GEOCHEMICAL MODELING OF ALTERATION AND GOLD DEPOSITION AT THE BETZE DEPOSIT, EUREKA COUNTY, NEVADA

By M. B. Woitsekhowskaya and S. G. Peters

ABSTRACT

This study addresses ore-forming hydrothermal processes via geochemical modeling of the alteration and gold deposition in the Betze gold deposit. This deposit, located along the Carlin trend, is the largest of many Carlin-type deposits in Nevada. The modeled ore-forming system is considered to be analogous to the natural depositional environment in the Betze gold deposit. This model was constrained by the results of geological, mineralogical, isotopic and fluid inclusion studies of the deposit. Computer simulations include interaction of a CO₂-H₂S-NaCl ore fluid with the calcareous host rock, as the ore-forming system cools. The ore fluid transported gold, arsenic, antimony and other components from below the accessible Carlin system.

The major features of the alteration pattern observed in the deposit are produced from the model ore fluid by reaction with limestone of the Popovich Formation. Results indicated that the mineral stability relations in the CaO-MgO-CO₂-Al₂O₃-SiO₂-H₂O system are important and are reflected in the distribution of mineral phases in the alteration pattern. Mass transfer was accompanied by sulfidation of reactive iron in the system resulting in the higher hydrogen, lower aqueous sulfide activity, subsequent destabilization of H₃AsO₃ and Au(HS)₂⁻ complexes, and gold precipitation in association with As-rich pyrite.

The results of modeling provide data on the associated alteration patterns, geochemical controls and gold depositional mechanism in the Betze deposit. This study results in a better understanding of an evolving ore-forming system in the Betze deposit, and also broadens our knowledge of hydrothermal processes in other gold-producing terranes.

INTRODUCTION

Understanding the chemical evolution of metal-bearing hydrothermal fluids and metal-concentrating mechanisms is instrumental to our knowledge of ore formation. Much of the debate over the origin and character of sediment-hosted disseminated gold deposits centers on problems associated with the source(s) of the gold and other ore components, the chemistry of metal-bearing fluid(s) and the depositional mechanism(s), all of which are complicated by multiple periods of tectonic, hydrothermal and metasomatic activities (Sillitoe and Bonham, 1990; Alvarez and Noble, 1988; Hofstra and others, 1988, 1991; Berry, 1992; Christensen, 1993; Volk and Lauha, 1993; Ilchik and Barton, 1996; Volk and others, 1996; Christensen, 1996). Descriptions can fuel speculation as to the genesis of ore deposits; however, descriptive models by themselves do not provide numerical insight into the geochemical processes that lead to the formation of ore deposits. Descriptive models are further limited because they cannot be tested, nor can they generate alternative models or utilize the nuances of alternative geological environments. The process models and mechanisms responsible for precipitation of gold and the chemical evolution of Carlin-type systems have been discussed by Hofstra and others (1991) and Ilchik and Barton (1996).

The purpose of our study was twofold: (1) to test, via numerical modeling, the generalized ore depositional processes outlined by previous researchers, and (2) to provide illustration of the computational methodology and its applications to understanding gold deposition in the Betze deposit. This study focuses on reconstruction of the chemical reactions associated with alteration and ore deposition. At present, our treatment is intended as an introduction to and an overview of the manifold ore depositional problems present in this large and complex deposit.

The modeling procedure presented in this paper represents an extension of the computational methodology developed in studies by Hemley and Woitsekhowskaya (1993), and Woitsekhowskaya and Hemley (1995). Preliminary geochemical modeling of the deposit is based on descriptive studies of the Betze deposit conducted by several workers (Bettles, 1991; Bettles and Lauha, 1991; Berry, 1992; Arehart and others, 1993a; Peters, 1996; Ferdock and others, 1997; Peters and others, 1997).

DESCRIPTION OF THE BETZE GOLD DEPOSIT

The Betze gold deposit is located along the Carlin trend in northeastern Nevada and exhibits mineralogical and alteration features typical for most Carlin-type gold deposits. The deposit is hosted in the upper units of the Devonian and Silurian Roberts Mountains Formation, the Devonian Popovich
Formation, and the lower parts of the Devonian Rodeo Creek unit, all of which are para-autochthonous, and are in contact with the northeast margin of the Jurassic Goldstrike diorite stock (Lauha and Bettles, 1993). The Betze deposit contains over 30 million oz Au representing the largest concentration of gold currently known in the Western Hemisphere (Leonardson and Rahn, 1996).

Previous workers documented the pre-ore and syn-ore stages of hydrothermal activity and the final post-ore and weathering stages that formed the Betze deposit (Arehart and others, 1993; Ferdock and others, 1997). The mineral paragenesis in Betze can be summarized as follows: (1) the main hydrothermal stage of gold mineralization is characterized by the formation of clay minerals (illite, kaolinite, and minor smectite), quartz, pyrite, gold, calcite, dolomite, As-rich pyrite, arsenopyrite and rare native arsenic, and (2) the late paragenetic sequence is characterized by formation of quartz, calcite, realgar, orpiment, stibnite, and barite.

