oD and 0'*0 DATAFROM CARLIN-TYPE GOLD DEPOSITS-
IMPLICATIONS FOR GENETIC MODELS

ByAlbert H. Hofstraand Robert O Rye

ABSTRACT Canyon, Post/Betze, Carlin, Cortez, Gold Pick, Getchelh
CreeksAlligator Ridge, and Mercur mines (Apperdi). The
3D andd180 data from quartz, clays, and inclusion fluidsisotopic data are from quartz, clays, and inclusion fluids
were used to characterize the isotopic composition of watextracted from a variety of ore stage minerals.
in ore fluids. The hydrothermal fluids that formed most Carlin- ~ Three diferent models have been proposed for the deposits
type gold deposits had 108DH,0 values (116 to -164%.)  Wwith ore fluids derived from fherent sources1j the magmatic
and a wide range @180H,0 values (-20 to 15%.) suggesting or distal-disseminated model where the deposits form from
that ore fluids consisted of variably exchanged meteoricwatemagmatic fluids in the distal parts of porphyry syste(®s;
In contrast, fluids from Carlin-type deposits in the Getchelthe meteoric water circulation model where the deposits form
Trend had a much wider rangediiij,o values (-153 to -44  from rain water that evolved to become an ore fluid by deep
%o) but a similar range @¥180H,0values suggesting that ore circulation through sedimentary rocks; ai8) the
fluids were magmatic or metamorphic in origin, althoughmetamorphic or shallow mesothermal vein model where the
variably exchanged meteoric water was also present. deposits form from metamorphic fluids expelled from shear
The dDH,0 variation of meteoric water in this region over zones at depth. Combinations of these end member models
the past 170 Ma provides a means to discriminate betweetie also possible. It is important to point out that in each of
the various ages proposed for the deposiise unusually these models a fluid from deeper levels displaces the local
low 3DH,0 Vvalues of the hydrothermal fluids agree with themeteoric ground water at the sites of mineral precipitation.
dDH,0 values of meteoric water in the nilértiary (42 to 30 Therefore some of the isotopic data from each deposit is likely
Ma) when the climate was cool, but are lower than those dp reflect the isotopic composition of meteoric water at the
meteoric water in the Late Jurassic and Cretaceous when th@e of mineralization.
climate was warm.
The data suggest that Carlin-type deposits formed in the
mid-Tertiary soon after the onset of extension and magmatism ISOTOPIC CONSTRAINTS ON
in northern Nevada and northwest Utdlhe increased FLUID SOURCES
permeability and high heat flow in this setting may have
provided the drive for deep circulation of meteoric water and ~ Figure 1 shows th&D arnd 8180 values of water in Carlin-
development of Carlin-type deposits in fracture systems thdype ore fluids relative to some traditional references (see fig.
focused fluid flav. In the GetchélTrend, these structures may 1 ard Appendk A for sources of data). Fluids from most
have tapped metamorphic fluids generated in the middle cru§arlin-type deposits have low hydrogen isotope values (< -
or magmatic fluids released from deep intrusions or batholithd.16 %o) and a wide range of oxygen isotope values that extend
well away from the meteoric water line (fig.Variations in
the temperature of deposition can only account for part of
INTRODUCTION this range The wate-rock exchange curve shows how the
isotopic composition of meteoric water would vary by
This report is adapted from information in Hofstra andprogressive exchange with shaley marine limestones at a
others (in review) The goal of this report is to us® and  temperature of 30€. The jasperoids with high80 values
5180 data from Carlin-type gold deposits to identify thecan be explained if they precipitated from exchanged meteoric
source(s) of water in the ore fluidhis information is  water that evolved by deep circulation through sedimentary
important because it can improve genetic models and constraipcks at elevated temperatures and low wadek ratios.
the age of the deposits. The age information results fromhasperoids with lovd180 values are representative of the
temporal variations in the isotopic composition of meteorigelatively unexchanged meteoric ground water in the host
water in response to changes in climate. Included in this repoiecks At Jerritt Canyon, the jasperoids with the highest oxygen
are new and previously published isotopic data from the Jerriigotope values contain the most gold (fig. 1) suggesting that
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Figure 1. 3D andd180 data from Carlin-type gold deposits. The black squares are samples for which there is both oxygen and hydrogen
isotopic data.d180 data from jasperoids are shown on the x-axis (data from Hofstra, 1994; lichik, 1990; Holland and others, 1988;
Radtke and others, 1980; Groff, 1996) a&bddata from water in fluid inclusions and kaolinite are shown on the y-axis (see Appendix

