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ABSTRACT

A regional common Pb isotopic study of Mesozoic and
Tertiary granitoids and some Tertiary volcanic rocks in the
northern Great Basin provides a better understanding of the
regional crustal structure and composition, and their
relationship to the apparent linear alignment of gold deposits
along the Carlin and Battle Mountain - Eureka trends.  The Pb
isotopic data allow for the subdivision of the northern Great
Basin into western, central, and eastern provinces.  The
boundary between the western and central provinces closely
follows the previously documented initial Sr (ISr) = 0.706
line and represents a narrow zone in which initial Pb and Sr
isotopic ratios increase rapidly.  Initial Pb vs. Pb and Pb vs. Sr
isotopic ratios show strong positive correlation, and initial Pb
and Sr isotopic ratios increase from west to east across these
two provinces.  The eastern province is characterized by
plutons in which the Pb and Sr isotopic ratios are not strongly
correlated and exhibit much greater variability than those in
plutons from the two provinces to the west.  The boundary
between the central and eastern provinces is sharp and is
approximately coincident with the Carlin trend in north-central
Nevada.  It is suggested that this isotopic boundary and the
Carlin trend mark the locus of a cryptic major crustal
discontinuity. The Battle Mountain - Eureka trend lies within
the central province and is generally parallel to both the Carlin
trend and the north-south oriented portion of the boundary
between the western and central provinces as marked by the
ISr = 0.706 line.  It is proposed that the Pb province boundaries,
the ISr = 0.706 line, and the gold deposit trends are related to
crustal-scale discontinuities formed during continent-scale
rifting along western North America in the latest Precambrian
and that these discontinuities, which probably were originally
fault systems, were reactivated or utilized by subsequent
tectonic and magmatic events in the Phanerozoic.

INTRODUCTION

Two subparallel north-northwest to northwest-trending mineral
belts in Nevada, the Battle Mountain-Eureka trend on the SW
and the Carlin trend on the NE (fig. 1), are thought to reflect
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deep-seated, pre-Cenozoic crustal structures. These structures
may be pre-Cenozoic faults, Mesozoic and/or Paleozoic fold
axes, or uncertain features of the Precambrian basement.  Both
geophysical and geochemical-isotopic  studies  can
compliment  field based geologic studies of these features,
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Figure 1.  Location of major belts of precious metal deposits in
north-central Nevada.

and both have been successfully applied in studies of crustal
structure in the northern Great Basin and the western U.S (for
example Blakely and Jachens, 1991; Grauch and others, 1995;
Zoback and others, 1994; Kistler and Peterman, 1973, 1978;
and Kistler, 1983, 1991).  Geophysical studies measure time-
integrated physical parameters and attempt to distinguish
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shallow from deep and younger from older features but are
limited in temporal distinctions because the basic data are
tied to present conditions and may be dominated by recent
crust-mantle events.  Isotopic studies have the advantage of
investigating time-related features by comparing the isotopic
compositions of rocks formed at different times during the
geologic history of a region for systematic or significant
changes.  However, the sampling interval for isotopic studies
is controlled by the present-day outcrop distribution of the
rocks to be studied, and the result can be a very uneven
geographic distribution.  In comparison, the sampling interval
for geophysical studies is not tied to the outcrop patterns and
can be designed to provide an even geographic coverage at a
chosen scale.  The isotopic signatures of igneous rocks largely
reflect the average characteristics of their source regions plus
any later interaction with the crustal column through which
they moved or into which they were emplaced and any later
modification by metamorphism or hydrothermal alteration.
In general isotopic signatures of granitoid rocks reflect the
geochemical properties of the lower and middle crust and
the mantle from which they were melted and are unlikely to
reflect the upper crust, the structure of which is more readily
revealed by geophysical methods.  Since one goal of this
study is to provide a basis for the comparison of the
geophysical and isotopic data sets with respect to the crustal
structure of Nevada, it is important to remember that the two
methods have some fundamental differences in what features
of the crust and mantle system are providing the basic data.