Gold resides predominantly within As-rich overgrowths on pyrite (Arehart and others, 1993a). The intimate association of sub-micron size “invisible” gold with As-rich pyrite is a characteristic feature of Carlin-type deposits, and has been the subject of many studies (Bakken and Einaudi, 1986; Bakken and others, 1991; Arehart and others, 1993a; Sha, 1993; Fleet and Mumin, 1997). Several workers reported that gold in Carlin-type deposits might also be associated with other sulfide minerals including chalcopyrite, sphalerite and cinnabar (Wells and Mullens, 1973; Bakken and Einaudi, 1986), as well as with quartz, carbonate minerals, and clay minerals (Hausen and Kerr, 1968; Drews-Armitage and others, 1996). Understanding the mineral association of hypogene gold in ores in the Betze deposit is crucial, because it helps to constrain fluid chemistry and depositional mechanisms. The most common and economically important minerals in Betze are considered in modeling calculations, although there are many other minor minerals that are found only locally.

A complex interplay between: (1) proximity to the Jurassic Goldstrike stock; (2) degree of fracturing and brecciation that are related to Mesozoic and Tertiary high to low-angle faults; and (3) favorable permeable calcareous stratigraphic units in the Paleozoic host rocks results in variation in the type of gold occurrences, paragenetic interpretations, and alteration patterns in the Betze deposit (Bettles, 1989; Bettles and Lauha, 1991; Lauha and Bettles, 1993; Madeisky, 1993; Peters, 1996; Ferdock and others, 1997). Alteration is similar to that of other sediment-hosted disseminated gold deposits (Radtke, 1985; Bakken and Einaudi, 1986; Kuehn, 1989). It varies from negligible to intense in and between orebodies, and has resulted in decarbonatization, silicification and argillization of individual carbonate beds of the Popovich Formation and the upper Roberts Mountains Formation (Leonardson and Rahn, 1996; Arehart, 1996; Teal and Jackson, 1997).

Temporal and spatial relations between alteration types are poorly understood, although it is well documented that the majority of the ore is present in decarbonatized and weakly to moderately silicified rocks. Most of the gold ore is associated with the decarbonatized host rocks that constitute the most pervasive and intense alteration zones in the Betze deposit. The documented alteration assemblages that sequentially developed during decarbonatization are summarized in the following order (Leonardson and Rahn, 1996; Arehart, 1996; Teal and Jackson, 1997):

fresh carbonate rocks:

```
calcite+ dolomite+ kaolinite+ pyrite± illite± quartz± carbon;
```

weak to moderate decalcification:

```
dolomite+ quartz+ kaolinite± As-rich pyrite± illite± calcite± gold± carbon;
```

intensive decalcification:

```
kaolinite+ pyrite± quartz± dolomite± carbon;
```

decarbonatization:

```
kaolinite+ pyrite± quartz± carbon.
```

GEOCHEMICAL CONSTRAINTS ON FLUID CHEMISTRY

The geochemical constraints used herein were based on stable isotope, fluid inclusion, and field studies for Betze and other Carlin-type deposits as documented by previous researchers (Kuehn, 1989; Hofstra and others, 1991; Arehart and others (1993), Kuehn and Rose, 1995; Lamb, 1995, Arehart, 1996; Ilchik and Barton, 1997; Lamb and Cline, 1997).

Available fluid inclusion data for the Betze deposit are summarized in table 1. These data suggest that the ore fluid associated with the main stage of gold mineralization contained high density CO2 (0.86 to 0.78 gm/cm³) and was of moderate to low salinity (10 wt. percent NaCl equivalent). The trapping pressures of the fluid inclusions were 1,000 to 1,425 bars. This mineralization stage took place at minimum temperatures from 180° to 200° C. In contrast, the late stage mineralization resulted in silicification of host rocks and took place at lower temperatures (from 180° to 150° C) and lower salinity. Stable isotope studies by Hofstra and others (1991), and Arehart and others (1993) document a wide range of the stable isotope values [δ13 C values -2 to +1 per mil, δ18 O values ranging from 0 to +5 per mil (altered rocks) and values of +18 to +24 per mil (unaltered rocks); δD values near -150 per mil; and δ34 S values -2 to +1 per mil], suggesting that two different fluids were involved in the gold ore-forming episode. The sulfur isotope data for sulfide minerals and barite are evidence for disequilibrium between reduced and oxidized sulfur species in solution. The wide range in sulfur isotopic composition also may reflect compositional variations of sources and variations due to isotopic exchange in the hydrothermal system.
MODELING APPROACH

The alteration mineral assemblages, their paragenetic sequence, and fluid inclusion data (table 1) indicate two major gold mineralization stages, and also indicate that each stage of mineralization took place under different geological conditions. Two sets of modeling calculations were, therefore, required. The first set of calculations involved reaction of ore fluid (table 2) with fresh rock (FR1 on table 3) at the higher temperature and pressure conditions representative of the decarbonatization process and the main stage of mineralization (table 1). The second run of calculations involved reaction of the ore fluid with altered rocks at lower temperature and pressure conditions representative of the silicification process and the later event of hydrothermal activity (table 1). To model the later mineralization stage, the alteration mineral assemblages from the first run were used to simulate reaction with the ore fluid, which was similar to that indicated in table 2.