A for sources of data). The triangular field shows the calculated range of fluid compositions required by this dataddsotopio

Lone Tree (diagonal rule pattern), a distal disseminated gold deposit, is shown for comparison (Howe and others, 189%; héestu

text for further description.

gold was transported by the isotopically exchanged fluid  In contrast, samples from the Carlin-type deposits in the
(Northrop and others, 1987; Hofstra and others, 1988). Thigetchell Trend have a much wider rangédtalues (fig. 1)
observation is supported by evidence that jasperoids froffiat extend from -153 to -44 %o but a similar rang@i6D
barren systems (fig. 1) have I@&A80 compositions (Holland ~values (Cline and others, 1996, 1997; Groff, 1996). Samples
and others, 1988). Therefore, the large rangi&d values representative of the main stage of gold mineralization have
most likely reflects mixing between highly exchanged orethe highesbD values suggesting that gold was introduced by
fluids and unexchanged meteoric ground water. Although it i§ magmatic or metamorphic fluid. The triangular range of
possible that contributions from deep sources are present ¥glues suggests that the deep sourced ore fluid mixed with
these deposits and that the signal is masked by a&pth unexchanged meteoric water and exchanged meteoric
overwhelming amount of meteoric water, there is a significanivater. Despite the evidence for a deep fluid source, the
amount of data from Jerritt Canyon, Carlin, and Alligator Ridgehineralogy, alteration, and geochemical signature of the

that suggests the ore fluids consisted of exchanged meteoflgposits in the Getchell Trend are remarkably similar to Carlin-
water. type deposits in the other districts. The most notable difference
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is the presence of small amounts of fluorite and adularia. hydrothermal adularia and apatite. The age controversy
The Lone Tree deposit has a number of features thaevolves around whether one accepts the cross-cutting
distinguish it from classic Carlin-type gold deposits and it igelationships or the sericite dates. While interpretation of the
considered to be a distal disseminated deposit (Doebrich amid-Tertiary dates is straight forward, the sericitic alteration
Theodore, 1996). For example, it is located about 10 -15 kithat is present in the deposits has generally not been shown to
northwest of a group of mid-Tertiary porphyry systems in thée related to the gold systems and in many cases is clearly
Battle Mountain district and is younger than a 36.4 to 39.4 M#elated to pre-ore events. This is not too surprising given that
rhyolite porphyry dike (Doebrich and others, 1995). It differsthe gold deposits are located along structural zones that contain
from most Carlin-type deposits in that most of the pyrite fillsintrusive rocks with a variety of ages. Furthermore, Folger
fractures rather than occurring as fine disseminations. It alstnd others (1996; this volume) have shown that older fine
contains traces of base metal sulfides and its Au /Ag ratios aggained sericite in the host rocks is unlikely to be reset by
lower than those in most Carlin type deposits. Mass transférarlin-type hydrothermal systems.
studies show that Fe was introduced rather than being immobile
as in Carlin-types (this study). The introduction of iron
suggests the presence of acidic, saline fluids and is consistent
with the argillic alteration in the deposit and presence of halite =~ 0D CONSTRAINTS ON THE AGE OF
daughter minerals in fluid inclusions (Kamali, 1996). d84S CARLIN-TYPE DEPOSITS
systematics are also quite different from those typically found
in Carlin-type deposits with bulk sulfur near 0 %o (Howe and  several recent studies have shown that the isotopic
others, 1995; Hofstra, 1997). Tdié andd180 values of fluid  composition of the oceans and meteoric water on the continents
inclusions in barite (Howe and others, 1995; this studyhave varied dramatically through time in response to global
approach that of magmatic water (fig. 1). Collectively, thischanges in climate (e.g. Emiliani, 1954,1966; Savin, 1977;
information suggests that gold was introduced by magmatierakes and others, 1992; Francis and Frakes, 1993; Prothero,
fluids. 1994; and references therein). Td@H,o variation of
In summary, the stable isotopic data from most Carlinmeteoric water on the continent provides a means to
type deposits are consistent with the meteoric water circulatiofiscriminate between the Mesozoic and mid-Tertiary ages
model, whereas, the data from the Getchell Trend are moggoposed for the deposits. Since the ore fluids in many Carlin-
consistent with the magmatic or metamorphic fluid modelsype deposits consist largely of meteoric water, comparisons