Kistler and Peterman (1973, 1978) and Kistler (1983,
1991) demonstrated that the distribution of Sr isotopic
compositions of granitoid rocks in the northern Great Basin
delineated crustal structure, particularly the location of the
boundary between continental and oceanic crust as marked
by the initial 87Sr/86Sr (ISr) = 0.706 line (fig. 2).  Elison and
others (1990) showed that the ISr = 0.706 line correlates well
with the shelf-slope break defined by Early Paleozoic and
Triassic strata.  Farmer and DePaolo (1983, 1984) used
combined Nd and Sr isotopic compositions of Great Basin
granitoids to study the petrogenesis of these rocks and
regional crustal structure; however, their pioneering studies
were limited by the small sample suite for which Nd isotopic
data were available.  Bennett and DePaolo (1987) and
DePaolo and others (1991) present examples of the
application of Nd isotopic studies to understanding the
distribution of Precambrian crustal provinces in, and the more
general crustal structure of, the southwestern U.S.  Farmer
and Ball (1997) provide an excellent example of using Nd
isotopic characteristics of Precambrian crustal provinces to
determine provenance of Late Precambrian to early Paleozoic
sedimentary rocks in the Great Basin.  Since these rocks are
potential sources for Pb in the ore minerals associated with
the gold deposits in Nevada  (Tosdal and others, this volume),
the conclusions reached in Farmer and Ball (1997) are of

general interest to the present study.
Pb and Sr isotopic data are suitable for regional scale

studies because the data are relatively easy to acquire for
regional-scale sample suites. Rocks and magmas derived from
the mantle have low Pb concentrations (1-2 ppm or less)
relative to feldspar-rich crustal rocks that typically have 10-
30 ppm Pb.  Because of this strong contrast in Pb
concentration, the Pb isotopic composition of most granitoid
rocks reflects that of the crust with which it is associated even
if the magma had a significant mantle contribution to its
formation. Doe and Delevaux (1973) report an early example
of the application of Pb isotopic studies to Mesozoic granitoids
in the western U.S.  Chen and Tilton (1991) have demonstrated
the usefulness of combined Pb and Sr isotopic studies in the
southern Sierra Nevada.  Building on the work of Zartman
(1974), Wooden and others (1988), Wooden and Miller (1990)
and Wooden and DeWitt (1991) used the Pb isotopic
compositions of Proterozoic and Phanerozoic rocks to better
define the extent and nature of the crustal provinces in the
southwestern U.S.  Wooden and Mueller (1988) provide a Pb
isotopic characterization for the Archean Wyoming province.
These studies provide the background necessary to interpret
the Pb isotopic signatures of the Great Basin granitoids.  It
should be pointed out that the Precambrian crustal provinces
of the southwestern U.S. as defined by the Pb and Nd isotopic
studies mentioned above are similar in their geographic extent,
but not the same (compare figures in Wooden and DeWitt,
1991, to those in Farmer and Ball, 1997). One of the areas of
disagreement is the extent of the Mojave crustal province in
the Nevada, Utah, and Arizona, but this difference mostly
effects the details, not the main thesis, of the data interpretation
provided below.  Given that there are fundamental differences
in the geochemical basis of the Pb and Nd isotopic systems,
these differences in the extent of the crustal provinces may be
real and/or rooted in sample distribution, sample types, and
interpretation.  A large database of Sr isotopic data and
crystallization ages is already available for granitoids from
the northern Great Basin. We report here on the results derived
from the determination of initial Pb isotopic compositions for
many of the same samples used in the studies by Kistler and
co-workers (see references above and below) and for other
new samples.