Field studies indicate that advective transport of chemical components by hydrothermal fluid(s) influenced the chemical processes of gold emplacement in the depositional environment. For example, higher gold grades are often associated with multi-increment deformation such as described by Bettles (1989), exhibiting the intense fluid-rock interactions that enhanced gold removal from the hydrothermal fluid. This study focused on modeling of these fluid-rock interactions as the system cooled, that resulted in mineral precipitation and development of alteration patterns in the Betze deposit. Boiling and fluid mixing were not modeled, because fluid inclusion and mineralogical studies do not provide significant evidence of the boiling process, and because fluid mixing alone cannot account for the observed mineral assemblages and alteration patterns.

The preliminary model of the fluid-rock interaction during cooling is discussed below and emphasizes three important controls on the mineral assemblages produced: (1) temperature, (2) pH, and (3) changes in aqueous silica activity. Although other controls also are important, such as the role of thermochemical sulfate reduction reactions, carbonate dissolution reactions, metal transport concentrations, salinity, and pressure or pH buffered conditions, the selected example provides adequate illustration of the methodology and its application to understanding of gold deposition during alteration in the Betze deposit.

COMPUTATIONAL PROCEDURE

To model fluid-rock interaction in a geological and geochemical context, a polythermal-polybaric reaction path and thermodynamically open system was required. The modeled system was constructed utilizing a series of chemical “reactors” that simulate chemical mass transfer driven by successive interactions between “flowing” fluid and discrete increments of host rock under temperature gradients. Chemical reactors are the individual parts of the modeled system, which are linked by carrying the dissolved constituent materials from one reactor to each successive reactor with the deposited minerals left behind. Phase relations among hydrothermal minerals in the system are calculated on the basis of the change in the chemical potential of a component and its activity during a geochemical process where \(\xi \) is the progress variable for the process (De Donder, 1920; Helgeson, 1968). This methodology implies an examination of geochemical processes in a dynamic open hydrothermal system over a range of environmental constraints. It has been used to model different ore-forming processes (Woitshekowskaya, 1992; Woitshekowskaya and others, 1992; Woitshekowskaya and others, unpublished data, 1997). Some aspects of the “flowing through reactors” computational methodology were developed by Krajnov and others (1988).

The computer software used was the HCh program of Shvarov (1976), which includes the GIBBS code and the UNITHERM database of thermodynamic properties of minerals, aqueous species and gases (see also Krajnov and others, 1988). The GIBBS code is based on the minimization of Gibbs free energy and has been developed for simulation of equilibrium states among gaseous-solid-aqueous phases in homogeneous or heterogeneous systems in the temperature range 0° to 1,000° C and pressure range 1 to 5,000 bars. The GIBBS program treats the overall water-rock-gas interaction as the summary of many simpler processes (dissolution of a single mineral, formation of a single aqueous complex, etc.).

<table>
<thead>
<tr>
<th>Fluid characteristics</th>
<th>Main gold event</th>
<th>Late gold event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure total (bars)</td>
<td>1,425 - 1,000</td>
<td>1,235 - 750</td>
</tr>
<tr>
<td>Salinity (wt.% NaCl equivalent)</td>
<td>≤10.0</td>
<td>3.0 - 0.1</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>210 - 200</td>
<td>180 - 150</td>
</tr>
<tr>
<td>Density of bulk CO₂ (gm/cm³)</td>
<td>0.86 - 0.78</td>
<td>0.86 - 0.78</td>
</tr>
</tbody>
</table>

*Value adapted from Lamb, 1995; Kuehn and Rose, 1995; Lamb and Cline, 1997.
The database UNITHERM (Shvarov and others, unpublished data, 1997) is substantially similar to SUPCRT92 (Johnson and others, 1992), but is not cited extensively outside the Russian literature.