The evidence from Lone Tree suggests that it formed frorgs the3DH,0 Values of the fluids with th8D-age record for
magmatic fluids, although it has a number of characteristics

that distinguish it from most Carlin-type deposits. An important .
question then is whether deep sourced magmatic or Defor mation
metamorphic fluids are required to form Carlin-type deposits

or whether the deposits in the Getchell Trend are unusual. Our 5
current research is aimed at evaluating this possibility in other © g
districts. E g o
22 3
AGE CONTROVERSY
A S
The age of Carlin-type deposits has been the subject of
major debate and a variety of ages have been reported tH
range from the Late Jurassic to the Middle Tertiary (Emsb S|D M|IPP |k
and others, 1996; Hofstra, 1994, 1995; Hofstra and others, In v )
review; Phinisey and others, 1996; Maher, and others, 1993; M agmatlsrn
Silberman and others, 1974; Berger and others, 1975; Arehart
and others, 1993; Wilson and Parry, 1995, 1991; Presnell and Favored ajES m m m [ ]
Parry 1992; Parry and others, 1997; and Drewes/Armitage amet— T T T 1
others, 1996). Figure 2 shows that the published ages for the4Q0 300 200 100 0
deposits correspond to each of the major periods of magmatism
in the region. The Late Jurassic and Cretaceous ages are based M a

mainly on dates from white mica, or sericite, separated from

mingralized sedimentary a_nd igneous rOCk.S and the mi.d:igure 2. Major episodes of deformation and magmatism in the
Tertiary ages are based mainly on cross-cutting relationshipsgion and favored ages for Carlin-type gold deposits (Hofstra and
between gold ore and dated igneous rocks and a few datesahers in review).
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the region can be used to constrain the age of mineralizatiofunction of latitude, elevation, surface air temperature, amount
To date ore deposits from tBBH,0 values of their ore  of precipitation, and distance from the coast (Dansgaard, 1964).
fluids, it is necessary to construcd@H,0 versus age curve Each of these parameters affects the average degree of rainout
for meteoric water in the region (fig 3). Supergene alunitesf moisture from a given air mass as it moves from the source
from the Great Basin provide a fairly continuous record ofegions (mainly subtropical oceans) to the site of precipitation.
variations in thedD of meteoric water over the past 30 Ma Although paleolatitudes were as much as 7 degrees further
(Arehart and O’Neil, 1993). Many of these supergene alunitesouth 150-m.y.-ago, for the past 100 m.y., they have been within
are from Carlin-type gold deposits (Arehart and others, 1992). or 2 degrees of the present latitude (Lawrence and Meaux,
By combining the supergene alundBH,0-age curve with  1993). Atmospheric circulation patterns would therefore have
age anddDH,0 data from older meteoric hydrothermal been dominated, as today, by west to east flow. Elevations
systems in the region (Appendix A), it is possible to constructaried in space and time in response to episodes of orogenic
adDH,0-age curve for the past 170 million years as shown iractivity (Elko, Sevier, Laramide orogenies) but have probably
figure 3. Prior to 170 Ma, this area was largely covered by sdaeen highest since the Laramide orogeny. Fossil flora and
water. Th&dDH,0-age curve constructed in this manner clearlyfauna from the continent suggest that the climate was distinctly
shows that théD of meteoric water in the region varied warmer in mid-Jurassic to mid-Eocene time (Hallam, 1994;
substantially over the past 170 Ma and that,0 values  Francis and Frakes, 1993) and that cooler climates have
were lowest at about 30 Ma. prevailed ever since (Prothero, 1994). Although the western
The dDH,0-age curve is consistent with the Cordillera (in eastern California and westernmost Nevada) has
environmental factors that existed in the western U.S. ovdyeen an important highland (rainout area) since the mid-
this time period and with global temperature curves. Isotopidurassic, th&D of meteoric waterdD > -110 %o) in mid-
patterns observed in continental precipitation today vary asdurassic to mid Eocene time (fig. 3) is consistent with the
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Figure 3. dD-Age curve showing variation in the isotopic composition of meteoric water over the past 170 Ma (constructed from information
in Appendix A). ThedDH,0 values have been corrected td Aorth Latitude using a correction factor of 5 %. per degree latitude to be
consistent with the alunite curve of Arehart and O’Neil (1993). In most respedi3-thge curve agrees with knowledge of paleoclimates

