooperation with VERMONT AGENCY OF TRANSPORTATION and

FEDERAL HIGHWAY ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Thomas J. Casadevall, Acting Director

For additional information write to:

District Chief U.S. Geological Survey 361 Commerce Way Pembroke, NH 03275-3718 Copies of this report may be purchased from:

U.S. Geological Survey Branch of Information Services Open-File Reports Unit Box 25286 Denver, CO 80225-0286

CONTENTS

	onversion Factors, Abbreviations, and Vertical Datum	
Int	troduction and Summary of Results	1
Le	evel II summary	
	Description of Bridge	
	Description of the Geomorphic Setting	
	Description of the Channel	
	Hydrology	
	Calculated Discharges	
	Description of the Water-Surface Profile Model (WSPRO) Analysis	
	Cross-Sections Used in WSPRO Analysis	
	Data and Assumptions Used in WSPRO Model	
	Bridge Hydraulics Summary	
	Scour Analysis Summary	
	Special Conditions or Assumptions Made in Scour Analysis	
	Scour Results	
a 1	Riprap Sizing	
Sel	elected References	18
Аp	ppendices:	
_	A. WSPRO input file	19
	B. WSPRO output file	
	C. Bed-material particle-size distribution	
	1	
	D. Historical data form	
	E. Level I data form	
	F. Scour computations	45
FIC	GURES	
		2
	Map showing location of study area on USGS 1:24,000 scale map	3
2.	Map showing location of study area on Vermont Agency of Transportation town	1
2	highway map	
	Structure BURKTH00440032 viewed from upstream (August 8, 1995)	
	Downstream channel viewed from structure (August 8, 1995)	
	Structure BURKTH00440032 viewed from downstream (August 8, 1995).	
	Water-surface profiles for the 100- and 500-year discharges at structure	0
7.	BURKTH00440032 on Town Highway 44, crossing Roundy Brook,	
	Burke, Vermont.	15
Q	Scour elevations for the 100- and 500-year discharges at structure	13
0.	BURKTH00440032 on Town Highway 44, crossing Roundy Brook,	
	Burke, Vermont.	16
	Durke, vermone	10
_,	ADI EQ	
I.F	ABLES	
1.	Remaining footing/pile depth at abutments for the 100-year discharge at structure	
	BURKTH00440032 on Town Highway 44, crossing Roundy Brook,	
	Burke, Vermont	17
2.	Remaining footing/pile depth at abutments for the 500-year discharge at structure	
	BURKTH00440032 on Town Highway 44, crossing Roundy Brook,	
	Burke, Vermont	17

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Slope	
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km)
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
•	Volume	•
cubic foot (ft ³)	0.02832	cubic meter (m ³)
	Velocity and Flow	7
foot per second (ft/s)	0.3048	meter per second (m/s)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m ³
cubic foot per second per square mile	0.01093	cubic meter per second per square
$[(ft^3/s)/mi^2]$		kilometer $[(m^3/s)/km^2]$

OTHER ABBREVIATIONS

BF	bank full	LWW	left wingwall
cfs	cubic feet per second	Max	maximum
D_{50}	median diameter of bed material	MC	main channel
DS	downstream	RAB	right abutment
elev.	elevation	RABUT	face of right abutment
f/p ft ²	flood plain	RB	right bank
ft^2	square feet	ROB	right overbank
ft/ft	feet per foot	RWW	right wingwall
FEMA	Federal Emergency Management Agency	TH	town highway
FHWA	Federal Highway Administration	UB	under bridge
JCT	junction	US	upstream
LAB	left abutment	USGS	United States Geological Survey
LABUT	face of left abutment	VTAOT	Vermont Agency of Transportation
LB	left bank	WSPRO	water-surface profile model
LOB	left overbank	yr	year

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

In the appendices, the above abbreviations may be combined. For example, USLB would represent upstream left bank.

LEVEL II SCOUR ANALYSIS FOR BRIDGE 32 (BURKTH00440032) ON TOWN HIGHWAY 44, CROSSING ROUNDY BROOK, BURKE, VERMONT

By Michelle M. Serra and Erick Boehmler

INTRODUCTION AND SUMMARY OF RESULTS

This report provides the results of a detailed Level II analysis of scour potential at structure BURKTH00440032 on Town Highway 44 crossing Roundy Brook, Burke, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D.

The site is in the White Mountain section of the New England physiographic province in northeastern Vermont. The 9.24-mi² drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture on the upstream right bank and forested on the remaining banks.

In the study area, Roundy Brook has a sinuous channel with a slope of approximately 0.030 ft/ft, an average channel top width of 46 ft and an average bank height of 8 ft. The channel bed material ranges from gravel to boulders under the bridge and downstream, and from silt to gravel in the upstream reach. The median grain size (D_{50}) is 28.7 mm (0.094 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 8, 1995, indicated that the reach was degraded. A crude downstream drop structure has kept the under-bridge bed elevation artificially high, while bed elevations in the upstream and downstream reaches are similar to one another and lower than under the bridge.

The Town Highway 44 crossing of Roundy Brook is a 43-ft-long, one-lane bridge consisting of one 39-foot steel-girder and floorbeam span (Vermont Agency of Transportation, written communication, March 24, 1995). The opening length of the structure parallel to the bridge face is 36.4 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed zero degrees to the opening and the opening-skew-to-roadway is also zero degrees.

No scour holes were noted at this site during the Level 1 assessment. Scour protection at this site consisted of type-2 (less than 36 inches diameter) stone fill on the downstream left and right wingwalls, the upstream right wingwall, and the downstream left bank. During the Level I assessment, the right abutment and downstream right wingwall footings were exposed up to 0.5 ft. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E.

Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 2.4 to 3.4 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 7.5 to 12.9 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled "Scour Results". Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives "excessively conservative estimates of scour depths" (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

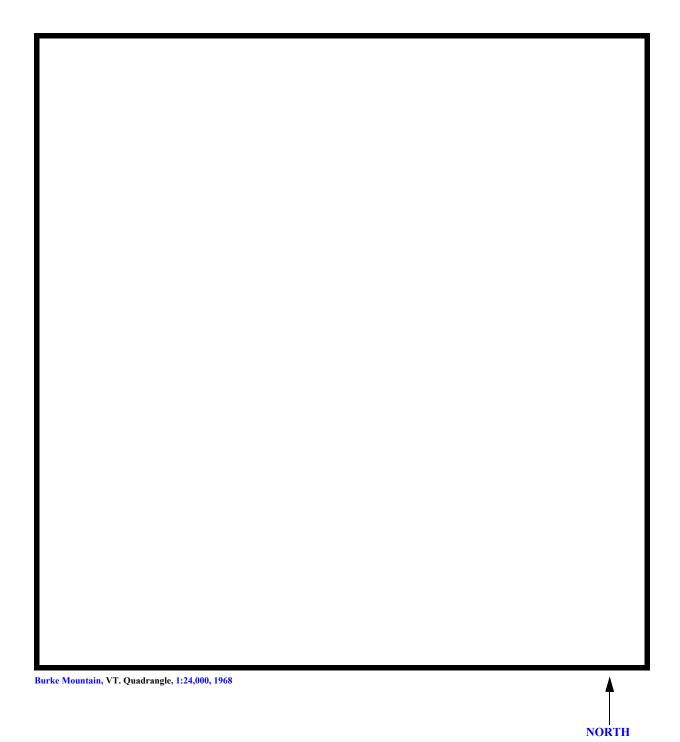
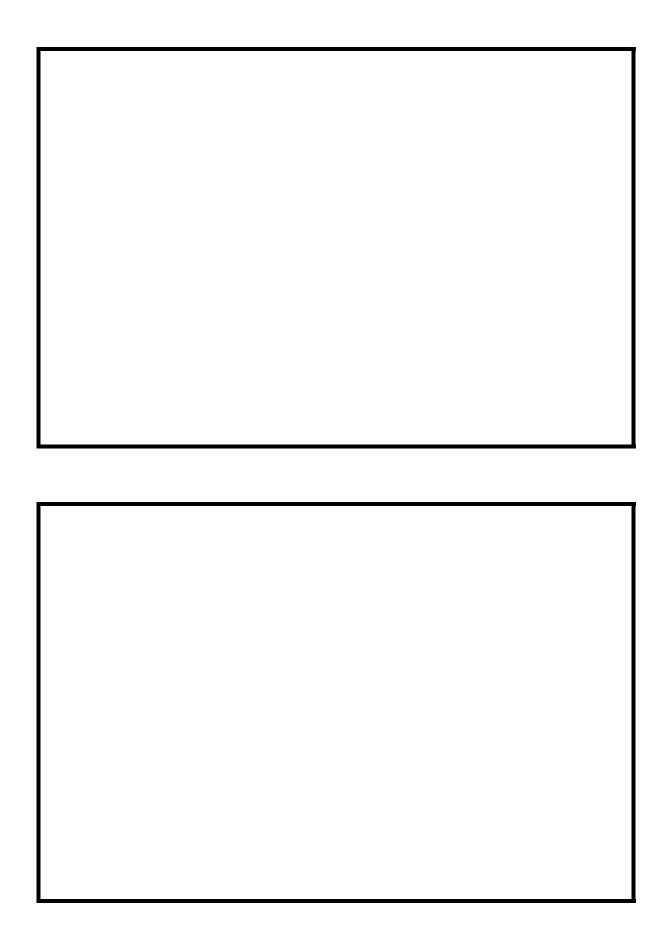



Figure 1. Location of study area on USGS 1:24,000 scale map.