Composition of the ore fluid used in simulation

The chemical composition of the ore fluid in the Betze deposit was simulated assuming mutual solubility of pyrite+realgar+stibnite+gold at T = 250°C and P_{total} = 1,200 bars. The starting temperature used in the calculations was 250°C. This temperature is higher than indicated in table 1 because the fluid inclusion data refer only to a given point of observations and not to the hypothetical initial state of the fluid. Because of a lack of definitive initial state information, multiple calculations were conducted with variable salinity, total Cl varied from 0.1 to 1.5 molar (maximum value was 7.5 wt. percent NaCl equivalent) and CO₂ at 0.78 g/cm³. The activities of O₂ and H₂S, as well as the pH values, were calculated as the functions of a mutual solubility reaction. These parameters are dependent variables in the hypothetical fluid that changed as the equilibrium between the mineral assemblage and fluid chemistry changed. For purposes of sensitivity analysis, several ore fluid compositions were used to react with limestone and altered rock to simulate decarbonatization and silicification processes in Betze. The calculated initial metal concentrations in the ore fluid that was considered to be responsible for formation of the Betze deposit are listed in table 2.

The speciation-solubility calculations demonstrate that gold was transported mainly as a bisulfide complex Au(HS)_2⁻-antimony as a H₃SbO₃ complex, arsenic as a H₃AsO₃ complex, and iron as a dichloride complex. The calculated aqueous iron concentration was low, suggesting that the host rocks or underlying rocks, or both, buffered iron in the system. Similarly, sulfide sulfur was relatively low (aH₂S at 10⁻³). A possible second source for sulfur from reduction of sulfate sulfur is suggested by isotope evidence.

Host rocks used in simulation

Ore in the Betze deposit is hosted, for the most part, by limestone of the Popovich Formation and, therefore, chemical analyses of these rocks were used in the mass transfer calculations. For purposes of sensitivity analysis, different rock types composing the Popovich Formation were utilized and the calculated mineral assemblages were compared. The results of these calculations revealed no significant differences in the calculated depositional patterns, although some deviations in mass abundance of the deposited minerals were considered to be significant. Chemical analyses of representative rocks used in the chemical reaction path calculations are listed in table 3.

RESULTS AND DISCUSSION

The calculations presented below refer to two successive evolutionary phases during alteration and ore deposition. The major compositional characteristics of a natural heterogeneous

Table 2. Initial fluid characteristics used in modeling.

<table>
<thead>
<tr>
<th>Constituent/parameter</th>
<th>Concentration (in moles)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>As⁺⁺⁺</td>
<td>8.02E-03</td>
<td>calculated from realgar solubility</td>
</tr>
<tr>
<td>Au⁺⁺</td>
<td>3.94E-07</td>
<td>calculated from gold solubility</td>
</tr>
<tr>
<td>Cl⁺⁺</td>
<td>1.01</td>
<td>fluid inclusion (table 1)</td>
</tr>
<tr>
<td>Fe⁺⁺⁺</td>
<td>4.55E-07</td>
<td>calculated from pyrite solubility</td>
</tr>
<tr>
<td>K⁺⁺</td>
<td>0.01</td>
<td>fluid inclusion (table 1)</td>
</tr>
<tr>
<td>Na⁺⁺</td>
<td>1.0</td>
<td>fluid inclusion (table 1)</td>
</tr>
<tr>
<td>S⁺⁺⁺</td>
<td>8.06E-03</td>
<td>calculated from total sulfides solubility</td>
</tr>
<tr>
<td>Sb⁺⁺⁺</td>
<td>2.20E-05</td>
<td>calculated from stibnite solubility</td>
</tr>
<tr>
<td>T(°C)</td>
<td>250⁺⁺⁺</td>
<td>fluid inclusion (table 1)</td>
</tr>
<tr>
<td>pH</td>
<td>4.31⁺⁺⁺</td>
<td>calculated</td>
</tr>
<tr>
<td>log aO₂</td>
<td>-40⁺⁺⁺</td>
<td>calculated</td>
</tr>
<tr>
<td>log aH₂S</td>
<td>-5⁺⁺⁺</td>
<td>calculated</td>
</tr>
<tr>
<td>CO₂ (gm/cm³)</td>
<td>0.78⁺⁺⁺</td>
<td>fluid inclusion (table 1)</td>
</tr>
<tr>
<td>P total (bar)</td>
<td>1,200⁺⁺⁺</td>
<td>fluid inclusion (table 1)</td>
</tr>
</tbody>
</table>

Note: E is scientific notation = 10^E
*Concentrations determined by modeling mutual solubilities of gold, realgar, stibnite and pyrite in the solution that includes NaCl = 1.0 mole and KCl = 0.01 mole, and that was constrained to be in equilibrium with CO₂ (bulk density of 0.78 gm/cm³).
** Values are adapted from the study by Lamb and Cline (1997).
aqueous-solid-gaseous hydrothermal system in Betze is
described in terms of 15 components (Al, As, Au, C, Ca, Cl,
Fe, H, K, Mg, Na, O, S, Sb, and Si) comprising the modeling
set. To mimic fluid-rock reactions during cooling, the solution
was constrained to be in equilibrium with specified amounts
of the host limestone at a specified temperature, total pressure
and partial pressure CO_2. Therefore, each computational step
was defined by the following parameters: (1) rock-fluid ratio,
(2) temperature, and (3) total pressure. Selection of initial
values of these specified parameters required a series of
alternative calculations. Results were evaluated on the basis
of geological and chemical criteria that included temperature
and pressure ranges consistent with the geological context,
the mineral phase rule, and the degree of consistency of the
calculated mineral assemblage with field observations. Results
of other alternative calculations indicated the values of
temperature and rock-fluid ratio at each computational step.
These values were carefully chosen to ensure the most
adequate simulation of the mineral assemblages documented
in the field.