(see text). ThéD-Age curve also corresponds well with paleotemperature curves for surface water and bottom water in the Pacific ocean
(dashed lines) estimated from oxygen isotope analyses of calcareous microfossils (Douglas and Woodruff, 1981). Thiaidistinatm

about 30 Ma correlates with maximum glacial buildups in Antarctica and the maximum drop in sea level world wide. The lowsually
8DH,0 values from Carlin-type deposits (black bars) suggest that they formed near the low in curve when the climate was wiudirely co
8DH,0 values agree well with the mid-Tertiary (42 to 30 Ma) age constraints on the deposits (bold rectangle) but are cleanlifratiads
Jurassic and Cretaceous ages favored by some workers when the climate was much warmer. See text for further desciiuifetra Bram

others, in review.

205



CONTRIBUTIONS TO THE GOLD METALLOGENY OF NORTHERN NEVADA OPEN-FILE REPORT 98-338

relatively low elevation, warm climate, and close proximity todeposits range from -116 to -164%.. These values are unusually
western (Pacific Ocean) and eastern (Carmel Sea-Cretacedow for the latitude of the deposits and are generally less than
seaway) coastlines that characterized much of this period. Tpeesent day meteoric water (fig. 3). For such widely separated
oD of meteoric waterdD < -110 %o0) since the mid Eocene is deposits to have such similar isotopically light fluids, suggests
consistent with the higher elevations and cooler climati¢hat they formed at about the same time, near the low in the
conditions. dDH,0-age curve (fig. 3), when the climate was unusually
The dDH,0-age curve also mimics the global fossil cool. Most important, the age estimates obtained from
foraminiferad180 pattern in the oceans (fig. 3), with relatively comparison of the ore fluidDH,0 values with théDH,0-
large d8DH,0 values greater than -110 %o in Jurassic,age curve agree with the mid-Tertiary (42 to 30 Ma) age
Cretaceous, and early Tertiary time, when the world was in eonstraints on the deposits (Maher and others, 1993; Hofstra,
“green house” state, and I®MDH,0 values of less than -110 1994, 1995; Phinsey and others, 1996; Emsbo and others, 1996;
and often as low as -140 to -160 in late Eocene and Oligocei@off et al, 1996; Hall and others, 1997). The I6MH,0
time, when the world was in an “ice house” state. Mosvalues are clearly at odds with the Cretaceous and Jurassic
importantly, thedDH,0 minimum at ~30 Ma correlates with ages (based on mica dates) favored by many workers
maximum glacial buildups in Antarctica and the maximum(Silberman and others, 1974; Berger and others, 1975; Arehart
drop in sea level world wide (Prothero, 1994). Although therand others, 1993; Wilson and Parry,1995, 1991; Presnell and
are many uncertainties in the data used to construdDilso- Parry 1992; Drewes-Armitage, 1996; Groff et al, 1996; Parry
age curve, in most respects the curve is consistent with oand others, 1997) when the climate was much warmer.
knowledge of global temperature variations and environmental The paleoclimate results provide compelling evidence that
factors in the western United States over this time period. It €arlin-type deposits in northern Nevada and northwestern Utah
therefore reasonable to use the curve to estimate the agefofmed during a single metallogenic event in the mid-Tertiary.