DATA SOURCES AND
ANALYTICAL PROCEDURES

The data used herein have been determined over about a ten
year period in the Pb isotopic laboratory at the U.S. Geological
Survey in Menlo Park for a number of topical studies (e.g.
Wright and Wooden, 1991) mostly focused on magmatic and
tectonic histories and processes.  Most of the data represent
feldspar separates made from whole-rock crushes by
conventional magnetic and heavy-liquid separation techniques.
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Figure 2.  Outline map of California and Nevada showing the ISr = 0.706 line and Paleozoic facies boundaries (from Kistler and Fleck,

1994; Stevens and others, 1992; and Kistler, 1990).  BME, Battle Mountain-Eureka mineral belt; C, Carlin.

Sodium- and particular K-rich feldspars from granitoid rocks
have relatively high concentrations of Pb and very low
concentrations of U and Th.  The very low U/Pb and Th/Pb
ratios of feldspars mean that the Pb isotopic composition of
feldspars changes little with time, and a present-day isotopic
composition of feldspar is a good estimate of the initial Pb
isotopic composition of the feldspar and the magma
(assuming equilibrium) at the time of crystallization.  In the
rare cases where a feldspar has a significant U/Pb or Th/Pb
ratio, failure to correct for the added radiogenic Pb will make
the measured Pb isotopic ratios higher than the true initial
values.  The Pb isotopic composition of feldspar is subject to
resetting during heating events that reach about 300° C or
approximately the same temperature range in which biotite
K-Ar and Rb-Sr ages are reset.  During such a heating event,
radiogenic Pb produced in minerals or along grain boundaries
where high U/Pb and Th/Pb exist migrates and is taken into
the feldspar crystal structure.  The Pb isotopic composition
of such a feldspar will be more radiogenic that the initial
composition.  In Paleozoic and younger systems, the Pb
isotopic ratio that is most likely to be effected by failure to
correct for a significant U/Pb or Th/Pb ratio or for thermal
resetting is 206Pb/204Pb because most of the U present during
this time is 238U, the parent of 206Pb; 235U (parent of 207Pb)

has mostly disappeared because of its much higher decay
rate compared to 238U, and 232Th (parent of 208Pb) has a
lower decay rate than 238U.

Some analyses used herein are from whole-rock powders
used in the regional geochemical and isotopic studies of Lee
(1984) and Kistler and Lee (1989).  For these samples the
present-day Pb isotopic composition of the whole-rock
powder has been determined along with a Pb concentration
by the isotope dilution technique.   These data have been
combined with U and Th concentration and crystallization
age data (Lee, 1984; Kistler and Lee, 1989) to calculate an
initial Pb isotopic concentration.  Initial Pb isotopic ratios
calculated from whole-rock samples carry a higher
uncertainty than those measured in feldspar mineral separates
because of the analytical uncertainties associated with the U
and Th concentrations, and the tendency of medium- and
coarse-grained granitic samples to lose U in surficial
weathering environments.  The most common error in initial
Pb ratios calculated from whole-rock powders is for the
present-day 206Pb/204Pb ratios to be under-corrected because
the measured U concentration is too low as a result of U-loss
during weathering.  The 206Pb/204Pb ratio experiences the
most change in Phanerozoic materials because of the very
high ratio of 238U to 235U for this time interval.
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Pb was separated from feldspar and whole-rock samples
using the standard anion exchange resin process that utilizes
HBr and HCl.  All feldspar mineral separates were leached
with HCl, HNO3, and weak HF to remove labile Pb before
dissolution.   Pb isotopic compositions were determined in
static-collection mode on a MAT 262 mass spectrometer.
Thermal fractionation is monitored by running NBS-981 and
-982.  The empirical fractionation correction factor is 0.0011
per mass unit and its uncertainty is the largest contribution
to the total analytical uncertainty of about 0.1% associated
with the Pb isotopic ratios.
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Figure 3.  Outline map of California (CA), Nevada (NV), and Utah (UT) showing distribution of igneous samples used for the Pb isotopic
study.  The approximate boundary of the ISr = 0.706 line is shown as are the boundaries (heavy dashed lines) for the Pb isotopic provinces
of Zartman (1974) and two boundaries (Rb-depleted and εNd = -7) proposed by Farmer and DePaolo (1983) from their Nd and Sr isotopic
data.  See text for additional discussion.

RESULTS

There are approximately 400 samples for which
common Pb isotopic data are available (fig. 3).  Sr isotopic
data produced from separate studies are available for most
of these samples, and the existence of these previously
analyzed sample suites and Sr isotopic  data  was a  great
asset  in the conduct of the present study.  Observations
made in the early stages of this study were that for most of
the samples a strong positive correlation exists between the
three Pb isotopic ratios and between the initial Sr ratio and
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each of the Pb isotopic ratios (Wooden and Stacey, 1987;
Wright and Wooden, 1991).  These positive correlations,
however, were not observed for many samples from eastern
Nevada (fig. 4; Wooden and others, 1991, 1993).  These
observations were consistent with those made by Chen and
Tilton (1991) for a transect in the southern Sierra Nevada.
That transect in some aspects represents a telescoped version
of the Nevada data set including the fact that the strong
correlation between isotopic ratios is no longer observed at
its eastern end.  Since previous Sr isotopic studies (Kistler
and Peterman, 1973, 1978; Kistler, 1983, 1991) had already
established a correlation between geographic position and
Sr isotopic ratio (i.e. the ISr = 0.706 line), the positive
correlation between Sr and Pb isotopic ratios indicates that
the Pb isotopic ratios must also be related in a regular way to
geographic position.  Simple plots of sample longitude vs.
Pb (and Sr) isotopic values confirm this situation and
demonstrate that the Pb isotopic data indicated a general
increase in Pb isotopic ratios from west to east (fig. 5).
However, the changes in orientation of the ISr = 0.706 line
from northerly in western Nevada to east-northeast in northern
Nevada and the loop defined in west-central Nevada and
California (Kistler, 1983, 1991; Elison and others, 1990)
indicate that no simple west to east geographic distribution
of the Sr isotopic data exists across the full N-S extent of
Nevada (fig. 2), and consequently none should be expected
for the Pb isotopic data either.  Another complication for the
interpretation of the Pb and Sr isotopic data is that local
geographic variations occur in the distribution of the ratios.
In other words somewhat anomalous values, either higher or
lower, with respect to the average of surrounding values are
fairly common, and the occurrence of these values prevents
a simple, monotonic contouring of the data. Some of the
analytical reasons for these anomalies were discussed above,
but the anomalies may also be geologic in origin and related
to variations in the age and geochemical properties of the
sources and/or magmatic interaction with upper crustal rocks.
Regardless of the reason for the anomalies, it becomes simpler
to examine the geographic distribution of the data sets in terms
of ranges of values rather than simple monotonic contours.
Figures 6 and 7 show the geographic distribution of selected
ranges of 206Pb/204Pb (<18.7, 18.7-19.1, 19.1-19.3, 19.3-19.6,
>19.6) and 208Pb/204Pb (<38.8, 38.8-39.0, 39.0-39.7, >39.7);
geographic plots for 207Pb/204Pb are not shown because the
much more limited range of these data result in poorer
geographic resolution.  Only two to three ranges of data are
shown on each figure in order to minimize the problem of
overlapping data points during plotting which obscure the
geographic distribution of the data.  The breaks at 206Pb/204Pb
= 19.1 and 208Pb/204Pb = 38.8 were chosen from the Pb
isotopic ratio vs. ISr plots to correspond generally to ISr =
0.706 (fig. 4B).

The geographic distribution of these Pb isotopic data

intervals in the northern Great Basin indicates a subdivision
of the region into three major provinces which for descriptive
purposes will be referred to as western, central and eastern
(fig. 8).  The boundary between the western and central
provinces corresponds closely, but not exactly, to the ISr =
0.706 line reflecting the selection criteria of the Pb isotopic
data intervals.  The observation that this boundary represents
a narrow geographic zone across which Pb (and Sr) isotopic
ratios change rapidly (figs. 5A, 6B and 7B) is confirmation
that this boundary represents more than just a numerical
division of the data set. This zone separates a broad region
in central-western, northwestern, and central-northern
Nevada (western province) where 206Pb/204Pb = 18.75-19.1,
208Pb/204Pb = 38.45-38.8, and ISr = 0.704-0.706, from a
region in central Nevada (central province) where the
corresponding ratios are 19.3-19.6, 39.0-39.7, and 0.707-
0.710.

The boundary between the central and eastern provinces
is best defined by the occurrence of  samples with 208Pb/
204Pb greater than 39.7.  The western edge of this field of
values defines a fairly sharp boundary that trends north-
northwest and is approximately coincident with the Carlin
trend (figs. 7B-8A).  The distribution of samples with 206Pb/
204Pb either greater than 19.6 or less than 18.7 suggests a
similar but more poorly defined boundary (fig. 6B).  Pb
isotopic variations in the eastern province are more irregular
than in the western and central provinces.  Notable features
are the reappearance of samples with 208Pb/204Pb less than
39.0 and 206Pb/204Pb less than 19.3.  The eastern province
may be divisible into northern and southern areas based on
the occurrence of samples with 206Pb/204Pb either greater
than 19.6 or less than 19.1 and 208Pb/204Pb less than 39.7
(figs. 6B-7B)  The data do not define a sharp boundary
between these two areas, but only a broad zone.  Possible
reasons for the irregular isotopic variations of the eastern
province will be discussed below.  The paucity of samples
for Utah and southernmost Nevada prevent the clear
extension of these three Pb isotopic provinces or the definition
of province boundaries.  However, a sufficient body of Pb
isotopic data exists both for Precambrian and Phanerozoic
rocks in southeastern California and for Precambrian rocks
in western Arizona to conclude that the Proterozoic Mojave
crustal province exists in this region (Wooden and Miller,
1990; Wooden and DeWitt, 1991).  The Pb isotopic signature
of Mesozoic and Tertiary igneous rocks in the Mojave crustal
province is very similar to that observed for the eastern
province in Nevada.  It is an inescapable conclusion that the
southward extension of the boundary between the central
and eastern Pb provinces of Nevada must turn back to the
west. Furthermore the boundary must remain north of the
Proterozoic outcrops in the Mojave Desert and in the Death
Valley region (unpublished Pb isotopic data show these to
belong to the Mojave crustal province, Wooden and Calzia,
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Figure 4.  (A) Initial 206Pb/204Pb vs. initial 208Pb/204Pb for all samples. Pb isotopic compositions for
samples west of the Carlin trend (open squares, within rectangular box) show a strong, tight positive
correlation.  Pb isotopic compositions for samples east of the Carlin trend (solid triangles) are not well
correlated, and many have much higher 208Pb/204Pb relative to 206Pb/204Pb than samples west of the
Carlin trend.  (B) Initial Sr isotopic ratio vs. 208Pb/204Pb for all samples.  Sr and Pb isotopic compositions
for samples west of the Carlin trend show a strong positive correlation (solid circles, within rectangular
box) while those from samples east of the Carlin trend (triangles) are poorly correlated and have a larger
range of values.
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Figure 5.  Variation of (A) initial 206Pb/204Pb Pb and (B) initial Sr with west longitude in degrees for all
samples.  Initial isotopic compositions for samples located west of the Carlin trend (solid circles) show
regular variations from west to east while those east of the Carlin trend (solid triangles) range to much
lower (206Pb/204Pb) and higher (initial Sr) values.  These composite west to east transects indicate more
apparent variation for western samples than actually exists because isotopic isopleths do not have simple
north to south orientations.  For example the ISr = 0.706 line and corresponding Pb isotopic values cross
from 117° and 118° in central Nevada (see fig. 6-8) and then loops back to the east producing the two
increasing trends in initial 206Pb/204Pb at 118 and 117 degrees longitude.
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Figure 6.  The geographic distribution of samples with selected ranges of initial 206Pb/204Pb in Nevada and adjoining
areas of California and Utah.  (A) Distribution of samples for only two non-overlapping ranges of 206Pb/204Pb, 18.7
to 19.1 and 19.3 to 19.6. (B) Distribution for three ranges - less than 18.7, 19.1 to 19.3, and greater than 19.6.  The
ranges were plotted separately in this figure and in figure 7 to avoid visual clutter.  The break at 19.1 was chosen to
correspond approximately to ISr = 0.706 based on the correlation between ISr and initial 206Pb/204Pb and marks the
boundary between the proposed western and central Pb isotopic provinces.  The occurrence of samples with initial
206Pb/204Pb Pb less than 19.1 in eastern Nevada and Utah indicates more heterogeneous crust and may imply an age
difference across the marked east to west and northeast trending lines.  See text for further discussion.
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1995; see Ramo and Calzia, 1996, for Nd data), and connect
to the eastern portion of the transect of Chen and Tilton (1991).
The southern edge of the basement gravity low of Blakely
and Jachens (1991) may be related to the edge of the preserved
Precambrian craton in southern Nevada.   In general, the
boundary between the central and eastern Pb provinces
probably roughly parallels the ISr = 0.706 line and western -
central Pb province boundary in Nevada until it reaches the
east side of the Sierra Nevada batholith where the boundary
appears to run southerly toward the Garlock fault.  This
boundary can be traced south of the Garlock fault through
the western Mojave Desert as the western edge of the Mojave
crustal province (Martin and Walker, 1992).  It is possible to
define provinces roughly similar to the western and central
Pb provinces in Nevada there also; however, the need to restore
the Tertiary tectonic disruption of this region and other
geologic differences (Kistler, 1990; Miller and Glazner, 1995)
make that discussion beyond the scope of this paper.

DISCUSSION AND CONCLUSIONS

Pb vs. Pb and Pb vs. Sr isotopic ratios within the western
and central provinces of Nevada as defined above show strong
positive correlations, increase generally west to east, have
the same trends regardless of pluton age, and mimic two
component mixing systems. These features are at least
partially attributed to the process of averaging tens of cubic
kilometers of the source region during the melting that
accompanies magma production.  The isotopic signature of
granitoids in the western province is not entirely oceanic as
compared to that of granitoids in the Klamath region of
northern California (Barnes and others, 1992) and must
contain a significant component derived from the continental
lithosphere.  The granitoid source region for the central
province must have a dominant crustal component and
probably represents thinned Precambrian crust and
subcontinental mantle and an (underplated?) oceanic
component.  The Battle Mountain-Eureka mineral belt lies
within the central province and roughly parallels the north-
northwest-trending section of the ISr = 0.706 line (fig. 8A).
This mineral belt lies along the east side of an area from the
East Range to Battle Mountain that contains unusually
radiogenic Pb and Sr isotopic compositions with respect to
their geographic position (Figs. 5 and 8).  The ISr = 0.706
line makes a noticeable bend around the west and north sides
of this area as it turns to the east-northeast (fig. 8).  These
more radiogenic isotopic values are more similar to those at
the eastern edge of the central province (near Carlin), and it
is possible that this area has been displaced tectonically toward
the west at some unknown time.  The limited data set presently
available indicates that less radiogenic Pb isotopic values are
found immediately east of this more radiogenic area which

allows for a southerly embayment in the Pb isotopic isopleths
into the northern part of the Battle Mountain-Eureka mineral
belt (figs. 6-8). This area of less radiogenic isotopic values is
roughly coincident with the geophysical basement feature
defined by Grauch and others (1995) and the northern Nevada
rift of Zoback and others (1994).  At the present time, however,
it is not possible to correlate an isotopic feature with the south-
southeastward extension of the Battle Mountain - Eureka
mineral belt.  This trend may simply represent  the reactivation
an old major crustal fault largely within the region of a thinned
continental crust.

These well-organized isotopic trends end abruptly along
the north-northwest-trending boundary that marks the western
edge of the eastern province and approximates the position of
the Carlin trend.  East of this boundary, the sharpness of which
suggests a major crustal fault or suture, most samples exhibit
high to very high 208Pb/204Pb (and many have high 207Pb/
204Pb) relative to 206Pb/204Pb, the range of Pb and Sr isotopic
ratios expands greatly, and isotopic ratios show no simple
correlation trends (figs. 4, 5, and 9). Farmer and DePaolo
(1983) defined a Nd isotopic boundary based on the occurrence
of granitoids with very low epsilon Nd values in this general
location. The eastern province represents Precambrian crust
(and subcontinental mantle?) that has experienced the least
amount of modification by Late Precambrian and Phanerozoic
events.  As noted above, and by Wright and Wooden (1991),
this province can be divided on the basis of 206Pb/204Pb, 207Pb/
204Pb, and 208Pb/204Pb ratios into northern and southern
regions along a broad east-northeasterly trending belt.  The
distinction between northern and southern regions is
particularly sharp in the isotopic data for Tertiary igneous
rocks, which can show significant differences from the isotopic
data of Jurassic rocks in the same area.  The characteristics of
the isotopic data (fig. 9) suggest that the northern region
represents the Archean Wyoming province and the southern
region an Early Proterozoic province most similar to the
Mojave crustal province of Wooden and Miller (1990). Wright
and Snoke (1993) suggest that in the Ruby Mountains and
East Humboldt Range this east-northeast-trending boundary
is a relatively sharp feature that represents the continuation of
the Cheyenne belt into northeast Nevada. The Nd isotopic study
of the Cheyenne belt in southern Wyoming by Ball and Farmer
(1991) also suggested a relatively sharp boundary that may
have resulted in large part from erosion of overthrust crust.
The regional isotopic data in eastern Nevada can also be
modeled, however, as a broad zone of crustal mixing probably
established by a combination of tectonic, magmatic, and
sedimentary processes during the juxtaposition of these
terranes in the Early Proterozoic and, as such, would be similar
to the boundary zone between the Mojave and Arizona crustal
provinces (Wooden and DeWitt, 1991).  This model is
preferred.

The west to east sequence of isotopic provinces across
Nevada is a unique feature in the western U.S., and possibly
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Figure 7.  The geographic distribution of samples with selected ranges of initial 208Pb/204Pb in Nevada and adjoining
areas of California and Utah. (A) Distribution of samples for two, non-overlapping ranges of  initial 208Pb/204Pb, less
than 38.8 and 39.0 to 39.7.  (B) Distribution for the ranges 38.8 to 39.0 and greater than 39.7.  The break at 38.8 was
chosen to correspond to an ISr of 0.706 and represents the boundary between the proposed western and central Pb
isotopic provinces.  Note the concentration of samples with 208Pb/204Pb between 38.8 and 39.0 along the western-
central province boundary.  The western edge of the distribution of samples with 208Pb/204Pb greater than 39.7 is
proposed to mark the boundary between the central and eastern provinces.  The southern extent of this range may
also denote a crustal age difference in the eastern province.  See text for further discussion.
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Figure 8.  Summary maps of the boundaries and regions defined by (A) initial 208Pb/204Pb and (B) initial 206Pb/
204Pb for Nevada and adjoining parts of California and Utah and a comparison to the ISr = 0.706 line and to
Carlin, Battle Mountain-Eureka, and Getchell mineral trends.  Note the difference in north-central Nevada between
the ISr = 0.706 line and the lines defined by the Pb isotopic data.  The break between Archean and Proterozoic
crust in the eastern province is not clearly defined and probably is indicative of a gradational boundary.
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in western North America.  Although isotopic patterns similar
to parts of what is present in Nevada can be observed
elsewhere (e.g. the northern Peninsular Range is similar to
the western and part of the central province), there appears to
be nowhere else that the complete transition is preserved.
Given the tectonic history of western North America in the
Phanerozoic, particularly the north-south movement by strike-
slip faults along the continental edge, it is not surprising that
the character of a continental margin created in the Late
Precambrian would be greatly disrupted.  It is also unclear if
the Late Precambrian continental margin would have
experienced the exact same processes along the entire rifted
margin.  The general preservation of the isotopic zoning in
Nevada since the Late Precambrian does, however, place
constraints on the relative displacements of crust and mantle
in the Phanerozoic.  Although the continental margin in
Nevada has experienced several shorting events, none of them
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Figure 9. 206Pb/204Pb vs. initial 207Pb/204Pb on a Pb isochron diagram for all samples in this study.  Samples located west of the Carlin
trend (open squares) define a relatively small field compared to those east of the Carlin trend (solid triangles).  References isochrons are
shown for the Early Proterozoic Mojave crustal province (two parallel lines) and the Late Archean rocks of the Wyoming Province (steeper
single line) and encompass most of the eastern samples. See text for additional discussion.

could have been so severe as to greatly displace the regular
pattern of isotopic zoning.  Therefore a model calling for over
a hundred kilometers of eastward thrusting as suggested by
Wright and Wooden (1991) seems unlikely, and the contrast
in the isotopic signatures between Jurassic and Tertiary
intrusions in the eastern Pb province, that stimulated this model,
is probably more related to differences in the depth of melting
in the same crust-mantle system than to lateral movements of
the upper crust. Similar arguments also hold for the Tertiary
extensional events that produced the modern geomorphic
pattern of the northern Great Basin.  In spite of the variable
geographic distribution of this extension, the zoning patterns
have been preserved perhaps in part because the extension is
mostly normal or parallel to the strike of the isotopic provinces
and breaks the crust into discrete extensional domains of
smaller scale than that proposed for thrusting events.

The most significant Pb isotopic boundary identified in
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this study lies between the eastern and central provinces; this
boundary corresponds in location and orientation to the Carlin
trend. The Battle Mountain-Eureka or Cortez mineral belt
shares the orientation of this boundary but is not distinguished
by isotopic data.  The north-trending part of the boundary
between the western and central provinces that matches in
location this part of the ISr = 0.706 line shares the same general
north-northwest trend as the two mineral belts.  The Pb
province boundaries and the ISr = 0.706 line indicate the
presence of major crustal-scale features.  The common
orientation of the Battle Mountain - Eureka mineral belt
suggests that its location may have resulted from the same
process that formed the other two crustal-scale features.  Our
interpretation of these crustal-scale features is that most
resemble a regional fault system and/or sutures.   Interestingly
published gravity data (Grauch and others, 1995) are most
supportive of this conclusion for the Battle Mountain-Eureka
mineral belt, which the isotopic data do not distinguish as a
major crustal boundary.  These gravity data, however, are at
least suggestive that the Carlin trend may also represent a
geophysical discontinuity.  The combination of north-
northwest-trending crustal boundaries and their high angle of
intersection with the east-northeast trend of the ISr = 0.706
line and stratigraphic trends in north-central and northeastern
Nevada suggests a model in which major northwest-striking
normal fault systems developed to accommodate an extending
and thinning continental margin during Late Proterozoic rifting
of the western margin of North America.  Phanerozoic
reactivation of these fault systems has focused younger
tectonic, magmatic, hydrothermal and mineralization events,
and possibly influenced even the orientations of the modern
basins and ranges.
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