Reaction of the ore fluid and limestone

Gold deposition and decarbonatization of the host rock
were simulated by a series of fluid-rock reactions between an
ore fluid (table 2) and appropriate amounts of relatively fresh
limestone (FR-11 from table 3). Small incremental changes
of temperature and rock-fluid ratio were utilized while total
pressure was maintained approximately at 1,200 bars
throughout the entire reaction path. Calculated mineral
assemblages, associated chemical reactions, mass transfer,
gold deposition interval, pH, temperature, and pressure,
corresponding to progressive fluid-rock interaction during
decarbonatization, are shown in table 4, figures 1 through 3,
and are discussed below.

Modeling results indicated that important chemical
reactions occurred during interaction of the ore fluid with
limestone and are as follows: (1) dissolution of the clay
minerals, silica-leaching and silica-fixation reactions, and (2)
carbonate dissolution. Fluid-rock interaction led first to the
formation of a kaolinite+pyrite+graphite mineral assemblage,
which was accompanied by a relatively low pH value, while
the ratio between precipitated solids and dissolved constituents
was small (table 4, reaction step [a]). Overall, the clay minerals
in the Betze deposit can be described in the system K_2O-Al_2O_3-
SiO_2·H_2O by the general formula K_3(Al_2)(Al_xSi_4-x)O_10(OH)_2
where x is the number of Al^{3+} and interlayer K^+ ions. It is
assumed that when x = 1 the simplified expression between
reaction of clay minerals and ore fluid may be written such as
follows:

\[
\text{KA}_3\text{Si}_3\text{O}_{10}(\text{OH})_2 + 0.75\text{H}_2\text{O} + \text{H}^+ \Rightarrow \text{illite}
\]
\[
1.5\text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4 + \text{K}^+ \Rightarrow \text{kaolinite}
\]

The calculations show that over the first few reaction steps,
dissolution reactions produced an aqueous phase in which the
Si/Al ratios are higher than those in dissolved limestone (table
4, reaction steps from [a] through [f]). Aqueous silica
concentration increased over the entire reaction path and was
attributable to alteration of clay minerals in the host rock. Clay
minerals (predominantly illite) dissolution (table 4, reaction
steps from [a] through [c]) and concurrent precipitation of
H_4SiO_4 as quartz (table 4, reactions steps from [d] through
[f]), required a reaction such as follows:

\[
\text{KA}_3\text{Si}_3\text{O}_{10}(\text{OH})_2 + 10\text{H}^+ \Rightarrow \text{illite}
\]
\[
3\text{Al}^{3+} + 3\text{H}_4\text{SiO}_4 + \text{K}^+ \Rightarrow \text{kaolinite}
\]

Reaction 2 played an important role in the replacement
process along the decarbonatization reaction path. In the
intermediate zone of alteration, precipitation of quartz from
H_4SiO_4 released by hydrolysis proceeded concurrently with
clay mineral dissolution (table 4, reaction steps from [c]
through [f]).

The pH value is important, but also of significance when
the fact that H^+ was continually consumed as the solution
migrated and reacted with host rock as the system cooled.
Dissolution of calcite occurred during the first computational
steps (table 4, reaction steps from [a] through [c]) expressed
by equation (3). Dolomite was stable at slightly higher pH
(table 4, reaction step [b], equation (4)). These carbonate

Table 3. Host rock lithologies used in modeling.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>SiO_2</th>
<th>Al_2O_3</th>
<th>Fe_2O_3</th>
<th>FeO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na_2O</th>
<th>K_2O</th>
<th>CO_2</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR8(^1) (wt. %)</td>
<td>13.79</td>
<td>2.89</td>
<td>2.89</td>
<td>0.54</td>
<td>1.52</td>
<td>42.55</td>
<td>0.01</td>
<td>0.49</td>
<td>34.79</td>
<td>0.02</td>
</tr>
<tr>
<td>FR11(^2) (wt. %)</td>
<td>38.66</td>
<td>5.4</td>
<td>5.4</td>
<td>1.42</td>
<td>8.73</td>
<td>17.73</td>
<td>0.06</td>
<td>1.53</td>
<td>22.95</td>
<td>0.1</td>
</tr>
</tbody>
</table>

\(^1\)Dp, Ls, upper unit, limestone of the Popovich Formation; \(^2\)Dp lower unit, limestone of the Popovich Formation (G. Ferdock, unpublished data). Data indicated in this table are those were used in the sets of calculations and, therefore, they do not represent all data in chemical analysis for these samples.
dissolution reactions may have contributed to the high CO₂ contents measured in fluid inclusions from Carlin-type deposits.