Carlin-type deposits. It is therefore important to consider the geologic setting at
The 8DH,0 values of ore fluids from nine Carlin-type this time and the relation of mineralization to tectonics.
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Figure 4. Paleogeography 43 to 34 million years ago showing the distribution of igneous activity, extensional tectonism (hdexcemtall ru
Carlin-type gold deposits (black dots). The increased permeability and high heat flow in this setting may have provigdeddhelekp
circulation of meteoric water and development of Carlin-type deposits in fracture systems that focused fluid flow. Ineid @ettithese
structures may have tapped metamorphic fluids generated in the middle crust or magmatic fluids released from deep ibatrsiditisor
Modified from Christiansen and Yeats (1992).
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GEOLOGIC SETTING Chesleg, JT., 1986 A combinedt80/160 and D/H isotopic study of
IN THE MID-TE RTIARY molybdenite mineralization at Pear Lake and related areas in
the Pioneer Mountains, southwest Montana: Corvalis, Oregon,
Figure 4 shows the geologic setting in the western United ©Oregon State UniversitM.Sc. thesis, 91p.
States in the midertialy. The spatial correlation betweenCNristiansen, R. L., aieats, R.S., 1992, Post-Laramide geology of
Carlin-type deposits and areas umghing magmatism and the U.S. Cordilleran regioiin BL_JrchfleI, B.C., I__|pmanP.V_\/.,
. 1 and Zoback, M.L., edsThe Cordilleran Orogen: Conterminous
extension suggests that the deposits formed soon after the onsey g . Boulde, Colorado, Geological Societ§ America The
of this activity in northern Nevada and northwest Utte Geology of Norh America,v. G-3, pp. 261-406.
increased permeability and high heat flow in this setting mayine, J.S., HofstraA.H., Landis, GP, andRye, R.O., 1997, Ore
have provided the drive for deep circulation of meteoric water fluids at the Getchell Carlin-type gold deposit, northcentral
and development of Carlin-type deposits in fracture systems Nevadain Carlin-Type Gold Deposits Field Conferenwtkre,
that focused fluid flov. In the GetchélTrend, these structures P, ThompsonT.B., Bettles, K., Christensen, O., and Parratt,
apparently tapped metamorphic fluids generated in the middle R., eds., Society of Economic Geologist Guidebook Series, v
crust or magmatic fluids released from deep intrusions ar 28, p. 155-166

) - . ats, R.R., 1987, Geology of Elko cogymevada: Nevada Bureau
batholiths The results from Lo& Tree indicate that distal of Mines and Geolog Bulletin 101,112 p., 1 pl.

disseminated _deposits were f(_)rming atabout the same tim%ﬂ§s, R.E., Fleck, R.J., difaylor, H.P, J., 1991 Tertiary meteoric
classic Carlin-type depositsAlthough gravity and hydrothermal systems and their relation to ore deposition,
magnetotelluric surveys (Grauch, and others, 1995; Rodriguez, northwestern United States and southern British Columbia:
1997) suggest that deep penetrating structures and igneous Journal of Geophysical Researetf)6, no. B8, p. 13,335-13,356.
intrusions are present below the Carlfirend and Battle Dansgaarg\W., 1964, Stable isotopes in precipitatidellus, v 16,
Mountain-Eureka Belt, thusifathere is no isotopic evidence  P. 436-468.

for a deep fluid source in these districts. It is also importaRfes: J-H., Solomon, G.Claylor, HP, I., and Einaudi, M., 1992,

to note that Carlin-type deposits have not been recognized in Oxygen and hydrogen isotope characteristics of hydrothermal

L . h . alteration at taAnn-Mason porphyry copper depo3erington,
similar tectonic settings to the north and south suggesting that Nevada: Economic Geolggy. 87, p. 44-63.

a_dditior_lal fa<_:tors were critical to their formatio’ﬁhis Doebrich, J.L.Wotruba,P.R., TheodoreT.G., McGibbon, D.H., and
discussion points out the need for further studies to improve re|de, RP, 1996, Fiel Trip H: Geology and ore deposits of
understanding of the source of ore fluid components, age of the Battle Mountain mining distridty Geology and Ore Deposits
mineralization, and geologic framework of the deposits; of the American Cordillera Symposium, FiElrip Guidebook
information necessary to establish the relation between gold Compendium: Geological Society of Nevada, p. 327-376.
mineralization and tectonics. Doebrich, J.L., ath Theodore T.G., 1996, Geologic history of the
Battle Mountain mining district, Nevada, and regional controls
on the distribution of mineral systenis,Coyne, A.R and Fahg
PL., eds., Geology and Ore Deposits @American Cordillera:
Geological Society of Nevada Symposium proceedings, Reno/
Sparks, Nevad&pril 1995, p. 453-483.
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