LEVEL II SUMMARY

cture Number	BURK	TH00440	0032	Stream	Rou	ndy Brook	
nty Caledo	nia		Road —	TH44	District	7	
			Descriptio	n of Bridg	e		
Bridge length	43	ft Br	idge width	17.5	ft Straigh	Max span length	$n = \frac{39}{f}$
Alignment of br Abutment type	Vertica	ad (on cu l, concret No	rve or strai	ight) — Embankm		Sloping	
Stone fill on abut	4040 GII		ill on the d	Date of instrownstream	right and	left wingwalls an	nd the
abutment and the	e downstre	,				gwalls are concret	te. The right
abutificht and the	e downstre	Zam rigin	wingwan i	ootings are	скрозси	No No	0
Is bridge skewed	d to flood	flow acco	ording to N	les surve	y?	Angle	
There is a severe	bend in th	ne upstrea	<u>m re</u> ach wl	nere a cutba	nk has fo	rmed due to the i	mpact of flow
on the bank.							
on the bank. Debris accumul		Ü	•				t of changel
	Date 6	of inco <i>er</i> 18/95	ion I	Percent of a blo cked not	hannal	Percen	t of alamel l verticatty
	Date 6	of inspect 18/95 8/95	ion f	Percent of 0 bloc ked not 0	hannal uzontail y	Percen blocked	d věrticatty 0
Debris accumul Level I Level II	Date 8/	of inspect 18/95 8/95	ion f	Percent of 0 bloc ked not 0	hannal uzontail y	Percen	d věrticatty 0
Debris accumul	Date $\frac{8}{8}$ $\frac{8}{8}$ coanks.	of inspect 18/95 8/95	ion f	Percent of 0 bloc ked not 0	hannal uzontail y	Percen blocked	d věrticatty 0
Debris accumul Level I Level II upstream b	Date 6/8/8/8/20 Anks. For debris	of inspect 18/95 8/95	ion f	Percent of 0 bloc ked not 0	hannal uzontail y	Percen blocked	d věrticatty 0

Description of the Geomorphic Setting

General topo	graphy	The cha	nnel is located in a	moderate relief valley	with little to no flood
plains.					
Geomorphic	c conditio	ns at bridg	ge site: downstream	ı (DS), upstream (US)	•
Date of insp	ection	8/8/95			
DS left:	Modera	tely sloped	d channel bank to m	nildly sloped overbank	5
DS right:	Steep ch	annel banl	k to moderately slo	ped overbank	
US left:	Steep cl	nannel ban	k to moderately slo	ped overbank	
US right:	Steep cl	nannel ban	k		
			Description of th	e Channel	
		46			8
Average to	p width		Gravel / Cobbles	Average depti	h Sand/Cobbles
Predominar	nt bed ma	terial		Bank material	Small, perennial
stream that is	s sinuous	and degrad	led with semi-alluv	ial channel boundaries	5.
					8/8/95
Vegetative c	Trees				
DS left:	Trees				
DS right:	Trees				
US left:	Grass, t	rees, shrub	os, and brush		
US right:		<u>Y</u> 6	es		
Do banks ap	ppear stab	le?	<u></u>	 wemon unu iypi	. vj. msmvimy um
date of obsi					
				-	Some trees, fallen into
the channel	l upstream	of the bri	dge, have captured	leaves and branches n	naking the debris more
dense, as of			unnei una aaie 05 (voservanon.	

Hydrology

Drainage area $\frac{9.24}{}$ mi ²	
Percentage of drainage area in physiographic p	provinces: (approximate)
Physiographic province/section New England/White Mountain	Percent of drainage area
Is drainage area considered rural or urban? None as of 8/8/95. urbanization:	Rural Describe any significant
Is there a USGS gage on the stream of interest:	<u>No</u>
USGS gage description	
USGS gage number	<u>-</u>
Gage drainage area	mi² No
Is there a lake/p	
Calculate	d Discharges 2,530
Q100 ft^3/s The 1	Q500 ft ³ /s 00- and 500- year discharges are based on a
drainage-area relationship.[(9.24/8.1)exp 0.67] w	ith discharge values from the Flood Insurance
Study for the town of Burke, at the downstream li	mit of a detailed study of Roundy Brook
(FEMA, 1979). These values were within a range	defined by flood frequency curves derived
from several empirical methods (Benson, 1962; Jo	hnson and Tasker, 1974; FHWA, 1983; Potter,
1957a&b Talbot, 1887). Each curve (except the F	EMA curve) was extended graphically to the
500-year event.	

Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, VTAOT)	USGS survey	
Datum tie between USGS survey and VTAOT plans		
Description of reference marks used to determine USGS dat	um.	RM1 is a chiseled X on
top of a concrete guard rail post above the US end of the LA	BUT (ele	v. 515.14 ft, arbitrary
survey datum). RM2 is a chiseled X on top of the concrete ale	ong the d	ownstream right bridge
face just inside the guard-rail post (elev. 512.85 ft, arbitrary s	urvev da	tum)
	on voj da	

Cross-Sections Used in WSPRO Analysis

¹ Cross-section	Section Reference Distance (SRD) in feet	² Cross-section development	Comments
EXITX	-36	1	Exit section
FULLV	0	2	Downstream Full-valley section (Templated from EXITX)
BRIDG	0	1	Bridge section
RDWAY	10	1	Road Grade section
APPRO	57	1	Approach section

For location of cross-sections see plan-view sketch included with Level I field form, Appendix E. For more detail on how cross-sections were developed see WSPRO input file.

Data and Assumptions Used in WSPRO Model

Hydraulic analyses of the reach were done by use of the Federal Highway Administration's WSPRO step-backwater computer program (Shearman and others, 1986, and Shearman, 1990). The analyses reported herein reflect conditions existing at the site at the time of the study. Furthermore, in the development of the model it was necessary to assume no accumulation of debris or ice at the site. Results of the hydraulic model are presented in the Bridge Hydraulic Summary, appendix B, and figure 7.

Channel roughness factors (Manning's "n") used in the hydraulic model were estimated using field inspections at each cross section following the general guidelines described by Arcement and Schneider (1989). Final adjustments to the values were made during the modelling of the reach. Channel "n" values for the reach ranged from 0.040 to 0.055, and overbank "n" values ranged from 0.040 to 0.070.

Critical depth at the exit section (EXITX) was assumed as the starting water surface for the each modeled discharge. Normal depth was computed at critical depth for the 100-year discharge and below critical depth approximately 0.11 ft for the 500-year discharge by use of the slope-conveyance method outlined in the user's manual for WSPRO (Shearman, 1990). The slope used was 0.0300 ft/ft, which was the 100-year discharge water-surface slope downstream of the bridge in the Flood Insurance Study for Burke, Vermont (FEMA, 1979).

The approach section (APPRO) was surveyed one bridge length upstream of the upstream face as recommended by Shearman and others (1986). This location provides a consistent method for determining scour variables.

For the 100- and 500-year discharges, WSPRO assumes critical depth at the bridge section. Supercritical models were developed for these discharges. After analyzing the supercritical and subcritical profiles for each discharge, it was assumed that the water-surface profile passes through critical depth within the bridge opening. Thus, the assumptions of critical depth at the bridge are satisfactory solutions.

Bridge Hydraulics Summary

of twerage bridge embankment elevationft	
tverage low steel elevation 510.3 ft	
100-year discharge $\frac{1,880}{\text{Mater-surface elevation in bridge opening}}$ ft 500.9 ft	
Road overtopping?No	ft ³ /s
Area of flow in bridge opening 159 ft ²	_ jt /s
Average velocity in bridge opening 11.8 ft/s Maximum WSPRO tube velocity at bridge 14.6 ft/s	
Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge1.6t	503.3
500-year discharge 2,530 ft ³ /s Water-surface elevation in bridge opening 501.9 ft Road overtopping? No Discharge over road Area of flow in bridge opening 193 ft ²	_ ft³/s
Average velocity in bridge opening Maximum WSPRO tube velocity at bridge 13.1 ft/s 16.1 /s	
Water-surface elevation at Approach section with bridge	504.7
Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge 1.7 7	503.0
Incipient overtopping discharge ft ³ /s Water-surface elevation in bridge opening ft	
Area of flow in bridge opening ft ² Average velocity in bridge opening ft/s Maximum WSPRO tube velocity at bridge ft/s	
Water-surface elevation at Approach section with bridge Water-surface elevation at Approach section without bridge Amount of backwater caused by bridge	<u> </u>

Scour Analysis Summary

Special Conditions or Assumptions Made in Scour Analysis

Scour depths were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analyses for the 100- and 500-year discharges are presented in tables 1 and 2 and the scour depths are shown graphically in figure 8.

Contraction scour for the 100- and 500-year discharges was computed by use of the Laursen clear-water contraction scour equation (Richardson and Davis, 1995, p. 32, equation 20). Variables for the Laursen clear-water contraction scour equation include the discharge through the bridge, the width of the channel at the bridge, and the median grain size of the channel bed material. The streambed armoring depth computed for the 100-year discharge suggests that armoring will not limit the depth of contraction scour.

Abutment scour for both discharges was computed by use of the Froehlich equation (Richardson and Davis, 1995, p. 48, equation 28). Variables for the Froehlich equation include the Froude number of the flow approaching the embankments, the length of the embankment blocking flow, and the depth of flow approaching the embankment less any roadway overtopping.

Scour Results

Contraction scour:		00-yr discharge our depths in feet)	Incipient overtopping discharge
Main channel			
Live-bed scour			
Clear-water scour	2.4	3.4	
Depth to armoring	29.3	N/A ⁻	
Left overbank			
Right overbank	<u></u>		
Local scour:			
Abutment scour	7.5 8.8	9.2	12.9
Left abutment			
Right abutment			
Pier scour			
Pier 1			
Pier 2		1.8	2.2
Pier 3			
	Riprap Sizing		
			Incipient overtopping
	100-yr discharge		discharge
		(D ₅₀ in feet) 1.8	2.2
Abutments:			
Left abutment			
Right abutment		⁻	
Piers:			
Pier 1		_	
Pier 2			

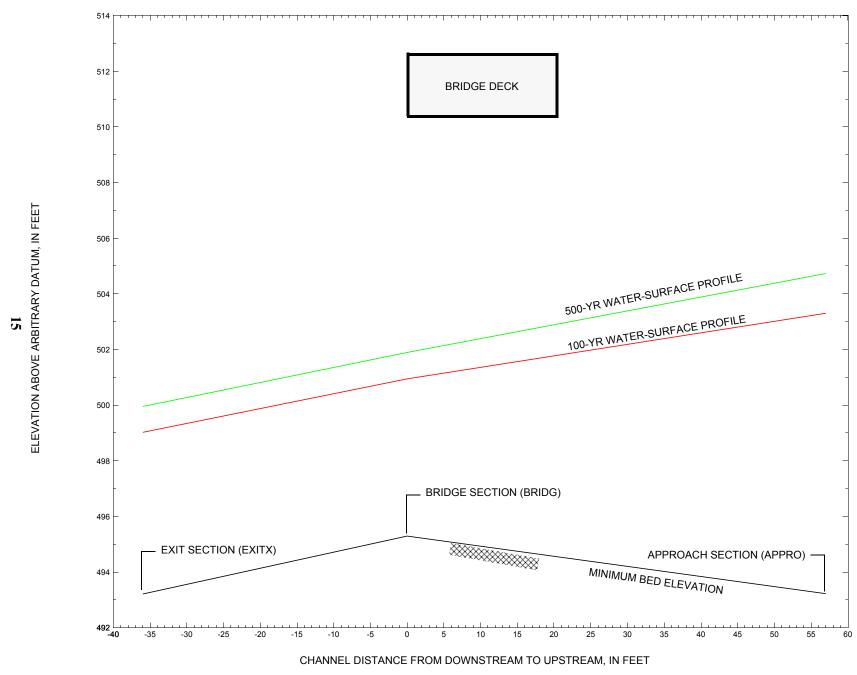


Figure 7. Water-surface profiles for the 100- and 500-year discharges at structure BURKTH00440032 on Town Highway 44, crossing Roundy Brook, Burke, Vermont.

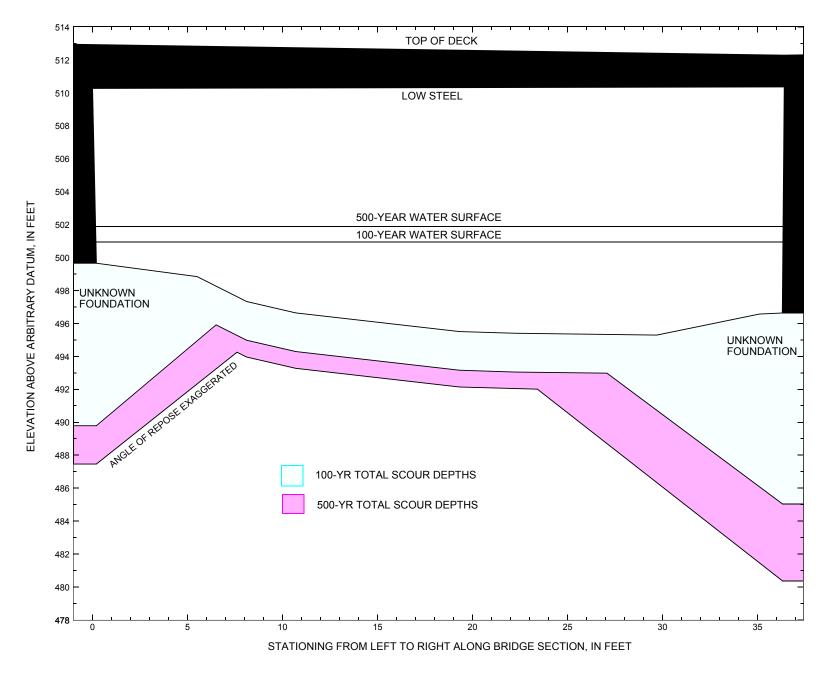


Figure 8. Scour elevations for the 100-year and 500-year discharges at structure BURKTH00440032 on Town Highway 44, crossing Roundy Brook, Burke, Vermont.

Table 1. Remaining footing/pile depth at abutments for the 100-year discharge at structure BURKTH00440032 on Town Highway 44, crossing Roundy Brook, Burke, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing/pile elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				100-year	discharge is 1,88	0 cubic-feet per se	cond				
Left abutment	0.0		510.3		499.6	2.4	7.5		9.9	489.8	
Right abutment	36.4		510.4		496.6	2.4	9.2		11.6	485.0	

^{1.}Measured along the face of the most constricting side of the bridge.

Table 2. Remaining footing/pile depth at abutments for the 500-year discharge at structure BURKTH00440032 on Town Highway 44, crossing Roundy Brook, Burke, Vermont.

[VTAOT, Vermont Agency of Transportation; --, no data]

Description	Station ¹	VTAOT minimum low-chord elevation (feet)	Surveyed minimum low-chord elevation ² (feet)	Bottom of footing/pile elevation ² (feet)	Channel elevation at abutment/ pier ² (feet)	Contraction scour depth (feet)	Abutment scour depth (feet)	Pier scour depth (feet)	Depth of total scour (feet)	Elevation of scour ² (feet)	Remaining footing/pile depth (feet)
				500-year	r discharge is 2,53	0 cubic-feet per se	cond				
Left abutment	0.0		510.3		499.6	3.4	8.8		12.2	487.5	
Right abutment	36.4		510.4		496.6	3.4	12.9		16.3	480.3	

^{1.}Measured along the face of the most constricting side of the bridge.

^{2.} Arbitrary datum for this study.

^{2.} Arbitrary datum for this study.

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barnes, H.H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geological Survey Water-Supply Paper 1849, 213 p.
- Benson, M. A., 1962, Factors Influencing the Occurrence of Floods in a Humid Region of Diverse Terrain: U.S. Geological Survey Water-Supply Paper 1580-B, 64 p.
- Brown, S.A. and Clyde, E.S., 1989, Design of riprap revetment: Federal Highway Administration Hydraulic Engineering Circular No. 11, Publication FHWA-IP-89-016, 156 p.
- Federal Emergency Management Agency, 1979, Flood Insurance Study, Town of Burke, Caledonia County, Vermont: Washington, D.C., December 1979.
- Federal Highway Administration, 1983, Runoff estimates for small watersheds and development of sound design: Federal Highway Administration Report FHWA-RD-77-158.
- Federal Highway Administration, 1993, Stream Stability and Scour at Highway Bridges: Participant Workbook: Federal Highway Administration Report FHWA-HI-91-011.
- Froehlich, D.C., 1989, Local scour at bridge abutments *in* Ports, M.A., ed., Hydraulic Engineering--Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Hayes, D.C.,1993, Site selection and collection of bridge-scour data in Delaware, Maryland, and Virginia: U.S. Geological Survey Water-Resources Investigation Report 93-4017, 23 p.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: U.S. Geological Survey, Bulletin 17B of the Hydrology Subcommittee, 190 p.
- Johnson, C.G. and Tasker, G.D.,1974, Progress report on flood magnitude and frequency of Vermont streams: U.S. Geological Survey Open-File Report 74-130, 37 p.
- Lagasse, P.F., Schall, J.D., Johnson, F., Richardson, E.V., Chang, F., 1995, Stream Stability at Highway Structures: Federal Highway Administration Hydraulic Engineering Circular No. 20, Publication FHWA-IP-90-014, 144 p.
- Laursen, E.M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Potter, W. D., 1957a, Peak rates of runoff in the Adirondack, White Mountains, and Maine woods area, Bureau of Public Roads
- Potter, W. D., 1957b, Peak rates of runoff in the New England Hill and Lowland area, Bureau of Public Roads
- Richardson, E.V. and Davis, S.R., 1995, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 204 p.
- Richardson, E.V., Simons, D.B., and Julien, P.Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Ritter, D.F., 1984, Process Geomorphology: W.C. Brown Co., Debuque, Iowa, 603 p.
- Shearman, J.O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.
- Shearman, J.O., Kirby, W.H., Schneider, V.R., and Flippo, H.N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.
- Talbot, A.N., 1887, The determination of water-way for bridges and culverts.
- U.S. Geological Survey, 1988, Burke Mountain, Vermont 7.5 Minute Series quadrangle map: U.S. Geological Survey Topographic Maps, Scale 1:24,000.

APPENDIX A:

WSPRO INPUT FILE

WSPRO INPUT FILE

```
U.S. Geological Survey WSPRO Input File burk032.wsp
T1
T2
         Hydraulic analysis for structure BURKTH00440032 Date: 29-AUG-97
Т3
         Hydraulic analysis of Bridge 32 in Burke over Roundy Brook
*
           6 29 30 552 553 551 5 16 17 13 3 * 15 14 23 21 11 12 4 7 3
J3
*
0
           1880.0
                    2530.0
SK
            0.0300
                   0.0300
*
XS
    EXITX
            -36
           -118.3, 537.18
                            -102.0, 517.69
                                             -17.3, 513.87
GR
                                                              -14.1, 511.46
GR
             0.0, 498.25
                              6.2, 495.93
                                              12.1, 495.27
                                                               13.7, 494.64
            23.0, 493.72
GR
                             26.9, 493.46
                                              28.9, 493.21
                                                               32.8, 493.45
                                              41.6, 499.19
GR
            35.7, 494.93
                            37.1, 495.00
                                                               48.6, 500.32
GR
            66.5, 501.16
                             85.7, 516.67
*
            0.070
Ν
                       0.055
                                     0.070
SA
                   -17.3
                                41.6
    FULLV
               0 * * *
                          0.0279
XS
*
*
              SRD
                    LSEL
                             XSSKEW
BR
    BRIDG
              0
                   510.32
                               0.0
GR
             0.0, 510.27
                              0.2, 499.65
                                              5.5, 498.84
                                                                8.1, 497.33
GR
            10.7, 496.64
                             15.5, 495.99
                                              19.3, 495.51
                                                               22.2, 495.40
GR
             29.7, 495.29
                             35.1, 496.57
                                              36.3, 496.63
                                                               36.4, 510.36
GR
             0.0, 510.27
*
*
         BRTYPE BRWDTH
                              WWANGL
                                        WWWID
                               53.0
CD
            1
                   29.9 * *
                                          7.2
            0.040
Ν
*
*
*
              SRD
                    EMBWID
                             IPAVE
XR
    RDWAY
              10
                      17.5
                               2
GR
            -94.0, 524.18
                            -84.0, 517.19
                                            -67.1, 517.28
                                                              -1.2, 512.52
                             0.0, 512.93
GR
            -1.2, 512.77
                                             37.4, 512.29
                                                              39.6, 512.79
GR
            40.0, 511.93
                            65.1, 512.83
                                              91.9, 512.86
                                                              117.5, 513.90
GR
            136.8, 521.90
*
*
AS
    APPRO
              57
                            0.
            -92.9, 531.39
                            -87.0, 530.46
                                             -76.8, 521.21
                                                              -44.0, 518.80
GR
                                                              -15.3, 508.89
GR
            -41.2, 517.97
                            -35.6, 518.73
                                             -17.9, 510.76
                             -4.8, 502.69
GR
            -7.7, 506.11
                                               0.0, 498.55
                                                                1.7, 497.12
             2.5, 495.98
                              9.5, 495.05
                                              13.5, 493.29
                                                               16.0, 493.29
GR
GR
            17.6, 493.22
                             18.9, 493.40
                                              19.5, 494.20
                                                               21.2, 494.46
GR
            23.5, 497.14
                             25.3, 499.33
                                              37.3, 499.95
                                                               64.8, 502.77
            70.6, 503.73
                             81.8, 506.68
                                             104.0, 512.02
                                                             130.4, 513.13
GR
GR
            200.8, 518.16
*
Ν
            0.065
                    0.050
                                     0.040
SA
                   -7.7
                                25.3
HP 1 BRIDG 500.94 1 500.94
HP 2 BRIDG 500.94 * * 1880
HP 1 APPRO 503.30 1 503.30
HP 2 APPRO 503.30 * * 1880
HP 1 BRIDG 501.89 1 501.89
HP 2 BRIDG 501.89 * * 2530
```

APPENDIX B: WSPRO OUTPUT FILE

WSPRO OUTPUT FILE

U.S. Geological Survey WSPRO Input File burk032.wsp
Hydraulic analysis for structure BURKTH00440032 Date: 29-AUG-97
Hydraulic analysis of Bridge 32 in Burke over Roundy Brook
*** RUN DATE & TIME: 01-13-98 13:57

CROSS-SECTION PROPERTIES:	ISEQ =	3;	SECID = BRIDG;	SRD =	0.
---------------------------	--------	----	----------------	-------	----

WSEL	SA#	AREA	K	TOPW	WETP	ALPH	LEW	REW	QCR
	1	159	14250	36	42				1889
500.94		159	14250	36	42	1.00	0	36	1889

CROSS-S	SECTION PROPE	RTIES: ISEQ) = 3; SECI	D = BRIDG;	SRD =	0.
	SA# AREA	K	TOPW WETP	ALPH	LEW REW	QCR
500.94	1 159 159	14250	36 42 36 42	1.00	0 36	1889
VELOCI:	TY DISTRIBUTIO	ON: ISEQ =	3; SECID =	BRIDG; S	RD =	0.
WS	SEL LEW	REW AR	EA K	Q	VEL	
	.94 0.2					
X STA. A(I) V(I)	0.2 14.6 6.45	7.6 10.0 9.38	10.2 8.6 10.95	12.2 8.1 11.61	13.9 7.4 12.68	15.5
A(I)	15.5 7.4 12.73	6.9	6.8	6.7	6.5	
X STA. A(I) V(I)	21.9 6.5 14.39	23.1 6.6 14.34	24.3 6.4 14.64	25.4 6.5 14.37	26.6 6.7 14.05	27.8
A(I)	27.8 6.7 14.09	7.1	7.5	8.5	13.3	
CROSS-S	SECTION PROPER	RTIES: ISEQ) = 5; SECI	D = APPRO;	SRD =	57.
	3 98	21661 6344	43 43	,		3349 844
503.30			73 80			
	TY DISTRIBUTIO					57.
WS 503	SEL LEW .30 -5.3	REW AR 68.0 318	EA K	Q 1880.	VEL 5.91	
X STA. A(I) V(I)	-5.3 26.9 3.49	2.4 16.8 5.60	4.6 14.6 6.45	6.5 14.1 6.69	8.3 13.3 7.05	9.9
X STA. A(I) V(I)	9.9 12.7 7.37	11.4 12.4 7.61	12.7 11.7 8.04	13.9 11.3 8.32	15.0 11.3 8.32	16.1
X STA. A(I) V(I)		11.2	18.4 12.9 7.30	12.3	16.7	
X STA. A(I) V(I)	23.2 19.4 4.85	27.5 17.9 5.24	32.3 18.7 5.02	37.7 21.1 4.45	44.9 31.7 2.97	68.0

U.S. Geological Survey WSPRO Input File burk032.wsp
Hydraulic analysis for structure BURKTH00440032 Date: 29-AUG-97
Hydraulic analysis of Bridge 32 in Burke over Roundy Brook
*** RUN DATE & TIME: 01-13-98 13:57

	CROS	S-SEC	TION	PROPER	TIES:	ISEQ	= 3;	SECI	.D = 1	BRIDG	; SRD	=	0.
	WSE		#	AREA									QCR 2533
	501.8		1	193	1:	9183	36	44	1.	00	0	36	2533
	VELO	CITY	DIST	RIBUTIC	N: IS	SEQ =	3; S	ECID =	BRI	DG;	SRD =		0.
		WSEL		LEW	REW	AR	EA	K		0	VEL		
	5	01.89		LEW 0.2	36.3	193	.2 1	9183.	2	530.	13.10		
	STA.		0.2	2	6.4		9.2		11.2		13.0		14.6
	A(I) V(I)			17.2 7.36		12.1 10.46	1	2.47		9.7 13.09	1	9.2 13.71	
x	STA.		14.6										
	A(I) V(I)			8.6 14.67		8.4		8.2		8.0		8.1	
	STA. A(I)												
	V(I)			7.9 16.08		16.02	1	5.79		15.87	-	15.52	
			27.4	1	28.7		30.0		31.5		33.2		36.3
	A(I) V(I)			8.3 15.15	:	8.5 14.92	1	9.3 3.58		10.6		7.52	
	CROS	S-SEC	TION	PROPER	TIES:	ISEQ	= 5;	SECI	D = 1	APPRO	; SRD	=	57.
				PROPER	TIES:	ISEQ K	= 5;	SECI	ID = I	APPRO PH	; SRD	= REW	57. OCR
		L SA	# 2	AREA	21	K 8506	TOPW	WETF	AL:	PH	LEW	REW	QCR 4333
		L SA	#	AREA	21	K 8506	TOPW	WETF	AL:	PH	LEW	REW	QCR 4333
	WSE 504.7	L SA	# 2 3	AREA	28 11 42	K 3506 3616 2122	TOPW 32 49 81	WETF 39 49 88	AL:	PH 04	LEW -6	REW	QCR 4333 1705 5485
	WSE 504.7 VELO	L SA 3 CITY	# 2 3 DISTE	AREA 265 164 429 RIBUTIC	28 13 42 0N: IS	K 3506 3616 2122 SEQ =	TOPW 32 49 81 5; S	WETF 39 49 88 ECID =	P AL:	PH 04 RO; 8	LEW -6 SRD =	REW	QCR 4333 1705 5485
	WSE 504.7 VELO	L SA 3 CITY WSEL	# 2 3 DISTI	AREA 265 164 429	28 11 42 N: IS	K 3506 3616 2122 SEQ =	TOPW 32 49 81 5; S	WETF 39 49 88 ECID =	P ALT	PH 04 RO; S	LEW -6 SRD = VEL	REW	QCR 4333 1705 5485
X	WSE 504.7 VELO	L SA 3 CITY WSEL 04.73	# 2 3 DISTE	AREA 265 164 429 RIBUTIO LEW -6.5	28 12 42 0N: IS REW 74.4	K 8506 3616 2122 SEQ = AR 429	TOPW 32 49 81 5; S EA	WETF 39 49 88 ECID = K 2122.	P AL:	PH 04 RO; S	LEW -6 SRD = VEL 5.90	REW 74	QCR 4333 1705 5485
х	WSE 504.7 VELO	L SA 3 CITY WSEL 04.73	# 2 3 DISTE	AREA 265 164 429 RIBUTIO LEW -6.5	28 12 42 0N: IS REW 74.4	K 8506 3616 2122 SEQ = AR 429	TOPW 32 49 81 5; S EA	WETF 39 49 88 ECID = K 2122.	P AL:	PH 04 RO; S	LEW -6 SRD = VEL 5.90	REW 74	QCR 4333 1705 5485
	WSE 504.7 VELO 5 STA. A(I) V(I)	SA 3 CITY WSEL 04.73	# 2 3 DISTE	AREA 265 164 429 RIBUTIO LEW -6.5 35.6 3.56	28 1: 4: 20N: IS REW 74.4 2.0	K 8506 3616 2122 SEQ = AR 429 23.2 5.44	TOPW 32 49 81 5; S EA .0 4 4.6	WETF 39 49 88 ECCID = K 2122.	AL: APP! APP! 6.8	PH 04 RO; S Q 530.	LEW -6 SRD = VEL 5.90 8.8	74 5 17.9 7.08	QCR 4333 1705 5485 7.
Х	WSE 504.7 VELO 5 STA. A(I) V(I) STA. A(I)	SA 3 CITY WSEL 04.73	# 2 3 DISTE	AREA 265 164 429 RIBUTIC LEW -6.5 5 35.6 3.56	28 1: 4: 2:0N: IS REW 74.4 2.0	K 8506 3616 2122 SEQ = AR 429 23.2 5.44	TOPW 32 49 81 5; S EA .0 4 4.6	WETF 39 49 88 EECID = K 2122.	2 AL: 3 1.0 2 APP! 6.8	PH 04 RO; \$ Q 530. 18.6 6.81	LEW -6 SRD = VEL 5.90 8.8	74 5 17.9 7.08	QCR 4333 1705 5485 7.
Х	WSE 504.7 VELO 5 STA. A(I) V(I) STA. A(I) V(I)	L SA 3 CITY WSEL 04.73	# 2 3 DISTE	AREA 265 164 429 LEW 6.5 5 35.6 3.56 5 17.3 7.30	20 1: 4: 2: 2: 3: 8: 8: 8: 8: 74.4 2.0	K 8506 3616 2122 SEQ = AR 429 23.2 5.44	TOPW 322 49 81 5; S EA .0 4 4.6	WETF 39 49 88 ECID = K 2122. 19.7 6.42	2 AL: 3 1.: 4 APP! 6.8	PH 04 RO; \$ Q 530. 18.6 6.81 15.4 8.24	LEW -6 SRD = VEL 5.90 8.8	74 5 17.9 7.08 15.4 8.21	QCR 4333 1705 5485 7.
X X	WSE 504.7 VELO 5 STA. A(I) V(I) STA. A(I) V(I)	L SA 3 CITY WSEL 04.73	# 2 3 DISTE	AREA 265 164 429 LEW 6.5 5 35.6 3.56 5 17.3 7.30	28 11 4: 20N: IS REW 74.4 2.0	K 8506 3616 2122 SEQ = AR 429 23.2 5.44 16.4 7.73	TOPW 322 49 81 5; S EA .0 4 4.6 13.7	WETF 39 48 88 ECCID = K 2122. 19.7 6.42 15.5 8.14	AL: 3 1.0 5 APP 6.8 15.0	PH 04 RO; \$ 0 \$ 530. 18.6 6.81 15.4 8.24	LEW -6 SRD = VEL 5.90 8.8 16.4	74 5 17.9 7.08 15.4 8.21	QCR 4333 1705 5485 7. 10.6
x x	WSE 504.7 VELO 5 STA. A(I) V(I) STA. A(I) V(I) STA.	L SA 3 CITY WSEL 04.73	# 2 3 DISTE	AREA 265 164 429 LEW 6.5 35.6 3.56 5 17.3 7.30	28 11 4: 20N: IS REW 74.4 2.0	K 8506 3616 2122 SEQ = AR 429 23.2 5.44 16.4 7.73	TOPW 322 49 81 5; S EA .0 4 4.6 13.7	WETF 39 48 88 ECCID = K 2122. 19.7 6.42 15.5 8.14	AL: 3 1.0 5 APP 6.8 15.0	PH 04 RO; \$ 0 \$ 530. 18.6 6.81 15.4 8.24	LEW -6 SRD = VEL 5.90 8.8 16.4	74 5 17.9 7.08 15.4 8.21	QCR 4333 1705 5485 7. 10.6
x x	WSE 504.7 VELO 5 STA. A(I) V(I) STA. A(I) V(I) STA. A(I)	L SA 3 CITY WSEL 04.73	# 2 2 3 3 DISTF -6.5 10.6	AREA 265 164 429 LEW 66.5 35.6 3.56 7 16.4 7.70	28 12 4: 4: 0N: IS REW 74.4 2.0 12.2	K 8506 3616 2122 SEQ = AR 429 23.2 5.44 16.4 7.73	TOPW 322 49 81 5; S EA .0 4 4.6 13.7	WETF 39 49 88 ECCID = K 2122. 19.7 6.42 15.5 8.14 20.8 6.08	2: AL. 2: APP! 2: 6.8	PH 04 04 05 18.66 6.81 15.4 8.24 24.6 5.14	LEW -6 SRD = VEL 5.90 8.8 16.4	74 5 17.9 7.08 15.4 8.21 20.4 6.19	QCR 4333 1705 5485 7. 10.6

U.S. Geological Survey WSPRO Input File burk032.wsp
Hydraulic analysis for structure BURKTH00440032 Date: 29-AUG-97
Hydraulic analysis of Bridge 32 in Burke over Roundy Brook
 *** RUN DATE & TIME: 01-13-98 13:57

XSID:CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL	
EXITX:XS	*****	0	167	1.96	****	500.99	499.01	1880	499.02
-35	*****	41	10849	1.00	****	*****	1.00	11.24	

===125 FR# EXCEEDS FNTEST AT SECID "FULLV": TRIALS CONTINUED.

FNTEST,FR#,WSEL,CRWS = 0.80 0.93 500.22 500.0

===110 WSEL NOT FOUND AT SECID "FULLV": REDUCED DELTAY.

WSLIM1, WSLIM2, DELTAY = 498.52 538.18 0.50

===115 WSEL NOT FOUND AT SECID "FULLV": USED WSMIN = CRWS.

WSLIM1, WSLIM2, CRWS = 498.52 538.18 500.01

===125 FR# EXCEEDS FNTEST AT SECID "APPRO": TRIALS CONTINUED.
FNTEST,FR#,WSEL,CRWS = 0.80 0.87 501.68 501.17

===110 WSEL NOT FOUND AT SECID "APPRO": REDUCED DELTAY.
WSLIM1, WSLIM2, DELTAY = 499.68 531.39 0.50

===115 WSEL NOT FOUND AT SECID "APPRO": USED WSMIN = CRWS.

WSLIM1, WSLIM2, CRWS = 499.68 531.39 501.17

===285 CRITICAL WATER-SURFACE ELEVATION A $_$ S $_$ S $_$ U $_$ M $_$ E $_$ D !!!!!! SECID "BRIDG" Q,CRWS = 1880. 500.94

<><<<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>>

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

BRIDG:BR 36 0 159 2.18 ***** 503.12 500.94 1880 500.94 0 36 36 14260 1.00 ***** ******* 1.00 11.83

TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB 1. **** 1. 1.000 ***** 510.32 ***** ***** *****

XSID:CODE SRD FLEN HF VHD EGL ERR Q WSEL RDWAY:RG 10. <><<<EMBANKMENT IS NOT OVERTOPPED>>>>

XSID:CODE SRDL LEW AREA VHD HF EGL CRWS Q WSEL SRD FLEN REW K ALPH HO ERR FR# VEL

APPRO:AS 27 -4 318 0.59 0.25 503.89 501.17 1880 503.30 57 28 68 27989 1.09 0.52 -0.02 0.52 5.91

M(G) M(K) KQ XLKQ XRKQ OTEL 0.374 0.187 22867. -8. 28. 503.12

<><<END OF BRIDGE COMPUTATIONS>>>>

FIRST USER DEFINED TABLE.

XSID: CODE	SRD	LEW	REW	Q	K	AREA	VEL	WSEL
EXITX:XS	-36.	-1.	41.	1880.	10849.	167.	11.24	499.02
FULLV:FV	0.	-1.	42.	1880.	11495.	174.	10.81	500.18
BRIDG:BR	0.	0.	36.	1880.	14260.	159.	11.83	500.94
RDWAY:RG	10.**	*****	****	0.*	******	*****	2.00*	*****
APPRO:AS	57.	-5.	68.	1880.	27989.	318.	5.91	503.30

XSID:CODE XLKQ XRKQ KQ APPRO:AS -8. 28. 22867.

SECOND USER DEFINED TABLE.

XSID: CODE	CRWS	FR#	YMIN	XMAX	HF	HO	VHD	EGL	WSEL
EXITX:XS	499.01	1.00	493.21	537.18*	*****	****	1.96	500.99	499.02
FULLV:FV	500.01	0.94	494.21	538.18	1.02	0.00	1.82	502.00	500.18
BRIDG:BR	500.94	1.00	495.29	510.36*	*****	****	2.18	503.12	500.94
RDWAY:RG	******	*****	511.93	524.18*	*****	*****	*****	*****	*****
APPRO:AS	501.17	0.52	493.22	531.39	0.25	0.52	0.59	503.89	503.30

U.S. Geological Survey WSPRO Input File burk032.wsp Hydraulic analysis for structure BURKTH00440032 Date: 29-AUG-97 Hydraulic analysis of Bridge 32 in Burke over Roundy Brook *** RUN DATE & TIME: 01-13-98 13:57

===015 WSI IN WRONG FLOW REGIME AT SECID "EXITX": USED WSI = CRWS. 499.95 WSI,CRWS = 499.84

XSID:CODE VHD LEW AREA HF EGL CRWS K ALPH HO ERR FR# VEL REW

209 2.32 ***** 502.26 499.95 15130 1.01 **** ***** -35 *****

===125 FR# EXCEEDS FNTEST AT SECID "FULLV": TRIALS CONTINUED.
FNTEST,FR#,WSEL,CRWS = 0.80 1.02 501.00

===110 WSEL NOT FOUND AT SECID "FULLY": REDUCED DELTAY. WSLIM1, WSLIM2, DELTAY = 499.45

===115 WSEL NOT FOUND AT SECID "FULLV": USED WSMIN = CRWS.
WSLIM1, WSLIM2, CRWS = 499.45 538.18 500.95

36 -1 209 2.32 1.01 503.27 500.95 2530 500.95 0 36 46 15130 1.01 0.00 0.00 1.03 12.12

<<<<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>> FULLV: FV

===135 CONVEYANCE RATIO OUTSIDE OF RECOMMENDED LIMITS. "APPRO" KRATIO = 1.66

S 57 -4 293 1.28 0.96 504.23 ****** 2530 502.95 57 57 66 25121 1.10 0.00 0.00 0.79 8.64 APPRO · AS <>><THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>>

===285 CRITICAL WATER-SURFACE ELEVATION A _ S _ S _ U _ M _ E _ D !!!!! SECID "BRIDG" Q,CRWS = 2530. 501.89

<><<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>>>

Q AREA VHD XSID:CODE SRDL LEW HF EGL CRWS WSEL K ALPH VEL SRD FLEN REW ERR

36 0 193 2.66 ***** 504.56 501.89 2530 501.89 13.09 0 193 2.66 ***** 504.56 501.89 36 19205 1.00 **** ******* 1.00 36

TYPE PPCD FLOW C P/A LSEL BLEN XLAB XRAB 1. **** 1. 1.000 ***** 510.32 ***** *****

XSID:CODE SRD FLEN HF VHD EGL ERR Q WSEL RDWAY:RG

10. <<<<EMBANKMENT IS NOT OVERTOPPED>>>> HF LEW EGL CRWS

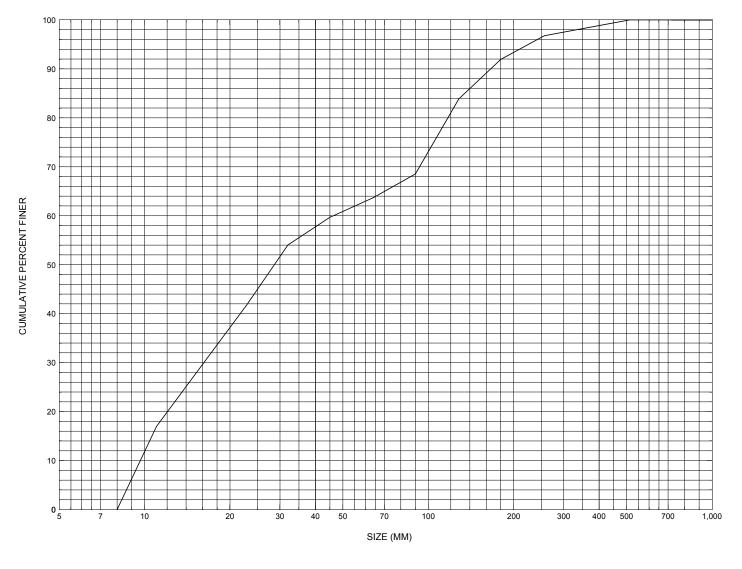
XSID:CODE SRDL SRD FLEN AREA VHD Q WSEL ERR НО REW K ALPH FR# VEL

-6 429 0.56 0.22 505.30 502.19 APPRO:AS 2530 504.73 74 42164 1.04 0.52 -0.01 0.46 57 28 5.89

M(G) M(K) KQ XLKQ XRKQ 0.490 0.246 31881. -6. 30. OTEL 504.59

<<<< END OF BRIDGE COMPUTATIONS>>>>

FIRST USER DEFINED TABLE.


Q XSID: CODE SRD LEW REW K AREA VEL WSEL 15130. 2530. EXITX:XS -36. -2. 46. 209. 12.12 499.95 209. FIII.I.V · FV 0. -2. 46. 2530. 15130. 19205. 12.12 500.95 0. BRIDG: BR 0. 36. 2530. 193. 13.09 501.89 RDWAY:RG 10.******** 0.********** 2.00****** APPRO:AS 57. -7. 74. 2530. 42164. 429. 5.89 504.73

XSID: CODE XLKQ XRKQ KQ 31881. 30. APPRO:AS -6.

SECOND USER DEFINED TABLE.

XSID: CODE CRWS FR# YMIN YMAX HF HO VHD 1.03 493.21 537.18******** EXITX:XS 499.95 2.32 502.26 499.95 1.03 494.21 538.18 1.01 0.00 2.32 503.27 500.95 501.89 1.00 495.29 510.36******* 2.66 504.56 501.89 APPRO:AS 502.19 0.46 493.22 531.39 0.22 0.52 0.56 505.30 504.73

APPENDIX C: BED-MATERIAL PARTICLE-SIZE DISTRIBUTION

Appendix C. Bed material particle-size distribution for a pebble count in the channel underneath structure BURKTH00440032, in Burke, Vermont.

APPENDIX D: HISTORICAL DATA FORM

Structure Number BURKTH00440032

General Location Descriptive

Data collected by (First Initial, Full last name) E. BOEHMLER

Date (MM/DD/YY) __03 / _24 / _95

Highway District Number (I - 2; nn) 07 County (FIPS county code; I - 3; nnn) 005

Town (FIPS place code; I - 4; nnnnn) 10450 Mile marker (I - 11; nnn.nnn) 000000

Waterway (I - 6) ROUNDY BROOK Road Name (I - 7):

Route Number TH044 Vicinity (/ - 9) 0.6 MI JCT TH 44 + US 5

Topographic Map Burke Mountain Hydrologic Unit Code: 01080102

Latitude (I - 16; nnnn.n) 44366 Longitude (i - 17; nnnnn.n) 71580

Select Federal Inventory Codes

FHWA Structure Number (*I* - 8) <u>10030200320302</u>

Maintenance responsibility (*I - 21; nn*) 03 Maximum span length (*I - 48; nnnn*) 0039

Year built (1 - 27; YYYY) 1929 Structure length (1 - 49; nnnnnn) 000043

Average daily traffic, ADT (I - 29; nnnnnn) 000200 Deck Width (I - 52; nn.n) 175

Year of ADT (1 - 30; YY) 92 Channel & Protection (1 - 61; n) 5

Opening skew to Roadway (*I* - 34; nn) ____ 00 Waterway adequacy (*I* - 71; n) ___ 6

Operational status (I - 41; X) A Underwater Inspection Frequency (I - 92B; XYY) N

Structure type (*I - 43; nnn*) <u>303</u> Year Reconstructed (*I - 106*) <u>0000</u>

Approach span structure type (I - 44; nnn) __000 __ Clear span (nnn.n ft) __031.1

Number of spans (1 - 45; nnn) 001 Vertical clearance from streambed (nnn.n ft) 013.2

Number of approach spans (*I - 46; nnnn*) <u>0000</u> Waterway of full opening (*nnn.n ft*²) <u>410.3</u> Comments:

The structural inspection report of 10/31/94 indicates the structure is a steel girder and floor beam system type bridge with a concrete deck. The abutment walls and wingwalls are concrete. A small section of the concrete footing is reported showing on the right abutment. The right abutment concrete is spalled along its base. Both abutment walls have a few small cracks, leaks, and spalls reported. While the footing is exposed on the right abutment, the report indicates undermining and settling are not evident. Some boulder riprap is noted around the ends of each wingwall and some in small areas where bank erosion has occurred during previous flooding on the banks up- and downstream (Continued, page 32).

	Brid	ge Hydro	ologic Da	ata		
Is there hydrologic data availabl	e? <u>N</u> if	No, type ctrl	-nh VTA	OT Draina	age area (n	ni²): <u>-</u>
Terrain character:						
Stream character & type: _						
Streambed material: -						
Discharge Data (cfs): Q _{2.33}						
Record flood date (MM / DD / YY):						
Estimated Discharge (cfs): lce conditions (Heavy, Moderate, Li						
The stage increases to maximum						
The stream response is (<i>Flashy, I</i>	_		•	voi rapiary j.		
Describe any significant site cor	- ,			m that ma	y influence	e the stream's
stage: -	•				,	
Watershed storage area (in perce	<i>'</i> ——					
The watershed storage area is:		ainly at the h e site)	eadwaters; 2	?- uniformly (distributed; 3	-immediatly upstream
		,				
Water Surface Elevation Estima	tes for Exi	sting Struc	<u>cture:</u>			
Peak discharge frequency	Q _{2.33}	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀]
	-2.33	-	25	-50	- 100	
Water surface elevation (ft))						
Velocity (ft / sec)	-	-	-	-	-	
	1					J
Long term stream bed changes:	-					
Is the roadway overtopped below	w the Q ₁₀₀	? (Yes, No,	Unknown):	U	Frequen	cy: <u>-</u>
Relief Elevation (#):	Discha	arge over r	oadway at	$Q_{100} (ft^3/s)$	sec):	
Are there other structures nearb	y? (Yes, No	o, Unknown)	: <u>U</u> If No	o or Unknow	n, type ctrl-n	os
Upstream distance (miles):		Town:			_ Year Bui	ilt:
Highway No. :	Structı	ure No. : <u>-</u>	Stru	ucture Typ	e: <u>-</u>	
Clear span (ft): Clear He	eight (#): _	<u> </u>	ull Waterw	ay (ft²): <u>-</u>		

Downstream distance (miles): Town:	Year Built:
Highway No. : Structure No. : Structure Type: _	
Clear span (#): Clear Height (#): Full Waterway (#²):	
Comments: An old log is reported across the channel just upstream of the bridge. Channel opment are reported as minor at this site. The foundation type recorded for this	
USGS Watershed Data	
Watershed Hydrographic Data	
Drainage area (DA) 9.24 mi ² Lake/pond/swamp area 0 Watershed storage (ST) 0 %	
Bridge site elevation $\phantom{00000000000000000000000000000000000$	<u> </u>
10% channel length elevation 910 ft 85% channel length elements Main channel slope (S) 93.15 ft / mi	levation <u>1650</u> ft
Watershed Precipitation Data	
Average site precipitation in Average headwater precipitation	ation in
Maximum 2yr-24hr precipitation event (124,2) _ in	
Average seasonal snowfall (Sn) ft	

Bridge Plan Data
Are plans available? NIf no, type ctrl-n pl Date issued for construction (MM / YYYY): / Project Number
Reference Point (<i>MSL</i> , <i>Arbitrary</i> , <i>Other</i>): Datum (<i>NAD27</i> , <i>NAD83</i> , <i>Other</i>): Foundation Type: _4 (1-Spreadfooting; 2-Pile; 3- Gravity; 4-Unknown) If 1: Footing Thickness Footing bottom elevation:
Comments: There are no bridge plans available.

Cross-sectional Data

Is cross-sectional data available? Y ____ If no, type ctrl-n xs

Source (FEMA, VTAOT, Other)? VTAOT

This cross section is the downstream face. The low chord elevations are from the survey log done for this report on 8/8/95. The low chord to bed length data are from the sketch attached to a bridge inspection report dated 10/31/94. The sketch was done on 9/10/92.

Station	0	4.7	13.4	19.7	23	28	33.7	-	-	-	-
Feature	RAB	-	-	-	-	-	LAB	-	-	-	-
Low chord elevation	510.4	510.4	510.4	510.3	510.3	510.3	510.3	-	-	-	-
Bed elevation	496.6	496.1	495.6	496.5	497.1	499.0	498.8	-	-	-	-
Low chord to bed	13.8	14.3	14.8	13.8	13.2	11.3	11.5	-	-	-	-
	•						•		•	•	•
Station	-	-	-	1	1	-	-	-	-	-	-
Feature	-	-	-	-	-	-	-	-	-	-	-
Low chord elevation	-	-	-	-	-	-	-	-	-	-	-
Bed elevation	-	-	-	ı	ı	-	-	-	-	-	-
Low chord to bed	-	-	-	-	-	-	-	-	-	-	-

Source (FEMA, VTAOT, Other)? ____

Comments: -

Station Feature Low chord elevation Bed elevation Low chord to bed Station Feature Low chord elevation Bed elevation Low chord to bed

APPENDIX E:

LEVEL I DATA FORM

U. S. Geological Survey Bridge Field Data Collection and Processing Form

Structure Number BURKTH00440032

Qa/Qc Check by: **RB** Date: 3/1/96

Computerized by: RB Date: 3/1/96

MS Date: 5/4/98 Reviewd by:

A. General Location Descriptive

1. Data collected by (First Initial, Full last name) E. BOEHMLER Date (MM/DD/YY) 08 / 08 / 1995

2. Highway District Number 07 County Caledonia (005)

Waterway (/ - 6) ROUNDY BROOK

Route Number TH044

Town BURKE (10450)

Road Name -

Mile marker 0000

Hydrologic Unit Code: 01080102

3. Descriptive comments:

The bridge is located about 0.6 miles from the intersection of TH044 with US Route 5.

B. Bridge Deck Observations

- 4. Surface cover... LBUS 6 RBUS 4 LBDS 6 Overall 6 (2b us,ds,lb,rb: 1- Urban; 2- Suburban; 3- Row crops; 4- Pasture; 5- Shrub- and brushland; 6- Forest; 7- Wetland)
- 5. Ambient water surface... US 2 UB 2 DS 2 (1- pool; 2- riffle)
- 6. Bridge structure type 1 (1- single span; 2- multiple span; 3- single arch; 4- multiple arch; 5- cylindrical culvert; 6- box culvert; or 7- other)
- 7. Bridge length <u>43</u> (feet)

Span length 39 (feet) Bridge width 17.5 (feet)

Road approach to bridge:

8. LB 2 RB 2 (0 even, 1- lower, 2- higher)

9. LB 2 RB 2 (1- Paved, 2- Not paved)

10. Embankment slope (run / rise in feet / foot): US left -- US right --

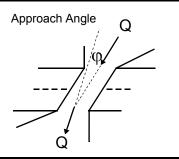
	Pr	otection	10 Erasian	14 Soverity	
	11.Type	12.Cond.	13.Erosion	14.Severity	
LBUS		-	2	2	
RBUS			0	0	
RBDS	_0	-	2	2	
LBDS	_0		2	1	

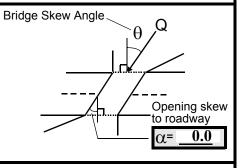
Bank protection types: **0**- none; **1**- < 12 inches; **2-** < 36 inches; **3-** < 48 inches;

4- < 60 inches; **5**- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

Erosion: 0 - none: 1- channel erosion: 2-


road wash; 3- both; 4- other


Erosion Severity: **0** - none: **1**- slight: **2**- moderate:

3- severe

Channel approach to bridge (BF):

15. Angle of approach: 0 16. Bridge skew: 0

17. Channel impact zone 1:

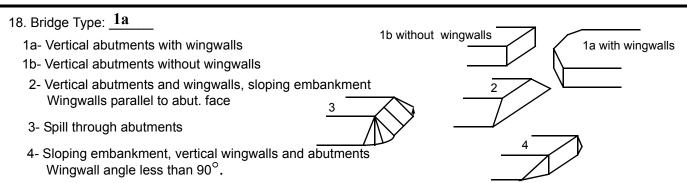
Where? LB (LB, RB)

Severity 3

Range? 75 feet US (US, UB, DS) to 50 feet US

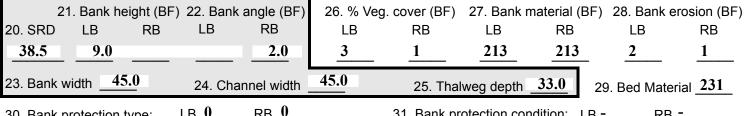
Channel impact zone 2:

Exist? \mathbf{Y} (Y or N)


Exist? $\underline{\mathbf{Y}}$ (Y or N)

Where? RB (LB, RB)

Severity 1


Range? 0 feet US (US, UB, DS) to 0 feet DS

Impact Severity: **0**- none to very slight; **1**- Slight; **2**- Moderate; **3**- Severe

- 19. Bridge Deck Comments (surface cover variations, measured bridge and span lengths, bridge type variations, approach overflow width, etc.)
- 7. The bridge dimensions are from the VTAOT files. The measured bridge length was 41.6 feet, the span length was 38.6 feet, and the bridge width was 17.5 feet.

C. Upstream Channel Assessment

30 .Bank protection type: LB <u>0</u> RB <u>0</u> 31. Bank protection condition: LB <u>-</u> RB <u>-</u> RB <u>-</u> *SRD - Section ref. dist. to US face % Vegetation (Veg) cover: 1- 0 to 25%; 2- 26 to 50%; 3- 51 to 75%; 4- 76 to 100%*

Bed and bank Material: **0**- organics; **1**- silt / clay, < 1/16mm; **2**- sand, 1/16 - 2mm; **3**- gravel, 2 - 64mm; **4**- cobble, 64 - 256mm; **5**- boulder, > 256mm; **6**- bedrock; **7**- manmade

Bank Erosion: 0- not evident; 1- light fluvial; 2- moderate fluvial; 3- heavy fluvial / mass wasting

Bank protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

Bank protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

32. Comments (bank material variation, minor inflows, protection extent, etc.):

There is some stone fill on the streambed from 20 feet US to the US face. The water is generally pooled beyond 20 feet US from the US face of the bridge. There are 2 or 3 whole tree trunks lodged on both banks forming a blockage across the channel about 60 feet US. The lodged trees have captured other debris, mainly leaves and branches, resulting in greater blockage along the left-bank side compared to the right-bank side.

33. Point/Side bar present? N	_ (Y or N. if N type ctrl-n pb)34. Mid-bar distance: 35. Mid-bar width:
	S, UB) to feet (US, UB, DS) positioned %LB to %RB
37. Material: <u>-</u>	
38. Point or side bar comments (Circle Poir NO POINT BARS	int or Side; Note additional bars, material variation, status, etc.):
NO POINT BARS	
39. Is a cut-bank present? Y	(Y or if N type ctrl-n cb) 40. Where? <u>LB</u> (LB or RB)
	42. Cut bank extent: 100 feet US (US, UB) to 50 feet US (US, UB, DS)
43. Bank damage: 1 (1- eroded and/o	
44. Cut bank comments (eg. additional cut	banks, protection condition, etc.):
_ · · · · · · · · · · · · · · · · · · ·	by a narrow sand-bar ridge that has developed. There is a debris pile
that blocks some of the flow along the	e left bank just DS of the cut-bank.
45 le channel scour present? N	Y or if N type ctrl-n cs) 46. Mid-scour distance:
47. Scour dimensions: Length Wid 48. Scour comments (eg. additional scour	dth Depth : Position %LB to %RB
` •	much sandier and the ambient thalweg is deeper than under the bridge
	a control and water is generally pooled from 20 feet US of the US face to
greater than 200 feet US.	
-	S? N (Y or if N type ctrl-n mc) 50. How many? -
	52. Enters on <u>(LB or RB)</u> 53. Type <u>(1- perennial; 2- ephemeral)</u>
	Enters on <u>-</u> (LB or RB) Type <u>-</u> (1- perennial; 2- ephemeral)
54. Confluence comments (eg. confluence NO MAJOR CONFLUENCES	name):
NO MAJOR CONFEDENCES	
D. U	Under Bridge Channel Assessment
	(1- natural bank; 2- abutment; 3- artificial levee)
56. Height (BF) 57 Angle (BF) LB RB LB RB	61. Material (BF) 62. Erosion (BF) LB RB LB RB
22.0 4.0	2. 7 7 -
L	Channel width - 60. Thalweg depth 90.0 63. Bed Material -
, ,	
	lt / clay, < 1/16mm; 2 - sand, 1/16 - 2mm; 3 - gravel, 2 - 64mm; 4 - cobble, 64 - 256mm; 6mm; 6 - bedrock; 7- manmade
	ial; 2 - moderate fluvial; 3 - heavy fluvial / mass wasting
64. Comments (bank material variation, mi	ninor inflows, protection extent, etc.):
345	
At least part of the boulder bed mate old concrete.	terial is stone fill. Among the boulder-sized stone fill are some blocks of
ora concrete.	

65. Debris and Ice Is there debris accumulation? ____ (Y or N) 66. Where? Y ___ (1- Upstream; 2- At bridge; 3- Both)

67. Debris Potential <u>US</u> (1- Low; 2- Moderate; 3- High) 68. Capture Efficiency (1- Low; 2- Moderate; 3- High)

69. Is there evidence of ice build-up? 2 (Y or N)

Ice Blockage Potential N (1-Low; 2- Moderate; 3- High)

70. Debris and Ice Comments:

The upstream banks are well vegetated. The 90 degree bend in the upstream channel and the abundant vegetation attribute to the high debris potential.

<u>Abutments</u>	71. Attack ∠(BF)	72. Slope ∠ (Qmax)	73. Toe loc. (BF)	74. Scour Condition	75. Scour depth	76.Exposure depth	77. Material	78. Length
LABUT		-	90	0	0	0	0	90.0
RABUT	1	5	90			2	2	36.5

Pushed: LB or RB

Toe Location (Loc.): 0- even, 1- set back, 2- protrudes

Scour cond.: 0- not evident; 1- evident (comment); 2- footing exposed; 3-undermined footing; 4- piling exposed; 5- settled; 6- failed

Materials: 1- Concrete; 2- Stone masonry or drywall; 3- steel or metal; 4- wood

79. Abutment comments (eg. undermined penetration, unusual scour processes, debris, etc.):

0.5

Exposure of the right abutment footing varies from 0.2 to 0.5 feet. There is a sand point bar along the left abutment. The right abutment is unprotected.

80. Winawalls:

	Exist?	Material?	Scour Condition?	Scour depth?	Exposure depth?	Angle?	Length?
USLWW:					·	36.5	
USRWW:	<u>Y</u>		1		0	1.0	
DSLWW:	0		0		<u>Y</u>	20.5	
DSRWW:	1		<u>0</u>		<u>0</u>	20.5	
Wingwall	material	s: 1 - Cond	crete; 2- Ston	ne mason	ry or drywa	II; 3 - steel	or metal;

USRWW USLWW Wingwall length Wingwall angle **DSRWW** DSLWW

4- wood

82. Bank / Bridge Protection:

Location	USLWW	USRWW	LABUT	RABUT	LB	RB	DSLWW	DSRWW
Туре	0	0	Y	0	-	1	-	-
Condition	Y	0	1	0.5	-	1	-	-
Extent	1	0	2	0	2	0	0	-

Bank / Bridge protection types: **0**- absent; **1**- < 12 inches; **2**- < 36 inches; **3**- < 48 inches; **4**- < 60 inches; **5**- wall / artificial levee

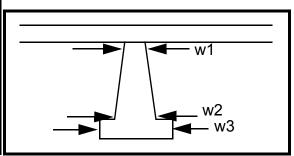
Bank / Bridge protection conditions: 1- good; 2- slumped; 3- eroded; 4- failed

Protection extent: 1- entire base length: 2- US end: 3- DS end: 4- other

83. Wingwall and protection comments (eg. undermined penetration, unusual scour processes, etc.):

2

1


2

1 3

Piers:

84. Are there piers? __Sto_ (*Y or if N type ctrl-n pr*)

					•	
85.						
Pier no.	width (w) feet		elev	ation (e) f	eet	
	w1	w2	w3	e@w1	e@w2	e@w3
Pier 1				60.0	12.0	45.0
Pier 2				12.0	35.0	11.5
Pier 3			-	45.0	12.0	-
Pier 4	-	-	-	-	-	-

1	2	3	4
ne fill	wall.	wing-	may be
pro-	The	wall	cov-
tects	only	is	ering
the	visi-	chan	stone
US	ble	nel	fill.
right	pro-	fill	The
wing	tec-	point	DS
-	-	-	-
wall	tion	-bar	left
and	on	mate	wing
DS	the	rial	wall
right	US	whic	is
wing	left	h	pro-
	ne fill protects the US right wing - wall and DS right	ne fill wall. pro- The tects only the visi- US ble right pro- wing tec wall tion and on DS the right US	ne fill wall. wing- pro- The wall tects only is the visi- chan US ble nel right pro- fill wing tec- point wall tion -bar and on mate DS the rial right US whic

LFP, LTB, LB, MCL, MCM, MCR, RB, RTB, RFP

1- Solid pier, 2- column, 3- bent

1- Wood; 2- concrete; 3- metal; 4- stone

1- Round; 2- Square; 3- Pointed

Y- yes; N- no

LB or RB

0- none; 1- laterals; 2- diagonals; 3- both

0- not evident; 1- evident (comment);

2- footing exposed; 3- piling exposed; 4- undermined footing; 5- settled; 6- failed

99. Pier comments (eg. undern tected with stone fill.	nined penetration, pro	otection and protection e	xtent, unusual scour _l	processes, etc.):
N				
100.	E. Downstre	eam Channel Ass	sessment	
Bank height (BF) SRD LB RB	Bank angle (BF) LB RB	% Veg. cover (BF) LB RB	Bank material (E LB RB <u></u>	BF) Bank erosion (BF) LB RB
Bank width (BF)	Channel width	n <u>-</u> Tha	alweg depth	Bed Material <u>-</u>
Bank protection type (Qmax):	LB <u>-</u> RB	- Bank prote	ection condition:	LB <u>-</u> RB <u>-</u>
SRD - Section ref. dist. to US as Bed and bank Material: 0- orga 4- cob Bank Erosion: 0- not evident; as Bank protection types: 0- abse Bank protection conditions: 1-Comments (eg. bank material val-	anics; 1- silt / clay, < 1 bble, 64 - 256mm; 5- b 1- light fluvial; 2- mode ent; 1- < 12 inches; 2- good; 2- slumped; 3-	1/16mm; 2 - sand, 1/16 coulder, > 256mm; 6 - bed erate fluvial; 3 - heavy flu < 36 inches; 3 - < 48 inches eroded; 4 - failed	2mm; 3 - gravel, 2 - 64 drock; 7 - manmade vial / mass wasting hes; 4 - < 60 inches; 5	
- - - -				
-				
- -				
- -				
-				
101. Is a drop structure 103. Drop: feet 105. Drop structure comments -	104. Structure	material: <u>-</u> (1 - steel		feet ile; 3 - concrete; 4 - other)
- - -				
-				

106. Point/Side bar present? - (Y or N. if N type ctrl-n pb)Mid-bar distance: - Mid-bar width: -
Point bar extent: feet (US, UB, DS) to feet (US, UB, DS) positioned %LB to %RB
Material:
Point or side bar comments (Circle Point or Side; note additional bars, material variation, status, etc.):
-
-
-
-
Is a cut-bank present? N (Y or if N type ctrl-n cb) Where? O (LB or RB) Mid-bank distance: PIE
Cut bank extent: RS feet (US, UB, DS) to (US, UB, DS)
Bank damage: (1- eroded and/or creep; 2- slip failure; 3- block failure)
Cut bank comments (eg. additional cut banks, protection condition, etc.):
Is channel scour present? (Y or if N type ctrl-n cs) Mid-scour distance: 4
Scour dimensions: Length 4 Width 235 Depth: 543 Positioned 2 %LB to 1 %RB
Scour comments (eg. additional scour areas, local scouring process, etc.):
435
2
0
Are there major confluences? - (Y or if N type ctrl-n mc) How many? The
Confluence 1: Distance <u>right</u> Enters on <u>ban</u> (LB or RB) Type <u>k</u> (1- perennial; 2- ephemeral)
Confluence 2: Distance show Enters on s (LB or RB) Type fewe (1- perennial; 2- ephemeral)
Confluence comments (eg. confluence name):
r signs of erosion than the left bank. The trees along the left bank beyond 75 feet DS are leaning at approximately a 30 degree angle from vertical toward the abanyal. There is a tree from the left bank lying agrees the
mately a 30 degree angle from vertical toward the channel. There is a tree from the left bank lying across the
F. Geomorphic Channel Assessment
107. Stage of reach evolution cha 1- Constructed
2- Stable 3- Aggraded
4 - Degraded 5 - Laterally unstable
6- Vertically and laterally unstable

nel DS, with its top the et DS in the channe	resting at the top of the right k l. The left bank protection ex	oank near 100 feet DS. Stor tends from the DS left wing	ne fill is found as far as 50 gwall to about 25 feet DS.

	109. G. F	Plan View Sketch	-	4
point bar pb cut-bank cb scour hole	debris XXX rip rap or Stone fill	flow — cross-section + + + + + + + + + + + + + + + + + + +	stone wall	

APPENDIX F: SCOUR COMPUTATIONS

SCOUR COMPUTATIONS

Structure Number: BURKTH00440032 Town: Burke
Road Number: TH44 County: Caledonia

Stream: Roundy Brook

Initials MMS Date: 1/13/98 Checked: RLB

Analysis of contraction scour, live-bed or clear water?

Critical Velocity of Bed Material (converted to English units) $Vc=11.21*y1^0.1667*D50^0.33$ with Ss=2.65 (Richardson and others, 1995, p. 28, eq. 16)

Approach Section			
Characteristic	100 yr	500 yr	other Q
Motol dischause of	1000	2520	0
Total discharge, cfs Main Channel Area, ft2	1880 220	2530 265	0
Left overbank area, ft2	0	0	0
Right overbank area, ft2	98	164	0
Top width main channel, ft	31	32	0
Top width L overbank, ft	0	0	0
Top width R overbank, ft	43	49	0
D50 of channel, ft	0.094	0.094	0
D50 Of Chaimer, ft D50 left overbank, ft			
D50 right overbank, ft			
D30 Figite Overbank, Te			
y1, average depth, MC, ft	7.1	8.3	ERR
y1, average depth, LOB, ft	ERR	ERR	ERR
y1, average depth, ROB, ft	2.3	3.3	ERR
Total conveyance, approach	28005	42122	0
Conveyance, main channel	21661	28506	0
Conveyance, LOB	0	0	0
Conveyance, ROB	6344	13616	0
Percent discrepancy, conveyance	0.0000	0.0000	ERR
Qm, discharge, MC, cfs	1454.1	1712.2	ERR
Ql, discharge, LOB, cfs	0.0	0.0	ERR
Qr, discharge, ROB, cfs	425.9	817.8	ERR
Vm, mean velocity MC, ft/s	6.6	6.5	ERR
Vl, mean velocity, LOB, ft/s	ERR	ERR	ERR
Vr, mean velocity, ROB, ft/s	4.3	5.0	ERR
Vc-m, crit. velocity, MC, ft/s	7.1	7.2	N/A
Vc-1, crit. velocity, LOB, ft/s	ERR	ERR	ERR
Vc-r, crit. velocity, ROB, ft/s	ERR	ERR	ERR
ve i, elie. velocity, Rob, It/5	EKK	EKK	EKK
Results			
Live-bed(1) or Clear-Water(0) Contra	action Sco	our?	
Main Channel	0	0	N/A
Left Overbank	N/A	N/A	N/A
Right Overbank	N/A	N/A	N/A
3	•	•	•

Clear Water Contraction Scour in MAIN CHANNEL

 $y2 = (Q2^2/(131*Dm^(2/3)*W2^2))^(3/7) \qquad \mbox{Converted to English Units } ys=y2-y_bridge \\ (Richardson and others, 1995, p. 32, eq. 20, 20a)$

Bridge Section	Q100	Q500	Other Q
(Q) total discharge, cfs	1880	2530	0
(Q) discharge thru bridge, cfs	1880	2530	0
Main channel conveyance	14250	19183	0
Total conveyance	14250	19183	0
Q2, bridge MC discharge,cfs	1880	2530	ERR
Main channel area, ft2	159	193	0
Main channel width (normal), ft	36.1	36.1	0.0
Cum. width of piers in MC, ft	0.0	0.0	0.0
W, adjusted width, ft	36.1	36.1	0
<pre>y_bridge (avg. depth at br.), ft</pre>	4.40	5.35	ERR
Dm, median (1.25*D50), ft	0.1175	0.1175	0
y2, depth in contraction,ft	6.76	8.71	ERR
ys, scour depth (y2-ybridge), ft	2.35	3.37	N/A

Armoring

(Federal Highway Administration, 1993)

Downstream bridge face property	100-yr	500-yr	Other Q
Q, discharge thru bridge MC, cfs	1880	2530	N/A
Main channel area (DS), ft2	159	193	0
Main channel width (normal), ft	36.1	36.1	0.0
Cum. width of piers, ft	0.0	0.0	0.0
Adj. main channel width, ft	36.1	36.1	0.0
D90, ft	0.5442	0.5442	0.0000
D95, ft	0.7381	0.7381	0.0000
Dc, critical grain size, ft	0.6683	0.7564	ERR
Pc, Decimal percent coarser than Dc	0.064	0.047	0.000
Depth to armoring, ft	29.32	N/A	ERR

Abutment Scour

Froehlich's Abutment Scour $Ys/Y1 = 2.27*K1*K2*(a'/Y1)^0.43*Fr1^0.61+1$ (Richardson and others, 1995, p. 48, eq. 28)

	Left Abutment			Right Abutment				
Characteristic	100 yr Q !	500 yr Q (Other Q 1	.00 yr Q 5	00 yr Q O	ther Q		
(Qt), total discharge, cfs	1880	2530	0	1880	2530	0		
a', abut.length blocking flow, ft	5.5	6.7	0	31.7	38.1	0		
Ae, area of blocked flow ft2	19.21	28.06	0	57.65	108.12	0		
Qe, discharge blocked abut.,cfs	67.14	99.71	0	212.37	475.75	0		
(If using Qtotal_overbank to obtain Ve, leave Qe blank and enter Ve and Fr manually)								
Ve, (Qe/Ae), ft/s	3.50	3.55	ERR	3.68	4.40	ERR		
ya, depth of f/p flow, ft	3.49	4.19	ERR	1.82	2.84	ERR		
Coeff., K1, for abut. type (1.0, K1	verti.; 0 0.82	.82, vert 0.82	i. w/ win 0.82	gwall; 0. 0.82	55, spill 0.82	thru) 0.82		
Angle (theta) of embankment (<90	if abut.	points DS	; >90 if	abut. poi	nts US)			
theta	90	90	90	90	90	90		
K2	1.00	1.00	1.00	1.00	1.00	1.00		
Fr, froude number f/p flow	0.330	0.306	ERR	0.481	0.460	ERR		
ys, scour depth, ft	7.51	8.82	N/A	9.23	12.89	N/A		
HIRE equation $(a'/ya > 25)$ ys = 4*Fr^0.33*y1*K/0.55 (Richardson and others, 1995, p. 49, eq. 29)								
a'(abut length blocked, ft)	5.5	6.7	0	31.7	38.1	0		
y1 (depth f/p flow, ft)	3.49	4.19	ERR	1.82	2.84	ERR		
a'/yl	1.57	1.60	ERR	17.43	13.43	ERR		
Skew correction (p. 49, fig. 16)	1.00	1.00	1.00	1.00	1.00	1.00		
Froude no. f/p flow	0.33	0.31	N/A	0.48	0.46	N/A		
Ys w/ corr. factor K1/0.55:								
vertical	ERR	ERR	ERR	ERR	ERR	ERR		
vertical w/ ww's	ERR	ERR	ERR	ERR	ERR	ERR		

spill-through ERR ERR ERR ERR ERR ERR

Abutment riprap Sizing

Isbash Relationship

 $\label{eq:defD50=y*K*Fr^2/(Ss-1)} \ \ \text{and} \ \ D50=y*K*(Fr^2)^0.14/(Ss-1)$

(Richardson and others, 1995, p112, eq. 81,82)

Characteristic	Q100	Q500	Other Q	Q100	Q500	Other Q
Fr, Froude Number	1	1	0	1	1	0
y, depth of flow in bridge, ft	4.40	5.35	0.00	4.40	5.35	0.00
Median Stone Diameter for riprap	at: left	abutment		right	abutment,	ft
Fr<=0.8 (vertical abut.)	ERR	ERR	0.00	ERR	ERR	0.00
Fr>0.8 (vertical abut.)	1.84	2.24	ERR	1.84	2.24	ERR