\[
\text{CaCO}_3 + 2\text{H}^+ \Rightarrow \text{Ca}^{2+} + \text{H}_2\text{O} + \text{CO}_2 \quad (3)
\]

\[
\text{CaMg(CO}_3\text{)}_2 + 2\text{H}^+ \Rightarrow
\]

\[
\text{CaCO}_3 + \text{H}_2\text{CO}_3 + \text{Mg}^{2+} \quad (4)
\]

A significant increase in the pH of the solution was accompanied by the formation of dolomite+calcite+kaolinite+pyrite+gold+quartz+graphite assemblage (reaction step [d], table 4). In this study, the As-rich pyrite formula was interpreted as the sum of native arsenic and pyrite, because of the lack of available petrographic and thermodynamic characteristics for this mineral found in the Betze deposit and other Carlin-type deposits. Arsenic in association with pyrite and gold precipitated in reaction step [e] (table 4). A subsequent reaction path moved along the kaolinite-illite phase boundary until kaolinite completely gave way to illite (table 4, reaction steps [e] and [f]).

A series of alternative calculations did not reveal significant control by total pressure on the distribution of constituents and, therefore, on gold precipitation, which suggests that neither the stability of solid phases nor the stability of aqueous species varied strongly with pressure under the modeled conditions. In contrast, silica displayed a complex dependence on pressure, temperature, and pH changes in the system. No clear effect of Eh was observed over the pH range calculated in modeled system.

The compositional changes in the aqueous phase during decarbonatization can be outlined in terms of changes in aqueous silica, calcium, magnesium and aluminum activities that occurred in response to the fluid-rock interactions. Distribution of aqueous versus solid phases of the above components also is of interest. Figure 1 is a graphical representation of the distribution of calcium, magnesium, aluminum and silica between solid and aqueous phases during reaction progress in the modeled system (see also table 4 for

\[\text{Figure 1. Diagram showing the modeled distribution between solid and aqueous phases for aluminum, magnesium, calcium and silica during main stage reaction steps and decarbonatization processes in the Betze deposit. Gold started to precipitate at 230°C, (1,200 bars, pH = 5.1, and log rock/fluid = -2.5 (reaction step [d], table 4). Note the difference in silica behavior that indicates a more complex control by the system. The letter annotations and dashed lines in the figure refer to sequential events of reaction progress steps (table 4).}\]
Figure 2. Schematic illustration of the calculated mass transfer of major constituents of the modeled system during the main stage of mineralization in the Betze gold deposit. Mass transfer reflects the mass of minerals produced and destroyed and appears to be a function of reaction progress in the reaction of the ore fluid and limestone. Note the changes in slope of the iron and sulfur curves that depict the calculated reaction path. Sulfur distribution relations demonstrate sulfidation in the modified flow with depletion model, where the total amount of sulfur was deposited and removed, as sulfide mineral precipitated. The letter annotations and dashed lines in the figure refer to sequential events of reaction progress steps (table 4).

more details). Lower ratios correspond to the loss of constituents to the aqueous phase from solid phases and, therefore, the earliest increments of the titrated limestone were almost dissolved. Further acid reduction toward neutral conditions in the system contributed to stabilization of carbonate minerals and illite. The distribution curves for aluminum, calcium and magnesium show that the starting point of gold precipitation corresponded to a degree of destruction of the constituent minerals of the host limestone during rock-fluid interaction. The mass transfer associated with the decarbonatization and hydrolysis reactions discussed above is shown graphically in figure 2. A decrease in the amount of destroyed limestone clearly corresponds to an increase in the total concentrations of silica, calcium, magnesium, aluminum and potassium as the fluid-rock reaction progressed under cooling conditions. Note an increase in iron and depletion of sulfur that correlate with the onset of gold precipitation. The onset of gold precipitation also corresponds to a decrease in the activity of aqueous sulfur due to sulfidation of the reactive iron in the host rock. Mass transfer demonstrates that gold precipitation was a direct function of the reaction progress variable ξ.

The results of modeling show that gold was complexed as a Au(HS)_2^- complex and transported in the $+1$ oxidation state, whereas the dominant arsenic complex was H_3AsO_3 with $+3$ oxidation state. The calculated association of gold and As-
Table 4. Computed mineral assemblages and associated variables corresponding to the main stage of gold mineralization and decarbonatization process (see text for further discussion).

<table>
<thead>
<tr>
<th>Reaction progress (x)</th>
<th>Lo r/f</th>
<th>T (°C)</th>
<th>Mineral assemblages (computed)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>[a]</td>
<td>-4.0</td>
<td>250</td>
<td>Py + Kaol + Gr</td>
<td>4.4</td>
</tr>
<tr>
<td>[b]</td>
<td>-3.5</td>
<td>245</td>
<td>Py + Kaol + Dol + Gr</td>
<td>4.7</td>
</tr>
<tr>
<td>[c]</td>
<td>-3.0</td>
<td>240</td>
<td>Py + Kaol + Dol + Gr</td>
<td>4.7</td>
</tr>
<tr>
<td>[d]</td>
<td>-2.5</td>
<td>235</td>
<td>Py + Kaol + Dol + Gr + Cal + Qt + Gold</td>
<td>5.1</td>
</tr>
<tr>
<td>[e]</td>
<td>-2.5</td>
<td>230</td>
<td>Py + Il + Dol + Cal + Qt + Gold + Arsenic</td>
<td>7.3</td>
</tr>
<tr>
<td>[f]</td>
<td>-2.0</td>
<td>225</td>
<td>Py + Il + Dol + Cal + Qt + Gold + Arsenic</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Minerals computed given in order of reaction progress during interaction of the ore fluid (table 2) with a limestone (table 3). Abbreviations for table: Py = pyrite; Kaol = kaolinite; Gr = graphite; Dol = dolomite; Cal = calcite; Qt = quartz; Il = illite. Ratio rf = rock-fluid ratio that was used in calculations.

rich pyrite (native arsenic + pyrite) could be attributable to simultaneous reactions that caused precipitation of arsenic, pyrite, a decrease in the sulfur activity, and co-fixation of gold (see equations from (5) through (9)). For example, the oxidation of part of a pyrite grain may lead to low aO2 and high aH2 expressed in the following equation:

\[
\text{FeS}_2 + \text{O}_2 + 2\text{H}_2\text{O} \rightarrow \text{Fe}^{2+} + \text{H}_2\text{S} + \text{SO}_4^{2-} + \text{H}_2 \quad (5)
\]

The reaction expressed in (5) is coupled with a reaction contributing to the precipitation of As-rich pyrite:

\[
\text{H}_3\text{AsO}_3 + 2\text{H}_2\text{S} + \text{Fe}^{2+} + 0.5\text{H}_2 \rightarrow \text{FeS}_2 + \text{As}_0 + 2\text{H}^+ + 3\text{H}_2\text{O} \quad (6)
\]

where association of pyrite and arsenic is interpreted as As-rich pyrite.

A decrease in sulfur activity and the presence of hydrogen in the solution, as referred by the following equations (from 7 to 9) contributed to the destabilization of the Au(HS)_2^- complex and gold precipitation:

\[
\text{Au(HS)}_2^- \rightarrow \text{Au}^+ + 2\text{HS}^- \quad (7)
\]

\[
\text{Au}^+ + 0.5\text{H}_2 \rightarrow \text{Au}_0 + \text{H}^+ \quad (8)
\]

The resulting equation of the above reactions is as follows:

\[
\text{Au(HS)}_2^- + 0.5\text{H}_2 \rightarrow \text{Au}_0 + \text{H}_2\text{S} + \text{HS}^- \quad (9)
\]

Reaction of the ore fluid and altered limestone

To model deposition of gold, iron, arsenic, and antimony minerals during the later stage of mineralization, a series of calculations were made between the ore fluid with the alteration mineral assemblages from the previous reaction path calculations (table 4). As before, the equilibrium solution chemistry after each computational step was used as the input ore fluid for the next step. Table 5 summarizes the changes in mineral assemblages deposited and the corresponding incremental changes in pH, temperature and rock-fluid ratio. An alternative series of calculations indicated that, in order to calculate mineral assemblages consistent with those

<table>
<thead>
<tr>
<th>Reaction progress (x)</th>
<th>Lo r/f</th>
<th>T (°C)</th>
<th>Mineral assemblages (computed)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>[g]</td>
<td>-4.0</td>
<td>220</td>
<td>Py + Realg + Orpm + Kaol + Gold</td>
<td>4.7</td>
</tr>
<tr>
<td>[h]</td>
<td>-3.5</td>
<td>215</td>
<td>Py + Dol + Stib + Kaol + Gold + Qt + Gr</td>
<td>4.8</td>
</tr>
<tr>
<td>[i]</td>
<td>-3.5</td>
<td>200</td>
<td>Py + Dol + Stib + Kaol + Gold + Qt + Gr</td>
<td>4.7</td>
</tr>
<tr>
<td>[j]</td>
<td>-3.0</td>
<td>190</td>
<td>Py + Dol + Kaol + Gold + Qt + Gr</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Minerals computed given in order of reaction progress during interaction of the ore fluid (table 2) with altered limestone (computed mineral assemblages of the altered limestone are listed in table 4, reaction steps from [a] through [c]). Abbreviations for table: Py = pyrite; Kaol = kaolinite; Gr = graphite; Dol = dolomite; Cal = calcite; Qt = quartz; Il = illite; Realg = realgar; Orpm = orpiment; Stib = stibnite. Ratio rf = rock-fluid ratio that was used in calculations.
documented, total pressure should be maintained at about 400 bars, which is relatively lower than indicated in table 1. In addition, relatively high aqueous silica values were assumed to model silicification. A series of alternative calculations also indicated that silica-leaching reactions did not result in saturation of the system with respect to quartz in the first reaction steps, because host limestone is relatively silica-poor (table 3).

As shown in table 5, gold precipitated over the entire reaction path indicating that cooling was important precipitation mechanism during the late gold event (table 5, reaction steps from [g] through [j]). The replacement of calcite by quartz occurred in reaction step [h]. The pH gradient is very small, indicating that leaching reactions were not important during the late stage, and that the mineralizing process was not chemically aggressive, enabling a preservation of textures during the course of replacement.

Calculated quantitative depositional curves for pyrite, native arsenic, realgar, orpiment, gold and stibnite during alteration are depicted in figure 3. These curves show the relative amounts of minerals precipitated during the reaction steps from [a] through [f] (based on 5°C cooling steps), reaction steps from [h] through [i] (based on 15°C cooling steps), and a 10°C degree cooling increment between reaction steps [I] and [j]. Gold and arsenic were consistently depleted as the system followed the reaction path. Realgar and orpiment precipitated at the lower temperatures of the later stage, and eventually stibnite precipitated due to decrease in sulfur activity and temperature. The geologic expression of these relations is the interplay between changing mineral solubility and depletion of metal in the system.

CHEMICAL MODELING CONSTRAINTS ON BETZE ORE FORMATION

Geologically meaningful results have been obtained by computing reaction paths in the multicomponent and
multiphase system. The modeled system is considered to be analogous to the natural depositional environment in the Betze gold deposit. The modeling results suggest that gold was complexed as an Au(HS)\(_2^+\) whereas the dominant arsenic complex was H\(_3\)AsO\(_3\) and antimony was complexed as a Sb(OH)\(_3\). Gold, arsenic, antimony and other components were transported to the depositional site from below the accessible Carlin system. Geologic evidence suggests that the transported fluids were focused along permeable high- to low-angle faults into favorable conduits in the Popovich Formation.

The major features of the alteration zonation pattern observed in the deposit were simulated by the reaction of the ore fluid with limestone as the system cooled. The mineral stability relations in the CaO-MgO-CO\(_2\)-Al\(_2\)O\(_3\)-SiO\(_2\)-H\(_2\)O system were reflected in the distribution of the mineral phases in the modeled and actual system. Dissolution-precipitation reactions, including carbonate destruction, silica-leaching, silica-fixation, and sulfide mineral precipitation controlled mass transfer in the Betze deposit.

Mass transfer calculations indicate that gold precipitation was associated with sulfidation of reactive iron in the system, and corresponded to a particular reaction progress variable \(\xi\). Sulfidation resulted in higher hydrogen and lower sulfide sulfur activity in the system, which destabilized H\(_3\)AsO\(_3\) and Au(HS)\(_2^+\) complexes, and resulted in gold precipitation in association with As-rich pyrite. The results of our modeling study are similar to those of Hofstra and others (1991), and confirm that sulfidation of host rock iron during reaction of the ore fluid with host rock was the primary gold precipitation mechanism in Carlin-type deposits.

The modeling results cannot provide an adequate answer to whether a fluid or a mixture of fluids of various origins entered the depositional environment. Although stable isotope data suggest that the ore fluids mixed with meteoric water, the modeling results indicate that interactions between a single fluid and the host rocks can account for the observed mineral assemblages, suggesting that fluid mixing was not an important depositional control in the Betze deposit.

Research efforts are in progress to better understand geochemical and geological processes controlling gold transport and deposition in Carlin-type gold deposits. Modeling of the origin and character of the ore-forming fluid(s) and its interactions with host rocks in conjunction with field, experimental and laboratory studies will help us to better understand the processes of ore formation in Carlin-type gold deposits.

ACKNOWLEDGMENTS

We are indebted to Dave John, Julian Hemley, Al Hofstra, Randy Koski and Dick Tosdal for their helpful suggestions and critical reviews of the manuscript. Encouragement to conduct this work came from Ted Theodore, Eric Lauha and Keith Bettles. The geochemical modeling study of the Betze deposit was performed due to financial support received by senior author from U.S. Geological Survey and Barrick Goldstrike Mines Inc. Permission by Barrick Goldstrike Mines Inc. to publish the results of this study is greatly appreciated.

REFERENCES CITED

———1996, Carlin trend geologic overview, in Green, S.M., and

Teal L., and Jackson M., 1997, Geologic overview of the Carlin trend gold deposits and description of recent deep discoveries, in Vikre, P., Thompson, T.B., Bettles, K., Christensen, O., and Parratt, R., eds., Carlin-type Gold Deposits Field Conference:

