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Abstract

Analytical solutions to the ground-water-
flow equation are derived for ten cases of 
hydraulic interaction between a stream and a 
confined, leaky, or water-table aquifer. The ten 
aquifer types for which analytical solutions are 
derived are: a semi-infinite or finite-width 
confined aquifer; a semi-infinite or finite-width 
leaky aquifer with constant head overlying the 
aquitard; a semi-infinite or finite-width leaky 
aquifer with an impermeable layer overlying the 
aquitard; a semi-infinite or finite-width leaky 
aquifer overlain by a water-table aquitard; and a 
semi-infinite or finite-width water-table aquifer. 
All aquifer types allow for the presence or absence 
of a uniform semipervious streambank. Of 
primary interest are newly derived solutions for 
water-table aquifers and for leaky aquifers 
overlain by water-table aquitards.

Two computer programs are described that 
evaluate the analytical solutions for time-varying 
stream-stage or recharge stresses that are specified 
by the user. The programs can simulate the effects 
of stream-stage fluctuations for all aquifer types. 

However, simulation of basin-wide recharge or 
evapotranspiration at the water table is permitted 
only for water-table aquifers and leaky aquifers 
overlain by a water-table aquitard. For these aqui-
fer types, effects of recharge or evapotranspiration 
can be simulated alone or in combination with 
stream-stage fluctuations. The computer programs 
use the convolution relation to calculate changes in 
ground-water levels at an observation well or 
observation piezometer, seepage rates at the 
stream-aquifer boundary, and bank storage. The 
program designated STLK1 was developed for 
application to confined and leaky aquifers, and the 
program designated STWT1 was developed for 
application to water-table aquifers. The programs 
can be applied to the analysis of a passing flood 
wave, determination of ground-water discharge 
rates in response to recharge, determination of 
aquifer hydraulic properties, design of stream-
aquifer data-collection networks, and testing of 
numerical-model computer codes. Instructions are 
provided for constructing the necessary data-input 
files for the programs, and three sample problems 
are described to provide examples of the uses of 
the programs.
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INTRODUCTION

The hydraulic interaction of ground water with 
adjoining streams, canals, and drains is an important 
aspect of many hydrogeologic systems. Ground-water 
discharge supports stream base flow during periods of 
little to no precipitation; bank storage can attenuate 
flood waves and dampen overall flood impacts; and 
ground-water discharge to drains can lower water 
tables to maintain favorable root-zone salinity levels 
and prevent water logging of soil. Methods for 
evaluating the hydraulic interaction of stream-aquifer 
systems include field experiments, analytical models, 
and numerical models. Analytical models are often 
advantageous because of their simplicity. They are 
more general than site-specific field experiments, yet 
are easier to implement for a particular site than 
numerical models.

Several analytical solutions have been published 
for evaluation of the interaction of ground-water 
systems and hydraulically connected surface-water 
features such as streams, lakes, reservoirs, drains, and 
canals. These solutions can be useful for understanding 
base-flow processes, determining aquifer hydraulic 
properties, and predicting responses of aquifers to 
changing stream stage. The solutions have not received 
widespread use, however, particularly in comparison to 
solutions that have been developed for problems in well 
hydraulics. One explanation for this is that, for most 
practical problems in stream-aquifer hydraulics, 
stream-stage and recharge boundary conditions 
continuously change, in contrast to problems in well 
hydraulics in which a constant rate of pumping often 
can be specified. Because of this, the analytical 
solutions must be used in combination with the 
convolution integral to account for continuously 
changing stream-stage and recharge conditions. To 
date, computer programs that link these analytical 
solutions with the convolution method have not been 
widely available.

In this report, existing and newly derived 
analytical solutions for transient, hydraulic interaction 
of stream-aquifer systems are presented and 
documented. These solutions assume one-dimensional, 
horizontal flow in confined and leaky aquifers and two-
dimensional, horizontal and vertical flow in water-table 
aquifers. In all cases, ground-water flow is assumed to 
be in the plane perpendicular to a single, fully 
penetrating stream that bounds the aquifer. For each 
aquifer type, solutions are derived for conditions in 

which semipervious streambank material may be 
present between the stream and aquifer and for 
conditions in which the lateral extent of the aquifer is 
either semi-infinite or of finite width. Solutions are 
written in terms of ground-water heads as a function of 
location in the aquifer and time, seepage rates at the 
stream-aquifer boundary as a function of time, and 
bank-storage volumes into and out of the aquifer as a 
function of time.

Two computer programs are provided that 
implement the analytical solutions for time-varying 
stream-stage or recharge inputs by use of the method of 
convolution. The programs calculate head changes, 
streambank seepage rates, and bank-storage volumes as 
a function of time for various confined, leaky, and 
water-table aquifer types in response to changing 
stream-stage conditions. They also can be used to 
determine the response of water-table aquifers to time-
varying recharge or evapotranspiration (ET). The 
programs can be applied to the analysis of a passing 
flood wave, determination of ground-water discharge 
rates in response to recharge, determination of aquifer 
hydraulic properties, design of stream-aquifer data-
collection networks, and testing of numerical-model 
computer codes. The computer programs can be used 
without a detailed understanding of the derivation of 
the analytical solutions; however, the reader should be 
familiar with the assumptions on which the analytical 
solutions are based.

Purpose and Scope

This report describes the derivation and evalua-
tion of new analytical solutions to the ground-water 
flow equation for the transient, hydraulic interaction 
between a stream and a confined, leaky, or water-table 
aquifer. A description of the physical characteristics of 
the stream-aquifer systems evaluated in this report and 
of stream-aquifer hydraulic interaction is provided as 
background for the derivations. The solutions are 
derived for the condition of an instantaneous step 
change in stream stage so that they can be readily 
applied in the convolution relation. The solutions also 
are applicable to the condition of an instantaneous 
regional rise or decline in the altitude of the water 
table. The new analytical solutions are compared 
graphically to several previously published solutions.
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Two computer programs (STLK1 and STWT1) 
are described that are based on the analytical solutions 
and method of convolution. These programs can be 
used to calculate the response of confined, leaky, and 
water-table aquifers to arbitrary, time-varying stream-
stage and (or) recharge conditions that are specified 
by program users. The program designated STLK1 
was developed for application to leaky aquifers 
(including the confined case) and the program 
designated STWT1 was developed for application to 
water-table aquifers (also including the confined case). 
The programs calculate time-varying ground-water 
heads at observation wells or piezometers, seepage 
rates at the stream-aquifer boundary, and bank-storage 
volumes into and out of the aquifer. Instructions are 
provided for constructing the necessary data-input files 
for the programs, and three sample problems are 
described to provide examples of the uses of the 
programs.

Description of Stream-Aquifer Systems

Figure 1 illustrates ground-water discharge from 
a water-table aquifer to a shallow stream. The stream 
and aquifer are in hydraulic connection, which means 
that water is able to move freely between them. In the 
illustration, ground-water heads are greater than the 
elevation of the stream stage and, hence, ground water 
discharges to the stream. In this instance, the stream is 
referred to as a gaining stream. When the elevation of 
the stream stage is greater than ground-water heads in 
the immediate vicinity of the stream, seepage occurs 
from the stream to the aquifer. In this instance, the 
stream is referred to as a losing stream. The rate at 
which water moves between a stream and aquifer 
depends upon the type, lateral extent, and hydraulic 
properties of the adjoining aquifer system; the depth of 
penetration of the stream into the aquifer; the hydraulic 
properties of the streambanks and streambed; and the 
hydraulic gradient between the stream and aquifer.

Three general types of aquifers are considered 
in this report—confined, leaky, and water table (or 
unconfined). A confined aquifer (fig. 2A) is one that is 
overlain by a layer of geologic material (a confining 
layer) that prevents ground-water flow to or from the 
underlying aquifer. A leaky aquifer is one that is 
overlain by a layer of geologic material (an aquitard) 
with a much lower hydraulic conductivity and usually 
a greater specific storage than that of the underlying 
aquifer; the aquitard hinders but does not prevent 

ground-water flow (leakage) to or from the underlying 
aquifer. Flow across the aquitard-aquifer boundary 
is called leakage. Three types of leaky aquifers are 
evaluated: those in which a source bed with a constant  
head overlies the aquitard (leaky aquifer case 1, 
fig. 2B); those in which an impermeable layer overlies 
the aquitard (leaky aquifer case 2, fig. 2C); and those 
that are overlain by an aquitard that is unconfined 
(a water-table aquitard; leaky aquifer case 3, fig. 2D). 
Finally, a water-table aquifer (fig. 2E) is one in which 
the water table forms the upper boundary to the aquifer 
and is overlain by an unsaturated zone.

All stream-aquifer systems evaluated in this 
report are assumed to be underlain by an impermeable 
boundary, across which no ground-water flow occurs 
(figs. 1 and 2). In addition, in all cases ground-water 
flow is assumed to be perpendicular to the stream. 
For the confined and leaky aquifer types, ground-
water flow is one dimensional (horizontal); for the 

Figure 1. Ground-water discharge from a water-table 
aquifer to a partially penetrating, hydraulically connected 
stream: (A) laterally extensive (semi-infinite) aquifer; and 
(B) narrow aquifer of finite width.
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Figure 2. Types of aquifers for which analytical solutions are derived: (A) confined; (B) leaky, with a constant head overlying  
the aquitard; (C) leaky, with an impermeable layer overlying the aquitard; (D) leaky, overlain by a water-table aquitard; and 
(E) water table (unconfined). (b, thickness or saturated thickness of aquifer; b', thickness or saturated thickness of aquitard;  
x,z, horizontal and vertical coordinate directions, respectively; x0, distance from middle of stream to stream-aquifer 
boundary.)
water-table aquifer types, ground-water flow is two 
dimensional (that is, horizontal and vertical). For each 
of the aquifer types shown in figure 2, analytical 
solutions are derived for conditions in which the 
aquifer is laterally extensive (figs. 1A and 2) and for 
conditions in which the aquifer is relatively narrow 
(fig. 1B). Aquifers that are laterally extensive are 
referred to as semi-infinite aquifers, whereas narrow 

aquifers that are bounded laterally by impermeable 
geologic features are referred to as finite-width 
aquifers.

Many streams are shallow relative to the 
thickness of the aquifer in which they lie (fig. 1). Such 
streams are referred to as partially penetrating and 
seepage between them and the contiguous aquifer 
occurs both horizontally and vertically through 
4 Analytical Solutions and Computer Programs for Hydraulic Interaction of Stream-Aquifer Systems



streambank and streambed materials. Because of the 
added mathematical difficulties that arise for a 
partially-penetrating stream, most analytical solutions 
of stream-aquifer systems have been derived with  
the assumption that the stream fully penetrates the 
aquifer (fig. 2). This approach also is taken here. As a 
consequence of this approach, all seepage between the 
stream and aquifer is assumed to be one dimensional in 
the horizontal direction through the streambank. This 
approximation in the analytical treatment appears to 
have few detrimental consequences as long as the 
points of interest (observation wells) are at least 1.5 
times as far from the stream as the aquifer is thick 
(Hantush, 1965).

Several hydraulic properties of the aquifer and  
of the semipervious streambank material affect ground-
water heads and seepage rates. In the simplest case, 
that for confined aquifers, the relevant aquifer 
properties are horizontal hydraulic conductivity ( ), 
thickness ( ), and specific storage ( ). For leaky 
aquifers, the hydraulic properties of the overlying 
aquitard also must be considered. These are vertical 
hydraulic conductivity ( ), specific storage ( ), 
thickness ( ), and (for water-table aquitards) specific 
yield ( ). For water-table aquifers, the relevant 
aquifer properties are vertical ( ) and horizontal ( ) 
hydraulic conductivity, specific storage ( ), 
and specific yield ( ). The transmissivity ( ) and 
storativity (or storage coefficient) ( ) of confined, 
leaky, and water-table aquifers often are used in place 
of horizontal hydraulic conductivity and specific 
storage. Transmissivity is equal to the product of the 
horizontal hydraulic conductivity and thickness (or 
saturated thickness for water-table conditions) of the 
aquifer ( ); storativity is equal to the product 
of the specific storage and thickness (or saturated 
thickness for water-table conditions) of the aquifer 
( ).

When streambank materials are present that 
impede seepage between the stream and aquifer, it is 
necessary to include the hydraulic conductivity  and 
width  of the semipervious streambank material in 
the analytical solution. These properties are accounted 
for by streambank leakance ( , see equation 14). 
Streambank leakance also may be used to loosely 
account for constricted flow at the stream-aquifer 
interface due to the fact that the stream may not 
penetrate the full saturated thickness of the aquifer. 
For mathematical simplicity, the streambank is 
assumed to have negligible storage capacity. Hantush 

(1965) describes streambank leakance as the effective 
width of aquifer required to cause the same head loss 
between the aquifer and the stream channel.

Seepage occurs when there is a hydraulic 
gradient between the stream and adjoining aquifer. 
Hydraulic gradients are caused by flood waves, 
ground-water recharge, ground-water recession, and 
evapotranspiration. Figure 3 illustrates the response of 
a stream-aquifer system to a passing flood wave. Prior 
to the flood wave (times prior to , fig. 3), hydraulic 
gradients are toward the (gaining) stream and ground 
water discharges to the stream. As the stream stage 
rises (figs. 3A,B), seepage occurs from the stream to the 
aquifer (fig. 3C), and ground-water heads near the 
stream increase (fig. 3D). Seepage that enters the 
aquifer adjacent to the stream is referred to as bank 
storage, and the total volume of bank storage held by 
the aquifer continues to increase until shortly after the 
time of the flood peak ( , fig. 3E). After the flood-
wave passes and stream stage falls, water in bank 
storage is discharged back to the stream, and ground-
water heads return to pre-flood wave conditions.

The response of a stream-aquifer system to grad-
ual recharge that occurs uniformly over a ground-water 
basin is shown schematically in figure 4. Here, for pur-
poses of illustration, it is assumed that the stream stage 
remains constant during the recharge event. A total 
amount of recharge that arrives at the water table equal 
to  (units of length) occurs between times  and  
(figs. 4A,B). During the recharge event, ground-water 
head (illustrated in figure 4C) may rise by the amount 

 ( ), and ground-water discharge increases 
over ambient conditions (fig. 4D). After recharge ends 
at time , ground-water heads and discharge rates 
gradually return to pre-recharge levels. The falling limb 
of the ground-water discharge graph is referred to as 
the ground-water recession curve (fig. 4D). Daniel 
(1976) provides a discussion of the effects of basin-
wide recharge and/or evapotranspiration on recession 
curves using the Rorabaugh (1964) model.

Hydraulic gradients between the stream and 
adjoining aquifer also may be caused by evapotranspi-
ration from the water table. In such cases, streamflow 
can be drawn into the aquifer by hydraulic gradients 
that are toward the aquifer. Evapotranspiration from the 
water table also can cause recession curves (fig. 4D) to 
diverge from and lie below those that occur in the 
absence of evapotranspiration (Daniel, 1976). Because 
evapotranspiration has an opposite effect on hydraulic 
gradients between a stream and aquifer than does 
recharge, it can be viewed as negative recharge.
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Figure 3. Response of stream-aquifer system to flood 
wave: (A) rise of stream stage and seepage of streamflow 
into aquifer as bank storage; (B) stream-stage hydrograph; 
(C) seepage hydrograph; (D) ground-water-head 
hydrograph; and (E) bank-storage-volume hydrograph  
(ts, start of flood wave; tp, time of flood peak). (Adapted 
from Freeze and Cherry, 1979, p. 227.)

Figure 4. Response of stream-aquifer system to a 
gradual recharge event: (A) rise of water table; 
(B) recharge hydrograph; (C) ground-water-head 
hydrograph; and (D) ground-water-discharge hydrograph 
(ts, start of recharge; te, end of recharge; R, total 
recharge; Δh, maximum rise of water table).



Previous Studies

Several analytical solutions can be found in the 
literature to evaluate the interaction of confined, leaky, 
and water-table aquifers in hydraulic connection with 
an adjoining stream. The majority of analytical 
solutions developed for stream-aquifer hydraulic 
interaction have been for the case of one-dimensional, 
horizontal ground-water flow in confined aquifers 
bounded by a single, fully penetrating stream. These 
confined solutions also are frequently used for water-
table aquifers under the assumptions that specific yield 
replaces storativity and that changes in the height of the 
water table are small in comparison with the saturated 
thickness of the aquifer (see, for example, Cooper and 
Rorabaugh, 1963; Hall and Moench, 1972; Sahuquillo, 
1986; Workman and others, 1997).

Analytical solutions for confined aquifers have 
been developed for several types of boundary 
conditions at the stream. The most widely applied 
solutions have been for the cases of an instantaneous 
unit impulse or unit step change in stream-stage 
elevation in a stream bounding a semi-infinite or finite-
width aquifer (Stallman, 1962; Glover, 1966 and 1974; 
Pinder and others, 1969; Singh, 1969; Venetis, 1970; 
Hall and Moench, 1972). Rowe (1960) and Hantush 
(1961a) developed solutions for ground-water head 
changes in semi-infinite aquifers in response to 
changes in stream stage that vary linearly with time. A 
solution for the case of sinusoidal water-level 
fluctuations in a surface-water body bounding a semi-
infinite aquifer was presented by Ferris (1963). Cooper 
and Rorabaugh (1963) extended this work by 
developing solutions for a symmetric or asymmetric 
(damped) sinusoidal-type flood-wave oscillation of a 
single cycle in either semi-infinite or finite-width 
aquifers. Workman and others (1997) developed an 
analytical solution for water-table fluctuations in a 
finite-width aquifer resulting from changes in stream 
stage and a mean recharge rate to the aquifer.

Theoretical solutions for ideal boundary 
conditions such as step, linear, or sinusoidal stream-
stage fluctuations are useful for understanding the 

transient response of ground-water systems to stream-
stage changes. However, for applicability to realistic 
field conditions in which stream stage varies arbitrarily 
with time, the solutions must be linked with the 
convolution method. A comprehensive discussion of 
the use of the convolution method in stream-aquifer 
studies is provided by Hall and Moench (1972), who 
showed how the method can be used to compute time-
varying heads and seepage rates in response to time-
varying stream-stage fluctuations. An additional aspect 
of their work was that they provided analytical 
solutions for seepage at the stream-aquifer interface in 
addition to solutions for ground-water heads.

Most applications of the convolution method in 
stream-aquifer studies have been for the purposes of 
determining ground-water-level fluctuations and 
aquifer diffusivity (the ratio of transmissivity to 
storage), for conditions in which it was assumed that 
semipervious streambank material was absent 
(Bedinger and Reed, 1964; Pinder and others, 1969; 
Grubb and Zehner, 1973; Reynolds, 1987; Workman 
and others, 1997; Serrano and Workman, 1998). 
Moench and others (1974), however, applied the 
method to the problem of streamflow routing modified 
by bank storage. They compared measured streamflow 
hydrographs of the North Canadian River in central 
Oklahoma to hydrographs calculated using the semi-
infinite confined-aquifer solutions for conditions with 
and without semipervious streambank material. They 
found that the inclusion of a streambank leakance term 
improved the match between measured and calculated 
hydrographs. Moench and Kisiel (1970) developed an 
analytical solution and an inverse convolution method 
to estimate ground-water recharge from a transient 
ground-water mound induced by a flood wave in a 
finite-width stream under ephemeral flow conditions. 
They applied the method to the determination of 
ground-water recharge to the water-table aquifer 
underlying the Rillito River in Tucson, Arizona.

Mathematically, the response of a ground-water 
basin containing a stream to recharge, irrigation, or 
evapotranspiration occurring uniformly over the basin 
can be determined using the same analytical solutions 
Introduction 7



that are used to determine the response to a rise or fall 
in stream stage of perennial streams. On this basis, 
several investigators (Kraijenhoff van de Leur, 1958; 
Rorabaugh, 1964; Singh, 1969; Singh and Stall, 1971; 
Daniel, 1976) have applied analytical solutions for one-
dimensional, horizontal flow to the problem of base-
flow recession (the discharge of stored ground water to 
streams). Reviews of mathematical approaches for 
evaluating base-flow recession are provided by Hall 
(1968), Singh (1969), Rutledge (1993), and Tallaksen 
(1995). In addition, Rutledge (1993, 1997) provides 
computer programs for estimating ground-water 
recharge and evapotranspiration based on the methods 
of Rorabaugh (1964) and Daniel (1976).

Fewer analytical solutions are available for leaky 
aquifers than are available for confined aquifers 
because of the additional complications brought about 
by the presence of an overlying aquitard. Hantush 
(1961b) derived transient solutions for ground-water 
head and streambank seepage in a leaky aquifer with a 
nonstorative aquitard overlain by a constant-head 
source bed. His solutions are extensions of the steady-
state solutions for similar aquifer-aquitard conditions 
developed by Peterson (1961). Kabala and Thorne 
(1997) also assumed no storage in the aquitard, but 
unlike previous investigators they used a constant-
discharge boundary condition at the stream; they also 
provide solutions for both fully-penetrating and 
partially-penetrating streams. Spiegel (1962) developed 
several solutions for leaky aquifers found in the Rio 
Grande drainage basin of Colorado and New Mexico. 
Zhang (1992) developed solutions for a leaky aquifer 
overlain by a water-table aquitard that included a 
storage term (specific yield) for the aquitard. Zhang’s 
solutions are for a step change in stream stage and for 
linearly increasing stream stage.

Three approaches have been used to derive 
analytical solutions for flow in water-table 
(unconfined) aquifers. In the first approach, described 
previously, solutions for confined aquifers are applied 
to water-table conditions under the assumptions that 
specific yield can be substituted for storativity, that 
changes in the height of the water table are small in 
comparison with the saturated thickness of the aquifer, 
and, hence, that the saturated thickness of the aquifer 
can be assumed to remain constant. This approach for 
the use of confined solutions for water-table aquifer 
conditions presumes one-dimensional, horizontal flow 
in a homogeneous and isotropic aquifer.

The second approach also assumes one-
dimensional, horizontal flow in a homogeneous and 
isotropic aquifer with specific yield substituted for 
storativity. However, in this approach, the saturated 
thickness of the aquifer is taken to be a function of the 
height of the water table, which varies with time. Under 
these assumptions, ground-water flow is described by 
the nonlinear Boussinesq equation. Solutions based on 
the Boussinesq equation are presented by Singh (1969), 
Marino (1973), Govindaraju and Koelliker (1994), Guo 
(1997), and Serrano and Workman (1998). 
Applications of these solutions to base-flow-recession 
analyses are given by Brutsaert and Nieber (1977), 
Vogel and Kroll (1992), and Szilagyi and Parlange 
(1998), among others.

The third approach for deriving analytical 
solutions for water-table aquifers is to treat ground-
water flow as two dimensional in the x,z plane. This 
approach was taken by Streltsova (1975), Higgins 
(1980), Gill (1985), Neuman (1981), and van de Giesen 
and others (1994). Streltsova (1975) derived a solution 
for the average ground-water head in a vertical section 
of a semi-infinite, water-table aquifer by accounting for 
vertical flow at the water table through a vertical-
diffusivity parameter, which is composed of the vertical 
hydraulic conductivity, specific yield, and thickness of 
the vertical zone through which the water table falls. 
Unlike Streltsova, Higgins (1980) provides a solution 
for head at any point (x,z) in the domain of a semi-
infinite, water-table aquifer. Higgins’ solution, 
however, is based on the assumptions of a single, 
isotropic value of hydraulic conductivity and ignores 
elastic-storage properties of the aquifer. Gill (1985) and 
van de Giesen and others (1994) took approaches that 
were similar to Higgins’ (1980) for a finite-width, 
water-table aquifer, in which they assumed isotropic 
conditions and ignored elastic storage. A two-
dimensional solution also was developed by van de 
Giesen and others (1994). They compared the results 
from their solution with those derived from the 
Boussinesq equation and found that, because the 
Boussinesq equation neglects vertical flow, the 
resulting solution overestimated seepage rates 
immediately after a sudden change in stream stage and 
underestimated seepage rates at later times. Neuman 
(1981) extended the work of Higgins (1980) by 
accounting for anisotropic hydraulic conductivity (  
and ), elastic storage, and drainage at the water 
table. Consequently, Neuman’s analytical solution is 
the most comprehensive of those that have been 

Kx
Kz
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published for water-table aquifers and is the planar 
flow analog to the solution he developed for radial flow 
to a fully penetrating well in a water-table aquifer 
(Neuman, 1972).

Two additional topics are closely related to the 
preceding discussions. First, because of the similarity 
between stream-aquifer hydraulic interaction and 
ground-water flow to drains and canals, some of the 
solutions for stream-aquifer hydraulic interaction also 
have been applied to problems in irrigation and 
drainage. Discussions of the application of these 
solutions to problems concerning transient flow to 
drains and canals are given by Spiegel (1962), Glover 
(1966, 1974), van Schilfgaarde (1970), Marino and 
Luthin (1982), Gill (1984), van de Giesen and others 
(1994), and Khan and Rushton (1996). Second, 
analytical solutions have been derived for aquifers 
bounded by more than one stream. Papadopulos (1963) 
and Stallman and Papadopulos (1966) developed 
solutions for two-dimensional (planar), wedge-shaped 
aquifers bounded by two streams, and Brown (1963) 
developed solutions for two-dimensional rectangular 
aquifers bounded by four streams (or canals).

Some situations in stream-aquifer interaction, 
such as the presence of complicated aquifer boundary 
conditions, aquifer heterogeneity, or complicated 
stream discharge and stage relations, are not handled 
easily by use of analytical methods. In these cases, it 
may be necessary to use numerical-modeling methods 
that couple open-channel flow equations and the 
ground-water flow equation to simultaneously solve for 
stream stage and ground-water heads (Pinder and 
Sauer, 1971; Zitta and Wiggert, 1971; Prudic, 1989; 
Hunt, 1990; Swain and Wexler, 1996; and Perkins and 
Koussis, 1996). Numerical-modeling methods that can 
be applied to such situations are outside the scope of 
this work.

GENERAL THEORETICAL  
BACKGROUND

The analytical solutions presented in this report 
are based on the mathematical theory of ground-water 
flow in confined, leaky, and water-table aquifers 
bounded by a single, fully penetrating stream. These 
solutions are derived for the condition of an instanta-
neous step change (or step input) in the water level of 
the bounding stream relative to the water level in the 
adjacent aquifer. These step-input solutions are then 

implemented in computer programs STLK1 and 
STWT1 for time-varying stream-stage and recharge 
inputs by use of convolution relations, which are a form 
of mathematical superposition. This section provides a 
general theoretical background on the mathematical 
techniques that are used in the derivation of the analyti-
cal solutions and development of the two computer 
programs.

Governing Differential Equation and  
Initial and Boundary Conditions

Analytical solutions derived in this report are 
mathematical models of stream-aquifer hydraulic 
interaction. The solutions are based on the governing 
partial differential equation of transient ground-water 
flow in a saturated, homogeneous, slightly 
compressible, and anisotropic aquifer in which the 
principal directions of hydraulic conductivity are 
oriented parallel to the coordinate axes. This equation 
derives from Darcy’s law and the law of conservation 
of mass (continuity equation), which states that the net 
rate of fluid mass flow into any elemental volume of 
aquifer is equal to the time rate of change of fluid mass 
storage within the element (Freeze and Cherry, 1979). 
For the most general case considered in this report, the 
equation is written in two space dimensions as

  , (1)

where 
is ground-water head (units of length); 
are horizontal and vertical hydraulic  
conductivity of the aquifer, respectively (units  
of length per time); 
is specific storage of the aquifer (units of  
inverse length); 
is a volumetric flow rate to or from the aquifer  
per unit volume of aquifer, and represents  
sources or sinks of water to the aquifer (units of  
inverse time); 
are horizontal and vertical coordinate  
directions, respectively (units of length); and 
is time (units of time).

For leaky-aquifer systems, the flow equation has 
only one (horizontal) space dimension but is coupled 
with a similar equation for vertical flow in the aquitard. 
Detailed assumptions used in the derivations of the 
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analytical solutions are provided in the section “Presen-
tation of Analytical Solutions.” The dependent variable 
in equation 1 for which solutions are derived is the 
head distribution throughout the aquifer, , which is a 
function of space ( ) and time ( ), and can be writ-
ten as .

Particular solutions to equation 1 are determined 
by defining a specific set of boundary and initial condi-
tions. These conditions are mathematical statements 
that describe the head or flow conditions of the aquifer 
along its boundaries at a particular time. The combina-
tion of equation 1 with the set of boundary and initial 
conditions is known as a boundary-value problem. 
Three general types of boundary conditions are used in 
the derivations—specified head, specified flux, and 
head-dependent flux. In the boundary-value problems 
described in this report, the stream is modeled either as 
a specified-head boundary (for conditions in which a 
semipervious streambank is absent) or as a head-
dependent flux boundary (for conditions in which a 
semipervious streambank is present). The set of 
mathematical boundary conditions used for each 
stream-aquifer system is described in detail in Attach-
ment 1 and summarized in the section “Presentation of 
Analytical Solutions.” A single initial condition is used 
for all derivations, which states that the water level in 
the stream is at the same elevation as the water level 
(ground-water head) everywhere in the aquifer at 

 (that is, the system is initially in static 
equilibrium).

All of the stream-aquifer system parameters are 
assumed to be time invariant, which means that the 
hydraulic properties of the aquifer and semipervious 
streambank material remain constant with time. The 
systems also are linear, because the governing partial 
differential equation of ground-water flow and all of 
the boundary and initial conditions used in the deriva-
tions are linear. The linearity of the systems allows for 
the use of convolution.

Analytical solutions to the boundary-value prob-
lems are derived by use of the Laplace transform 
method. This method involves the elimination of the 
time variable by an integral transform of the original 
boundary-value problem; it results in a subsidiary 
boundary-value problem in the Laplace domain. The 
subsidiary problem is solved in the Laplace domain and 
the resulting solution is then numerically inverted back 
to the time domain using a numerical-inversion method 
described by Stehfest (1970). Moench and Ogata 

(1984) discuss the application of the Laplace transform 
and Stehfest numerical-inversion method for boundary-
value problems in ground-water flow.

All of the analytical solutions derived in this 
report are for the condition of an instantaneous step 
change in the water level of the stream relative to the 
water level in the adjacent aquifer. Such solutions are 
referred to mathematically as unit-step responses of the 
aquifer. Alternatively, one could use an impulse-
response function. There does not appear to be a dis-
tinct advantage of using one approach over the other. 
Unit-step response solutions used here are dimension-
less ground-water head functions that describe the ratio 
of the change in head of the aquifer at a given location 
x, z and at time t to the instantaneous step change in 
water level of the stream

  , (2)

where 
is the dimensionless unit-step response  
solution; 
is the instantaneous step change in water  
level of the stream ( ) (units of  
length); 
is the initial water level in the stream- 
aquifer system (units of length); and 
is the water level in the stream after the  
step change (units of length).

A different unit-step response solution is derived for 
each specific aquifer type and set of boundary condi-
tions. The unit-step response solutions are derived in 
the Laplace domain and referred to as Laplace trans-
form unit-step response solutions. These solutions then 
form the basis for the superposition methods described 
below.

Although the definition of the unit-step response 
solutions in equation 2 was made in reference to a 
sudden rise or fall in the water level of the stream, the 
solutions are mathematically equivalent to a step rise 
or fall in the water level of the aquifer relative to 
that of the stream, caused, for example, by area-wide 
recharge, irrigation, or evapotranspiration (see, for 
example, Rorabaugh, 1960 and 1964). The only differ-
ence between the two types of stresses is the direction 
of seepage at the stream-aquifer boundary. A rise in 
stream stage will result in surface-water seepage to 
the aquifer and a rise in the water level of the aquifer 
(caused by recharge or irrigation) will result in ground-
water discharge (seepage) to the stream.

h
x z, t
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Convolution Relations

Inasmuch as the boundary-value problems are 
linear, the total response of a ground-water system to a 
time series of individual step changes in stream stage or 
water level of the aquifer can be determined by summa-
tion (superposition) of the unit-step response solutions 
for the individual step changes. Mathematically, the 
individual responses are summed by use of the convo-
lution integral (or convolution equation), which relates 
a time series of step changes (system input stresses) to 
a time-series of ground-water head changes (system 
output responses):

   , (3)

where 
 is the time rate of change of the system stress  

(change in either stream stage or water level  
of the aquifer due to recharge or ET) (units of  
length per time); and 
is the time variable of integration (delay time)  
(units of time).

Use of the convolution integral is valid for time-
invariant linear systems. For linearity to hold here, 
changes in heads must be relatively small in 
comparison to the saturated thickness of the aquifer.

Convolution also is used to determine time-
varying seepage rates between a stream and aquifer and 
bank-storage volumes. Seepage rates are determined 
from the head gradient at the stream-aquifer boundary 
( ) according to Darcy’s law (Hall and Moench, 
1972):

 , (4)

where 
 is the seepage rate per unit length of stream  

from (or to) one side of the stream (units of  
volume per time per length of stream); 
is the dimensionless distance ; and 
is the distance from the middle of the stream to  
the stream-aquifer boundary (units of length).

Parameter , whose definition is illustrated in 
figure 2, is used only to define non-dimensional param-
eters in the derivations of the analytical solutions. Its 
specific value is immaterial to the seepage-rate or head 
determinations.

As used in this report, seepage is negative when 
flow is from the stream to the aquifer and positive 
when flow is from the aquifer to the stream. The total 
seepage rate, , from both sides of a stream over a 
stream reach of length  is calculated by multiplying 
equation 4 by :

 , (5)

where  has units of volume per time and  has 
units of length.

Bank storage occurs when water flows from the 
stream to the aquifer in response to an increase in the 
water level of the stream relative to that of the aquifer. 
Bank storage, , is defined as the cumulative 
volume of water per unit length of stream that has 
entered the aquifer from one side of the stream over 
time  (Cooper and Rorabaugh, 1963, p. 349):

 . (6)

The negative sign is introduced because bank storage is 
taken to be a positive quantity, and seepage is negative 
when flow is from the stream to the aquifer. A total 
volume of bank storage that enters the aquifer from 
both sides of a stream over a reach  is calculated 
from:

 , (7)

where has units of volume.

PRESENTATION OF ANALYTICAL 
SOLUTIONS

This section describes the simplifying 
assumptions and boundary and initial conditions that 
were used to develop boundary-value problems of 
stream-aquifer hydraulic interaction for each of the 
confined, leaky, and water-table aquifers for which 
Laplace transform step-response analytical solutions 
are derived. Complete derivations of the Laplace 
transform solutions for all aquifer types are given 
in Attachment 1; the resulting solutions for head 
and seepage also are presented in this section for 
convenience and discussion. Solutions for confined 
and leaky aquifers are presented simultaneously 
because of the similarity of the aquifer types and 
resulting solutions.
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Confined and Leaky Aquifers

Figures 5-12 are diagrammatic cross sections 
through part of several idealized semi-infinite and 
finite-width, confined and leaky aquifer types for 
which analytical solutions are derived. For each aquifer 
type, solutions are provided for conditions in which 
semipervious streambank material is absent and for 
conditions in which it is present. In the figures, the 
semipervious streambank material extends only to the 
top of each aquifer because it is assumed that there is 
no direct interaction (seepage) between the stream and 
overlying confining layer or aquitard. Solutions are 
derived for confined aquifers (figs. 5 and 6) and for 
three types of leaky aquifers: those in which a source 
bed with a constant head overlies the aquitard (leaky 
aquifer case 1, figs. 7 and 8); those in which an 
impermeable layer overlies the aquitard (leaky aquifer 
case 2, figs. 9 and 10); and those that are overlain by a 
water-table aquitard (leaky aquifer case 3, figs. 11  
and 12). 

Each aquifer is bounded by a stream that extends 
from the impermeable boundary underlying the aquifer 
( ) to a position lying above the thickness of the 
aquifer at . The figures also show the location of 
the origin of the coordinate system at the middle of the 
stream. As described in the previous section, although 
the variable  enters into the derivations, the 
analytical solutions do not depend on its specific value.

Ground-water flow is assumed to be horizontal 
(one dimensional) in the direction perpendicular to the 
stream for each of the confined and leaky aquifer types. 
In addition, for the leaky aquifers, flow is assumed to 
be strictly vertical through the overlying aquitard. For 
this to be the case, hydraulic conductivity of the 
aquitard must be small compared with hydraulic 
conductivity of the aquifer. Neuman and Witherspoon 
(1969) have evaluated this assumption by use of a 
finite-element model for the case of flow to a pumping 
well in a leaky-aquifer system. They found that the 
errors introduced by this assumption are usually less 
than 5 percent when the hydraulic conductivity of the 
aquifer is more than 100 times the hydraulic 
conductivity of the aquitard. As a practical matter, such 
a large contrast in hydraulic conductivity may not be 
essential. Because the cone of depression around a 
pumping well is much more pronounced for a given 
discharge rate than the head distribution near a stream 
for that given discharge, diagonal flow components in 
an aquitard will tend to be greater near a pumping well 
than for the stream-aquifer case.

Figure 5A includes a schematic drawing of 
an observation well at which ground-water-level 
measurements could be made. Because ground- 
water flow is assumed to be horizontal in the 
confined and leaky aquifers, equipotentials in each 
aquifer are vertical and, therefore, ground-water 
heads are uniform throughout the thickness of each 
aquifer. Thus, the head is independent of vertical 
location.

z 0=
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Figure 6. Finite-width, confined aquifer (A) without 
semipervious streambank material and (B) with semi-
pervious streambank material (b, aquifer thickness; 
c, instantaneous step change in water level of stream; 
d, width of semipervious streambank material; 
h(x,t), potentiometric head in aquifer, which is a func-
tion of distance from middle of stream (x) and time (t); 
hi, initial potentiometric surface and stream stage; 
h0, water level in stream after step change; x0, distance 
from middle of stream to stream-aquifer boundary; 
xL, aquifer width.)
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EXPLANATION
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POTENTIOMETRIC HEAD IN
    AQUIFER–Dashed portion 
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    surface and stream stage

STREAM STAGE

SCREENED INTERVAL
    OF OBSERVATION WELL

Figure 5. Semi-infinite, confined aquifer (A) without 
semipervious streambank material and (B) with semi-
pervious streambank material. (b, aquifer thickness; 
c, instantaneous step change in water level of stream; 
d, width of semipervious streambank material; h(x,t), 
potentiometric head in aquifer, which is a function of 
distance from middle of stream (x) and time (t); hi, initial 
potentiometric surface and stream stage; h0, water level 
in stream after step change; x0, distance from middle of 
stream to stream-aquifer boundary.)
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Figure 7. Semi-infinite, leaky aquifer with constant 
head overlying the aquitard (case 1) (A) without semi-
pervious streambank material and (B) with semipervious 
streambank material. (b, aquifer thickness; b′, aquitard 
thickness; c, instantaneous step change in water level 
of stream; d, width of semipervious streambank mate-
rial; h(x,t), potentiometric head in aquifer, which is a 
function of distance from middle of stream (x) and time 
(t); hi, initial potentiometric surface and stream stage; 
h0, water level in stream after step change; x0, distance 
from middle of stream to stream-aquifer boundary.)

Figure 8. Finite-width, leaky aquifer with constant 
head overlying the aquitard (case 1) (A) without 
semipervious streambank material and (B) with 
semipervious streambank material. (b, aquifer thickness; 
b′, aquitard thickness; c, instantaneous step change 
in water level of stream; d, width of semipervious 
streambank material; h(x,t), potentiometric head in 
aquifer, which is a function of distance from middle 
of stream (x) and time (t); hi, initial potentiometric surface 
and stream stage; h0, water level in stream after step 
change; x0, distance from middle of stream to stream-
aquifer boundary; xL, aquifer width.)
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Figure 9. Semi-infinite, leaky aquifer with imperme-
able layer overlying the aquitard (case 2) (A) without 
semipervious streambank material and (B) with semi-
pervious streambank material. (b, aquifer thickness; 
b′,aquitard thickness; c, instantaneous step change in 
water level of stream; d, width of semipervious 
streambank material; h(x,t), potentiometric head in 
aquifer, which is a function of distance from middle 
of stream (x) and time (t); hi, initial potentiometric sur-
face and stream stage; h0, water level in stream after 
step change; x0, distance from middle of stream to 
stream-aquifer boundary.)

Figure 10. Finite-width, leaky aquifer with impermeable 
layer overlying the aquitard (case 2) (A) without semiper-
vious streambank material and (B) with semipervious 
streambank material. (b, aquifer thickness; b′, aquitard 
thickness; c, instantaneous step change in water level of 
stream; d, width of semipervious streambank material; 
h(x,t), potentiometric head in aquifer, which is a function of 
distance from middle of stream (x) and time (t); hi, initial 
potentiometric surface and stream stage; h0, water level in 
stream after step change; x0, distance from middle of 
stream to stream-aquifer boundary; xL, aquifer width.)
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Figure 11. Semi-infinite, leaky aquifer overlain by a 
water-table aquitard (case 3) (A) without semipervious 
streambank material and (B) with semipervious stream-
bank material. (b, aquifer thickness; b′,saturated thick-
ness of aquitard; c, instantaneous step change in water 
level of stream; d, width of semipervious streambank 
material; h(x,t), potentiometric head in aquifer, which is 
a function of distance from middle of stream (x) and 
time (t); hi, initial potentiometric surface and stream 
stage; h0, water level in stream after step change; x0, 
distance from middle of stream to stream-aquifer 
boundary.)

Figure 12. Finite-width, leaky aquifer overlain by a 
water-table aquitard (case 3) (A) without semipervious 
streambank material and (B) with semipervious 
streambank material. (b, aquifer thickness; b′,saturated 
thickness of aquitard; c, instantaneous step change 
in water level of stream; d, width of semipervious 
streambank material; h(x,t), potentiometric head in 
aquifer, which is a function of distance from middle of 
stream (x) and time (t); hi, initial potentiometric surface 
and stream stage; h0, water level in stream after step 
change; x0, distance from middle of stream to stream-
aquifer boundary; xL, aquifer width.)



Assumptions

In addition to the assumptions of horizontal flow 
in the aquifers and strictly vertical flow in the 
aquitards, several other simplifying assumptions were 
necessary to represent each stream-aquifer system 
mathematically. These assumptions are as follows:
Assumptions for both confined and leaky aquifer 
types—

1. Each aquifer is homogeneous, isotropic, and of 
uniform thickness.

2. The lower boundary of each aquifer type is 
horizontal and impermeable.

3. Hydraulic properties of the aquifers do not change 
with time.

4. The porous medium and fluid are slightly 
compressible.

5. Observation wells or piezometers are 
infinitesimal in diameter and respond instantly 
to pressure changes in the aquifer.

6. The stream that forms a boundary to the aquifer is 
straight and fully penetrates the aquifer.

7. Initially, the water level in the stream is at the 
same elevation as the water level everywhere in 
the aquifer and aquitard. At time , the 
water level in the stream is suddenly lowered 
(or raised) to a new position lying a distance of 
one unit below (or above) the original one (that 
is, a unit-step excitation).

8. The semipervious streambank material, if present, 
has negligible capacity to store water.

Additional assumptions for leaky aquifer types—
9. The aquitard is homogeneous, isotropic, and of 

uniform thickness.
10. The hydraulic conductivity of the aquitard is 

small compared to the hydraulic conductivity of 
the underlying aquifer.

11. Hydraulic properties of the aquitard do not 
change with time.

12. For a leaky aquifer overlain by a water-table 
aquitard, water in the aquitard is released (or 
taken up) instantaneously in a vertical direction 
from (or into) the zone above the water table in 
response to a decline (or rise) in the elevation of 
the water table. Also, the change in saturated 
thickness of the water-table aquitard due to 
stream-stage fluctuations or recharge is small 
compared with the initial saturated thickness of 
the aquitard. Finally, pressure changes caused 
by a recharge event are propagated 
instantaneously through the water-table 
aquitard to the underlying aquifer.

Boundary-Value Problems

The governing partial differential equation 
describing one-dimensional, horizontal ground-water 
flow in a confined or leaky aquifer based on equation 1 
is

 , (8)

where 
= ;

is the vertical hydraulic conductivity of the  
aquitard (units of length per time); and 
is the head in the aquitard (units of length).

For confined aquifers, , hence . The 
domain for equation 8 for semi-infinite aquifers is 

 and for finite-width aquifers is  
(where  is the width of a finite-width aquifer). In 
equation 8,  is a function of  and  and  is a 
function of  and .

t 0=

∂2h
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--------
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∂t
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q′   K′
Kxb
--------- ∂h′
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--------⎝ ⎠

⎛ ⎞
z b=

–

K′

h′

K′ 0= q′ 0=

x0 x ∞<≤ x0 x xL≤ ≤
xL

h x t h′
z t
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The initial condition for all boundary-value 
problems is

(9)

where  is the initial water level (or potentiometric 
surface) in the stream-aquifer system.

Several boundary conditions are used for the 
confined and leaky aquifers; the particular set of 
boundary conditions used for each system depends on 
the conditions being modeled. For a semi-infinite 
aquifer, the boundary condition as  approaches 
infinity is

 , (10)

whereas for a finite-width aquifer, the boundary 
condition at  is

. (11)

The boundary condition used at the stream-
aquifer interface depends upon the presence or absence 
of semipervious streambank material. For conditions in 
which there is no semipervious streambank material, a 
specified-head boundary condition is used at 

 , (12)

where  is the water level in the stream after the 
instantaneous step change. For conditions in which 
semipervious streambank material is present, a head-
dependent flux boundary condition is used at 

 , (13)

where  is streambank leakance and  is 
the change in head across the semipervious streambank 
material. Streambank leakance is defined as

 , (14)

where 
is the width of the semipervious streambank  
material (units of length); and 
is the hydraulic conductivity of the semipervious  
streambank material (units of length per time).

The ratio  can be considered a single fluid-
transfer parameter.

For leaky-aquifer conditions, a governing partial 
differential equation describing one-dimensional, 
vertical flow in the overlying aquitard must be solved 
with appropriate boundary conditions and coupled with 
equation 8. This equation is

 , (15)

where  is the specific storage of the aquitard. The 
domain for which equation 15 is applicable is 

.

The initial condition for head in the aquitard for 
all boundary-value problems is

 . (16)

The boundary condition at the aquitard-aquifer 
boundary ( ) is

  . (17)

Alternative boundary conditions are used for the 
top of the aquitard ( ) that depend upon the 
presence and hydraulic conditions of the overlying bed. 
For the condition of constant head overlying the 
aquitard (case 1; figs. 7 and 8), the boundary condition 
at the top of the aquitard is

 . (18)

For the condition of an impermeable layer overlying 
the aquitard (case 2; figs. 9 and 10), the boundary con-
dition is

 . (19)

h x 0,( ) hi=

hi

x

h ∞ t,( ) hi=
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h x0 t,( ) h0=
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x0

∂h x0 t,( )
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---------------------   1a
--- h0 h x0 t,( )–[ ]–=

a h0 h x0 t,( )–[ ]

a
Kxd
Ks

---------=

d

Ks

Ks d⁄

∂2h′
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----------

Ss′
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------∂h′
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b z b b′+≤ ≤

h′ z 0,( ) hi=
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h′ b b′ t,+( ) hi=
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For the condition in which the overlying material is 
unsaturated, the aquitard is under water-table conditions 
(case 3; figs. 11 and 12). In this case, the boundary condi-
tion at the water table is

 , (20)

where  is the specific yield of the aquitard.

Laplace Transform Analytical Solutions

The dimensional boundary-value problems 
described by equations 8–20 are made dimensionless by 
substituting the dimensionless variables and variable 
groupings shown in table 1. The Laplace transform 
solutions for all confined and leaky aquifer types can be 
written in the most general form as (equation A1.48 in 
Attachment 1)

 , (21)

where  is the dimensionless Laplace transform unit-
step response solution at each point ( ) in a vertical 
section of the aquifer. The bar over the unit step response 
( ) represents the Laplace transform. The Laplace 
transform variable, , is inversely related to dimension-
less time . For the semi-infinite aquifers,  goes to 
infinity and the hyperbolic tangent in equation 21 is 
unity.

Parameter  is a function of the width of the 
aquifer perpendicular to the stream and is defined as

 .

 equals 1 for semi-infinite conditions.

∂h′
∂z
-------- b b′ t,+( )  

Sy′

K′
-----  ∂h′

∂t
-------- b b′ t,+( )–=

Sy′

hD
W p qD+ xD 1–( )–[ ]exp

p 1 p qD+ A p qD+ xLD 1–( )[ ]tanh+{ }
------------------------------------------------------------------------------------------------------=

hD
xD

hD
p

tD xLD

W

W
2 p qD+ xLD xD–( )–[ ] 1+exp

2 p qD+ xLD 1–( )–[ ] 1+exp
----------------------------------------------------------------------------=

W

Table 1. Dimensionless variables and variable groupings 
for confined and leaky aquifers 

Dimensionless 
variable

or grouping
Definition

xD
x
x0
-----

xLD
xL
x0
-----

x0D
x0
b
-----

zD′
z b–
b′

-----------       
zD′ 0 at z b==

zD′ 1 at z b b′+==⎩
⎪
⎨
⎪
⎧

hD
hi h–

c
-------------

hD′
hi h′–

c
---------------

tD
Kxt

Ssx0
2

----------

A
Kxd
Ksx0
-----------

σ1
Ss′b′
Ssb

-----------

σ′
Ssb

Sy′
--------

γ1
x0
b′
----- K′b′

Kxb
-----------

m
σ1p

γ1
2

---------
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Parameter  is dimensionless streambank 
leakance

 ,

where , streambank leakance, was defined previously. 
For conditions in which there is no semipervious 
streambank material, .

Parameter  accounts for leakage between the 
aquifer and overlying aquitard. For a confined aquifer 
with no overlying aquitard

   ;

for a leaky aquifer with constant head overlying the 
aquitard (case 1)

   ;

for a leaky aquifer with an impermeable layer 
overlying the aquitard (case 2)

   ;

and for a leaky aquifer overlain by a water-table 
aquitard (case 3)

   .

Parameters  are defined in table 1.
Equation 21 is the general solution for all of the 

confined and leaky aquifer types. For example, for a 
semi-infinite, confined aquifer with no semipervious 

streambank material between the aquifer and stream, 
, , and . Under these conditions, 

equation 21 becomes

 , (22)

which can be analytically inverted from the Laplace 
domain and written in the real-time domain as

 . (23)

Equation 23 is the form most often cited in the litera-
ture for the condition in which the origin of the coordi-
nate system is at  (Hall and Moench, 1972, 
equation 8, p. 489; Neuman, 1981, equation 12, 
p. 409).

The Laplace transform solution for seepage 
between the stream and aquifer can be determined by 
finding the gradient of the unit-step response solution 
at the stream-aquifer boundary (that is, at ). 
This gradient is found by differentiation of equation 21 
with respect to  and evaluation of the resulting 
solution at 

 , (24)

where  is dimensionless seepage in the Laplace 
domain. As described in Attachment 1, the gradient at 
the stream-aquifer boundary for the confined and leaky 
aquifers, based on equation 21, is

 . (25)
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=
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For a semi-infinite, confined aquifer with no 
semipervious streambank material between the aquifer 
and stream, , , and the exponential 
terms in the brackets equal -1. Under these conditions, 
equation 25 becomes

 , (26)

which can be analytically inverted from the Laplace 
domain and written in the real-time domain as

 , (27)

where  is dimensionless seepage in the real-time 
domain. Equation 27 is identical to that given by Hall 
and Moench (1972, equation 10, p. 489) except for the 
difference in coordinate systems between that used 
here and that used by Hall and Moench.

Water-Table Aquifers

Figures 13 and 14 are diagrammatic cross 
sections through part of idealized semi-infinite (fig. 13) 
and finite-width (fig. 14) water-table aquifers for which 
new analytical solutions are derived. For each aquifer 
type, solutions are provided for conditions in which 
semipervious streambank material is absent and for 
conditions in which they are present. Each aquifer is 
bounded by a stream that initially extends from the 
impermeable boundary underlying the aquifer ( ) 
to the top of the saturated thickness of the aquifer at 

. The figures show the location of the origin of 
the coordinate system. As with the confined and leaky 
aquifers, the distance from the middle of the stream to 
the aquifer boundary is .

A 0= qD 0=

QD p
p

-------=

QD
1

πtD( )1 2⁄
---------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

–=

QD

z 0=

z b=

x0

Figure 13. Semi-infinite, water-table aquifer (A) without 
semipervious streambank material and (B) with semi-
pervious streambank material. (b, saturated thickness of 
aquifer; c, instantaneous step change in water level of 
stream; d, width of semipervious streambank material; 
h(x,z,t), head in aquifer, which is a function of distance 
from middle of stream (x), vertical coordinate (z), and 
time (t); hi, initial head and stream stage; h0, water level 
in stream after step change; x0, distance from middle of 
stream to stream-aquifer boundary; zp, observation pie-
zometer opening; z1 bottom of screened interval; z2, top 
of screened interval.)
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Ground-water flow is assumed to be two dimen-
sional in the x,z plane perpendicular to the stream for 
each of the water-table aquifers. Hence, ground-water 
heads can vary in both the x and z directions and are not 
necessarily uniform over the thickness of each aquifer. 
Figure 13A also shows schematic drawings of a par-
tially penetrating observation well and an observation 
piezometer at which ground-water-level measurements 
could be made. Though only shown in figure 13A, the 

observation well and observation piezometer could be 
located in any of the aquifers shown in figures 13 and 
14. The head measured at the observation well is the 
average head that exists over the screened interval of 
the well. Because ground-water heads can vary over the 
thickness of the aquifer, it is likely that heads measured 
in an observation piezometer and in a partially pene-
trating observation well located the same distance from 
the stream would not be equivalent. The only condition 
under which the heads would be equivalent is that in 
which a uniform head distribution occurred over the 
full saturated thickness of the aquifer, such as might 
occur far from the stream where flow may be essen-
tially horizontal.

Assumptions

In addition to the assumption of two-dimensional 
flow in each aquifer, several other simplifying assump-
tions were necessary to represent each stream-aquifer 
system mathematically. These assumptions are as 
follows:

1. Each aquifer is homogeneous and of uniform 
thickness.

2. Each aquifer can be anisotropic provided that the 
principal directions of the hydraulic conduc-
tivity tensor are parallel to the  coordinate 
axes.

3. The lower boundary of each aquifer type is 
horizontal and impermeable.

4. Hydraulic properties of the aquifers do not change 
with time.

5. Water is released (or taken up) instantaneously in 
a vertical direction from (or into) the zone 
above the water table in response to a decline 
(or rise) in the elevation of the water table.

6. The change in saturated thickness of the aquifer 
due to stream-stage fluctuations or recharge is 
small compared with the initial saturated 
thickness.

7. The porous medium and fluid are slightly 
compressible.

8. Observation wells or piezometers are infinitesi-
mal in diameter and respond instantly to 
pressure changes in the aquifer.

9. The stream that forms a boundary to the aquifer is 
straight and fully penetrates the aquifer.

x z,

Figure 14. Finite-width, water-table aquifer (A) without 
semipervious streambank material and (B) with semi-
pervious streambank material. (b, saturated thickness of 
aquifer; c, instantaneous step change in water level of 
stream; d, width of semipervious streambank material; 
h(x,z,t), head in aquifer, which is a function of distance 
from middle of stream (x), vertical coordinate (z), and 
time (t); hi, initial head and stream stage; h0, water level 
in stream after step change; x0, distance from middle of 
stream to stream-aquifer boundary; xL, aquifer width.)
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10. Seepage and ground-water head at the stream-
aquifer boundary are independent of depth.

11. Initially, the water level in the stream is at the 
same elevation as the water level everywhere in 
the aquifer. At time , the water level in 
the stream is suddenly lowered (or raised) to a 
new position lying a distance of one unit below 
(or above) the original one.

12. The semipervious streambank material, if present, 
has negligible capacity to store water.

With regard to the zone above the water table 
where water is held under tension, assumption 5 
implies that the equilibrium profile of soil moisture 
versus depth in the unsaturated and nearly-saturated 
zones moves instantaneously in the vertical direction 
by an amount equal to the change in altitude of the 
water table. Assumption 5 also implies that there is no 
hysteresis in the relation between the soil-moisture 
profile and soil-matric potential as the water table 
fluctuates in response to stream-stage variations. 
Hysteresis causes the soil-moisture profile to have 
different shapes when soils are wetting and drying 
(Freeze and Cherry, 1979) and is more apparent for 
coarse-grained soils than for fine-grained soils.

Boundary-Value Problems

The governing partial differential equation 
describing two-dimensional, cross-sectional (x,z) flow 
in a water-table aquifer based on equation 1 is

 , (28)

where  is the vertical hydraulic conductivity of the 
aquifer (units of length per time). The x-domain for 
equation 28 for semi-infinite aquifers is  and 
for finite-width aquifers is . The z-domain 
for all water-table aquifers is . In equation 28, 

 is a function of , , and .
The initial condition for all solutions is

 , (29)

where  is the initial head in the aquifer.

Several boundary conditions are used for each of 
the water-table aquifers; the particular set of boundary 
conditions used for each system depends on the 
conditions being modeled. For a semi-infinite aquifer, 
the boundary condition as  approaches infinity is

 , (30)

whereas for a finite-width aquifer, the boundary condi-
tion at  is

. (31)

The boundary condition used at the stream-
aquifer interface depends upon the presence or absence 
of semipervious streambank material. For conditions in 
which there is no semipervious streambank material, a 
specified-head boundary condition is used at 

 , (32)

where  is the water level in the stream after the 
instantaneous step change. For conditions in which 
semipervious streambank material is present, a head-
dependent flux boundary condition is used at 

 , (33)

where , streambank leakance, is defined in equation 
14 and  is the change in head across the 
semipervious streambank material.

The boundary condition at the water table 
( ) is

 , (34)

where  is the specific yield of the aquifer.
The boundary condition at the impermeable (no-

flow) lower boundary ( ) is

  . (35)
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Laplace Transform Analytical Solutions

The dimensional boundary-value problems described by 
equations 28–35 are made dimensionless by substituting the 
dimensionless variables and variable groupings shown in table 2. 
The solutions for all water-table aquifer types can be written in the 
most general form as (equation A1.125 in Attachment 1)

  ,(36)

where

(37)

and  are the roots of

 . (38)

In equation 36,  is the Laplace transform unit-step response 
solution at each point (xD, zD) of a water-table aquifer. The bar over 
the unit step response ( ) represents the Laplace transform. The 
Laplace transform variable, , is inversely related to dimensionless 
time . For the semi-infinite aquifers,  goes to infinity and the 
hyperbolic tangent in equation 36 is unity.

Parameter  is a function of the width of the aquifer 
perpendicular to the stream and is defined as

 .

 equals 1 for semi-infinite conditions.

As with the confined and leaky aquifer types, parameter  is 
dimensionless streambank leakance

.

For conditions in which there is no semipervious streambank 
material, .
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Table 2. Dimensionless variables and variable 
groupings for water-table aquifers 

Dimensionless 
variable

or grouping
Definition
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Equation 36 is the Laplace transform solution for head at each point in a water-table aquifer, such as at an 
observation piezometer (fig. 13A). For a partially penetrating observation well (fig. 13A), the average head in the 
well ( ) is found by integrating equation 36 over the screened interval zD1 to zD2. The result is

  . (39)

By setting zD1 = 0 and zD2 = 1, one obtains the average head in a fully penetrating observation well ( ):

  . (40)

Equations 36–40 are general solutions for all of the water-table aquifer types. For example, for a semi-
infinite, water-table aquifer with no semipervious streambank material,  and . Under these 
conditions, and the additional condition in which head is measured in a fully penetrating observation well, equation 
40 becomes

  . (41)

As demonstrated in Attachment 1 [following equation (A1.87)], equation 41 reduces to the solution for a confined 
aquifer (eq. 22) if specific yield is set equal to zero.

The Laplace transform solution for seepage between the stream and aquifer can be determined by finding the 
gradient of the unit-step response solution at the stream-aquifer boundary (that is, at ). This gradient is 
found by differentiation of equation 40 with respect to  and evaluation of the resulting solution at 

 , (42)

where  is dimensionless seepage in the Laplace domain. The general solution for dimensionless seepage at the 
streambank, derived in Attachment 1, is

 . (43)
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EVALUATION OF ANALYTICAL 
SOLUTIONS FOR STEP INPUT

In this section, the analytical solutions are 
evaluated for hypothetical confined, leaky, and water-
table aquifers for a 1.0 ft unit-step increase (input) 
in the elevation of stream stage relative to that of 
piezometric head in the adjoining aquifer. The 
evaluation demonstrates the influence of aquifer type, 
aquifer extent, and aquifer and streambank hydraulic 
properties on ground-water heads and seepage rates. 
The solutions also are compared graphically to several 
previously published solutions.

From equation 2, changes in ground-water heads 
are related to a unit-step increase according to:

  , (44)

where  is the step increase in water level of the 
stream relative to the water level in the aquifer 
(c = 1.0 ft in this evaluation) and the negative sign is 
introduced so that changes in ground-water heads are 
positive for a rise in stream stage. Dimensional seepage 
rates are determined from equation 42, Darcy’s law, 
and the definitions of  and  given in table 1:

  , (45)

where  is seepage rate per unit stream length at 
time  and  is the dimensionless seepage in the 
real-time domain.

Confined and Leaky Aquifers

Parameters and dimensions of the hypothetical 
confined and leaky aquifers and overlying aquitards 
used in the evaluation are shown in table 3. Changes in 
ground-water heads were calculated at a hypothetical 
observation well 100 ft from the middle of the stream 
(75 ft from the stream-aquifer boundary).

Figures 15 and 16 show changes in ground- 
water heads and seepage rates for a semi-infinite 
(fig. 15) and finite-width (fig. 16) confined aquifer with 
and without semipervious streambank material. Heads 
and seepage rates were calculated by use of the 
Laplace-transform analytical solutions and by use of 
the real-time domain solutions reported by Hall and 
Moench (1972) for the same parameters and dimen-
sions shown in table 3. Negative seepage rates indicate 

that water flows from the stream to the adjoining aqui-
fer. Results for two streambed-leakance values are 
shown in the figures, a = 100 ft and a = 1,000 ft. For a 
hydraulic conductivity of the aquifer equal to 200 ft/d 
(table 3), values of a = 100 ft and a = 1,000 ft corre-
spond to a 5 ft thick streambank with hydraulic con-
ductivity of 10 ft/d and 1 ft/d, respectively. Matches 
between the Laplace-transform solutions and real-time 
domain solutions of Hall and Moench (1972) for both 
heads and seepage rates for all of the semi-infinite and 
finite-width aquifer conditions are excellent (figs. 15 
and 16).

Both sets of head solutions asymptotically 
approach the unit-step stream-stage increase of 1.0 ft 
(figs. 15A, 16A). Initially, for a = 0, seepage rates from 
the stream to adjoining aquifer are large (figs. 15B, 
16B). With increased time, ground-water heads near 
the stream approach the stream-stage level and, as a 
result, hydraulic gradients and seepage rates at the 
stream-aquifer boundary approach zero. The inclusion 
of a streambank leakance term delays the increase in 
ground-water heads at the observation well and reduces 
seepage rates to the aquifer. As the streambank 
leakance term is increased from 100 to 1,000 ft, 
seepage rates at the stream-aquifer interface are greatly 
diminished by the increased hydraulic resistance  
at the streambank.

The response of semi-infinite and finite-width 
confined aquifers without semipervious streambank 
material are compared for several values of aquifer 
width in figure 17. At early-time periods (less than 

hi h x t,( )– h– Dc=

c

hD xD

Q t( )
Kxbc
x0

------------QD=

Q t( )
t QD

1For finite-width aquifers.
2For leaky aquifers.
3For leaky aquifers overlain by a water-table aquitard.

Table 3. Parameters and dimensions of the hypothetical 
confined and leaky aquifers 

Parameter Value

Aquifer

Horizontal hydraulic conductivity ( ) 200 ft/d
Specific storage ( ) 1 x 10-5 ft-1

Thickness ( ) 25 ft
Width of aquifer1 ( ) 500 ft
Distance from middle of stream  to  

stream-aquifer boundary( )
25 ft

Aquitard2

Vertical hydraulic conductivity ( ) 2 ft/d
Specific storage ( ) 1 x 10-4 ft-1

Specific yield3 ( ) 2.5 x 10-1

Thickness or saturated thickness ( ) 25 ft

Kx
Ss

b
xL

x0

K′
Ss′
Sy′

b′
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B.

SOLUTIONS DERIVED IN
 THIS REPORT
  a = 0 feet
  a = 100 feet
  a = 1,000 feet

SOLUTIONS FROM HALL
 AND MOENCH (1972)
  a = 0 feet
  a = 100 feet
  a = 1,000 feet

Figure 15. (A) Change in ground-water head and 
(B) seepage rate to aquifer, for 1-foot increase in 
stream stage, semi-infinite confined aquifer with and 
without semipervious streambank material. Observation 
well 75 feet from stream-aquifer interface; a, streambank 
leakance; other model parameters and dimensions in 
table 3.
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 THIS REPORT
  a = 0 feet
  a = 100 feet
  a = 1,000 feet

SOLUTIONS FROM HALL
 AND MOENCH (1972)
  a = 0 feet
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Figure 16. (A) Change in ground-water head and 
(B) seepage rate to aquifer, for 1-foot increase in 
stream stage, finite-width confined aquifer with and 
without semipervious streambank material. Observation 
well 75 feet from stream-aquifer interface; a, streambank 
leakance; other model parameters and dimensions in 
table 3.
about 4 x 10-4 days), the semi-infinite and finite-width 
aquifers respond similarly. At later times, the narrower 
aquifers (  small) cause ground-water heads to rise 
more quickly and seepage rates to approach zero more 
rapidly than do those for the wider aquifers (  large) 
because of the overall smaller storage capacity 
available in the narrower aquifers. As the width of the 
finite-width aquifer is increased, the finite-width 
aquifer solutions approach the semi-infinite aquifer 
solutions, as would be expected.

Solutions for a semi-infinite leaky aquifer with 
constant head overlying the aquitard (leaky aquifer 
case 1) without semipervious streambank material are 
shown in figure 18 for several values of the specific 
storage of the aquitard ( ). Also shown in the figure 
are the solutions for a semi-infinite confined aquifer 

with a storativity ( ) of 2.5 x 10-4. Each of the leaky-
aquifer solutions asymptotically approaches a constant 
(steady-state) value of ground-water head that is 
smaller, and a constant rate of seepage that is larger, 
than the confined-aquifer solutions. These result from 
the constant-head boundary condition that overlies the 
aquitard and provides an infinite source (or sink) of 
ground-water storage to the aquifer/aquitard system. 
The figure shows that the response of the leaky-aquifer 
system is delayed relative to the confined aquifer, and 
that the delay is increased as the specific storage of the 
aquitard increases. The real-time domain solutions of 
Hantush (1961b) for similar leaky-aquifer conditions 
also are shown in figure 18. Hantush’s solutions do not 
consider storage in the aquitard; consequently, those 
solutions are equivalent to the solutions derived in this 

xL

xL

Ss′

S
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A.

B.
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 HANTUSH (1961b)
    Ss' = 0

Figure 17. (A) Change in ground-water head and 
(B) seepage rate to aquifer, for 1-foot increase in stream 
stage, finite-width and semi-infinite confined aquifers. 
Observation well 75 feet from stream-aquifer interface; 
xL, aquifer width; other model parameters and dimensions 
in table 3.

Figure 18. (A) Change in ground-water head and 
(B) seepage rate to aquifer, for 1-foot increase in stream 
stage, semi-infinite leaky aquifer with constant head 
overlying the aquitard. Observation well 75 feet from 
stream-aquifer interface; Ss′, specific storage of aquitard; 
S, storativity of aquifer; other model parameters and 
dimensions in table 3.
report only when the specific storage of the aquitard is 
very small, such as the value of 10-7 ft-1 shown in the 
figure.

Solutions for all three types of leaky aquifers 
without semipervious streambank material are 
compared in figure 19. Also shown in the figure are 
solutions for a semi-infinite confined aquifer with a 
storativity of 2.5 x 10-4 and 2.5 x 10-1. These two 
storativities are limiting values for the confined/leaky 
systems modeled here: the value 2.5 x 10-4 is that of 
the confined aquifer (no aquitard) and the value  
2.5 x 10-1 equals the specific yield of the water-table 
aquitard. At early times the leaky-aquifer head 
solutions quickly depart from the confined-aquifer 
solution with  = 2.5 x 10-4 (fig. 19A). The solutions 

for the three aquifer types yield identical drawdowns 
up to a time of about 0.01 days, when they begin to 
diverge from one another because of the influence of 
the upper boundary condition of the aquitard.

At late time, the solutions for case 1 (aquitard 
overlain by constant-head boundary) asymptotically 
approach steady-state values of head and seepage (as 
also shown in fig. 18) because of the constant-head 
boundary condition that overlies the aquitard. 
Solutions for case 2 (aquitard overlain by an 
impermeable boundary) asymptotically approach the 
confined-aquifer solutions but are shifted in time 
relative to the confined-aquifer solutions by a factor of 

. The shift is analogous to that which occurs in S 1 1
σ1
------+
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flow to a well in leaky aquifers (see Moench, 1985, 
p. 1129). The leaky-aquifer solutions approach the 
confined-aquifer solutions because the impermeable 
boundary condition at the top of the aquitard prevents 
any additional source (or sink) of leakage to the aquifer 
at late time.

Solutions for case 3 (water-table aquitard) are 
identical to those of case 1 up to a time of about 0.1 
days because the large storage capacity provided by the 
water-table boundary causes the system to respond as it 
would to a constant-head boundary overlying the 
aquitard. At late times, the solutions for case 3 lie 
between those of cases 1 and 2 because the rate of flow 

into storage at the water table slows. Eventually, head 
changes and seepage rates for the water-table aquitard 
system approach those of a confined aquifer with 
storativity equal to the specific yield of the aquitard 
(2.5 x 10-1).

Water-Table Aquifers

Parameters and dimensions of the hypothetical 
water-table aquifer used in the evaluation are shown in 
table 4. Changes in ground-water heads were 
calculated at a hypothetical observation well 100 ft 
from the middle of the stream (75 ft from the stream-
aquifer boundary).

Figure 20 shows changes in ground-water heads 
and seepage rates for a semi-infinite water-table aquifer 
without semipervious streambank material for three 
values of  (dimensionless ratio of vertical to 
horizontal hydraulic conductivity) calculated by use of 
the Laplace-transform analytical solutions. Also shown 
in figure 20A are heads calculated by use of the real-
time domain solution reported by Neuman (1981). 
Ground-water heads shown in the figure are the 
average head over the full saturated thickness of the 
aquifer at the hypothetical observation well. As with 
the confined and leaky solutions, negative seepage rates 
indicate that water flows from the stream to the 
adjoining aquifer in response to the unit-step increase 
in stream stage. Also shown in the figure are solutions 
for a semi-infinite confined aquifer with a storativity of 
2.5 x 10-4 and 2.5 x 10-1. These are the limiting 
storativities for the hypothetical water-table aquifer: 
the value of 2.5 x 10-4 represents the hypothetical 
condition in which there is no water table present (that 
is, specific yield equals zero); the value of 2.5 x 10-1 
equals the specific yield of the aquifer and represents 
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Case 1
Case 2
Case 3

LEAKY AQUIFERS

Figure 19. (A) Change in ground-water head and 
(B) seepage rate to aquifer, for 1-foot increase in stream 
stage, semi-infinite leaky aquifers. Case 1, constant head 
overlies the aquitard; Case 2, impermeable layer overlies 
the aquitard; Case 3, water-table aquitard. Observation 
well 75 feet from stream-aquifer interface; S, storativity 
(dimensionless); other model parameters and dimensions 
in table 3.

Table 4. Parameters and dimensions of the hypothetical 
water-table aquifer 

Parameter Value

Horizontal hydraulic conductivity ( ) 200 ft/d
Vertical hydraulic conductivity ( ) 40 ft/d
Specific storage ( ) 1 x 10-5 ft-1

Specific yield ( ) 2.5 x 10-1

Saturated thickness ( ) 25 ft
Distance from middle of stream to  

stream-aquifer boundary ( )
25 ft

Kx
Kz

Ss
Sy

b

x0
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the hypothetical condition in which the aquifer is rigid 
and the water is incompressible (that is, specific 
storage equals zero).

Neuman’s (1981) solution for ground-water 
flow to a fully penetrating stream in a water-table 
aquifer is very similar to one that he developed for the 
comparable problem of flow to a fully penetrating 
pumped well in a water-table aquifer (Neuman, 1972). 
Neuman developed a computer program (DELAY2) to 
calculate ground-water heads based on his solutions for 
flow to a fully penetrating or partially penetrating 
pumped well. DELAY2 was modified by the authors 
to calculate ground-water heads based on Neuman’s 
(1981) solution for flow to a fully penetrating stream. 
Because of the similarity between Neuman’s solutions 
for flow to a fully penetrating pumped well (Neuman, 

1972) and to a fully penetrating stream (Neuman, 
1981), few modifications were needed to the DELAY2 
program. As shown in figure 20A, matches between the 
Laplace-transform solution for ground-water head 
derived in this report and Neuman’s (1981) real-time 
solution are excellent for the three values of  
evaluated.

Ground-water heads in figure 20A for any partic-
ular value of  show the three characteristic seg-
ments of the response of water-table aquifers to a step 
change in the stream stage. Physical explanations for 
these three segments have been described by several 
authors for the case of ground-water flow to a pumped 
well (see for example discussions by Neuman, 1972 
and 1974), and the explanations are similar for the 
response of a water-table aquifer to stream-stage 
fluctuations. During the early-time segment, the aquifer 
responds as would a strictly confined aquifer with stor-
ativity equal to 2.5 x 10-4 (fig. 20A). That is, water goes 
into elastic storage by expansion of the aquifer materi-
als and compression of the pore water. Effects of verti-
cal flow into the zone above the water table are not 
prevalent during the early-time segment where horizon-
tal flow dominates. The length of time during which 
elastic-storage effects are prominent is increased as the 
ratio of vertical to horizontal hydraulic conductivity 
( ) is decreased. This is due to increased resistance 
to vertical flow in the aquifer because of the smaller 
values of vertical hydraulic conductivity. Although not 
shown in figure 20, the length of time during which 
elastic-storage effects are prominent also decreases as 
the ratio of storativity to specific yield ( , table 2) 
decreases (Neuman, 1972); that is, as the aquifer 
becomes more rigid.

During the intermediate-time segment, upward 
flow into the unsaturated zone becomes important and 
the rate of change of ground-water heads is slowed 
(fig. 20A). The delayed response of the water table is 
similar to the response of the leaky-aquifer systems 
shown in figure 19. Vertical-flow components are 
important during this segment as the water table rises. 
Finally, during the late-time segment, the aquifer again 
responds as would a strictly confined aquifer and 
ground-water heads converge on the solution for a 
confined aquifer with storativity equal to 2.5 x 10-1 
(fig. 20A), which equals the specific yield of the 
aquifer. Water goes into storage only by an increase in 
the elevation of the water table. Horizontal ground-
water flow dominates during this time segment, as it 
did during the early-time segment.
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Figure 20. (A) Change in ground-water head and 
(B) seepage rate to aquifer, for 1-foot increase in 
stream stage, semi-infinite water-table aquifer without 
semipervious streambank material. Observation well 
75 feet from stream-aquifer interface; KD, ratio of vertical 
to horizontal hydraulic conductivity of aquifer; other model 
parameters and dimensions in table 4.
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Figure 21 shows ground-water heads at three 
vertical positions in the aquifer and the average head 
over the full saturated thickness of the aquifer for 

. Vertical variations in ground-water heads 
over the saturated thickness of the aquifer result in 
upward flow into the zone above the water table. The 
results shown in the figure are similar to those 
presented by Neuman (1972, fig. 4, p. 1037) for the 
case of ground-water flow to a well. Ground-water 
heads below the water table (  < 1.0) respond quickly 
to the change in head at the stream-aquifer boundary as 
a result of elastic storage of the aquifer. An equivalent 
head change at the water table (  = 1.0) is delayed 
relative to head changes deeper in the aquifer in 
response to saturation of the pores as the water table 
rises. The average head change over the thickness of 
the aquifer responds more quickly than that at the water 
table but lags behind those for  = 0.0 and  

 = 0.5. At late time, all of the curves approach the 
solution for the confined aquifer with storativity equal 
to 2.5 x 10-1, which implies that heads are uniform over 
the thickness of the aquifer and that horizontal ground-
water flow dominates. As noted by Neuman (1972), the 
convergence of the curves to the single, uniform 
solution is consistent with the Dupuit-Forchheimer 
theory of horizontal ground-water flow in a water-table 

aquifer. It is only after this point in time that the use of 
the confined-aquifer solution with storativity equal to 
the specific yield of the aquifer is truly justified.

Figure 22 shows a comparison of the response in 
a water-table aquifer to that of an aquifer overlain by a 
water-table aquitard. As noted by Boulton and 
Streltsova (1975) for the case of flow to a pumped well, 
because the boundary condition used at the water table 
in a water-table aquifer is the same as that used for the 
water table in a water-table aquitard, ground-water 
heads (and seepage rates) calculated for the two aquifer 
types should approach one another as the thickness of 
the water-table aquitard becomes zero. That this is also 
true for stream-aquifer settings is confirmed by the 
results shown in figure 22, in which simulations were 
made for several values of aquitard thickness for the 
hypothetical leaky aquifer overlain by a water-table 

KD 0.2=

zD

zD

zD
zD

Figure 21. Change in ground-water head for 1-foot 
increase in stream stage at several vertical positions 
in a semi-infinite water-table aquifer. Observation well 
75 feet from stream-aquifer interface; zD, vertical 
distance from bottom of aquifer to observation 
piezometer divided by saturated thickness of aquifer 
(dimensionless); other model parameters and 
dimensions in table 4.
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Figure 22. (A) Change in ground-water head and 
(B) seepage rate to aquifer, for 1-foot increase in stream 
stage, semi-infinite water-table aquifer and leaky aquifer 
overlain by water-table aquitard. Observation well 75 feet 
from stream-aquifer interface; b′, saturated thickness of 
aquitard; S, storativity of aquifer; other model parameters 
and dimensions in tables 2 and 4.
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aquitard (table 3) and a single simulation for the 
water-table aquifer (table 4) in which  = 1.0. 
As shown in the figure, ground-water heads and 
seepage rates for the water-table aquitard condition 
approach those of the water-table aquifer as the 
thickness of the aquitard is reduced from 25 ft to 
0.1 ft.

COMPUTER PROGRAMS STLK1 AND 
STWT1—IMPLEMENTATION OF 
ANALYTICAL SOLUTIONS FOR TIME-
VARYING INPUTS

Two computer programs written in the 
FORTRAN-77 computer language were 
developed to determine ground-water heads, 
seepage rates, and bank-storage volumes for 
arbitrary, time-varying stream-stage and/or 
recharge stresses that are specified by program 
users. Program STLK1 is used for confined and 
leaky aquifers (figs. 5–12) and program STWT1 is 
used for water-table aquifers (figs. 13 and 14). To 
avoid having to create two separate data-input files 
for analysis of confined and water-table aquifers, 
program STWT1 also can be used for confined 
aquifers.

The programs implement the convolution 
relations described previously (see “General 
Theoretical Background”). For a given set of input 
conditions, the programs calculate ground-water 
head at an observation well or observation 
piezometer (equation 3), seepage rates at the 
stream-aquifer boundary (equations 4 and 5), and 
bank storage (equations 6 and 7). The programs can 
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simulate the response to stream-stage fluctuations for all 
aquifer types. Simulation of the response to recharge is 
permitted only for water-table aquifers and leaky aquifers 
overlain by a water-table aquitard. For these aquifer types, 
the aquifer response to recharge can be simulated alone or 
simultaneously with the response to stream-stage 
fluctuations. Recharge can be positive or negative. Negative 
recharge occurs in response to regional evapotranspiration 
from the water table.

The following sections describe discretization of 
the convolution integrals for use in STLK1 and STWT1, 
instructions for preparing data-input files required for 
program execution, the result and plot files generated by 
the programs, and three sample problems that illustrate 
applications of the programs. Descriptions of the computer 
codes are provided in Attachment 2.

Discretization of Convolution Relations

For computational purposes, the integrals in 
equations 3, 4, and 6 are written in discretized forms for 
implementation in programs STLK1 and STWT1. The 
discretized forms are

  , (46)

  , (47)

and
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  , (48)

where 
 is the upper limit of time integration  

(dimensionless); 
is the time variable of integration (time  
step) (dimensionless); 
is the time-step size (units of time); and 
is the time rate of change of the system  
input (units of length per time).

In equations 48–50, time is calculated from

 , (49)

where  is the time at the start of the simulation, which 
is specified by program users. Time-step size ( ) also 
is specified by program users and must be a constant 
length during each simulation.

The programs require approximation of input 
hydrographs (continuous records of stream-stage, 
recharge, or evapotranspiration) into a time series of 
discrete step changes during each time step. The time 
rate of change of the system input is calculated from

  , (50)

where  and  are the system inputs 
(stream stage or recharge) (units of length) at time steps 

 and , respectively. As with all discretization 
schemes, the accuracy of the convolution method, and 
therefore of the programs, is improved by use of 
smaller time steps. Discretization issues are further dis-
cussed with Sample Problem 1.

Heads, seepage rates, and bank storage are 
calculated at the end of each time step. At the end of 
the first time step (  and ), , 

, and . The first calculations for head, 
seepage rate, and bank storage made by the programs 
are at the end of the second time step ( ), and use 

.
Examples of how continuous stream-stage or 

recharge inputs are discretized for use in convolution 
equations 48–50 are shown in figure 23. On the left 
side of the figure are continuous, 5-day hydrographs 
for hypothetical stream-stage (fig. 23A) and recharge 
(fig. 23B) stresses; on the right side are equivalent 
hydrographs that have been discretized into  
time steps. The constant time interval (time-step size) 
between each set of adjoining time steps is  
days. Twenty-one time steps are required for the  
5-day hydrographs because the first time step is at 

days. For each pair of adjacent time steps, 
there is an associated time rate of change of the 
system input, , which equals the slope of 
the hydrograph over the interval  (see equation 50). 
There are 20 values of  for the 21 time steps of each 
discretized hydrograph. Recharge applied to the system 
results in a uniform ground-water level rise; it is the 
ground-water level rise that is actually specified to the 
model. The ground-water level rise remains constant 
once recharge stops at the end of the first day; the slope 
of the ground-water level hydrograph ( ) therefore 
equals zero after the first day. Further discussion of the 
relation between recharge and ground-water level rise 
is provided with Sample Problem 3. The two tables on 
figure 23 show the discretized hydrographs in tabular 
format (for brevity, time steps 7–19 are not shown).
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Instructions for Preparing Data-Input Files

Programs STLK1 and STWT1 each require a 
data-input file for execution. The data-input files 
contain information on the types and hydraulic 
parameters of the aquifer, aquitard (if present), and 
semipervious streambank material (if present) being 
simulated; initial conditions in the aquifer; stress inputs 
to the aquifer; and solution parameters. All input data 
are read using free-format style, which means that data 
values in each line of input do not have to be in specific 
columns; however, data values must be separated by 
one or more blank spaces. A consistent set of length 
and time units must be used throughout the input file—
for example, feet and days. All real-valued variables 
are double-precision format in STLK1 and STWT1; 
consequently, double-precision format should be used 
for real-valued variables in the input file. For example, 
the value 1.33 x 10-3 could be entered as 1.33D-3 or as 
0.00133.

Program STLK1

Line-by-line instructions for creating a data-
input file for program STLK1 follow. Variable names 
that are used in the input file and computer program are 
shown in upper-case text.

Line 1:

TITLE1—First line of title, which can be up to 70 
characters in length. Leave this line blank if 
no title is specified.

Line 2:

TITLE2—Second line of title, which can be up to 
70 characters in length. Leave this line blank 
if no title is specified.

Line 3:

ISTRESS—Type of stress being simulated. Three 
options are provided:
ISTRESS = 0: Stream-stage fluctuations are 

simulated.
ISTRESS = 1: Recharge/ET are simulated. 

Valid only for leaky aquifer overlain by a 
water-table aquitard (IAQ = 3).

ISTRESS = 2: Both stream-stage fluctuations 
and recharge/ET are simulated. Valid 
only for leaky aquifer overlain by a 
water-table aquitard (IAQ = 3).

DELT—Time-step size. A uniform time-step size 
must be used throughout the simulation. Note 
that the value of DELT will affect solution 
accuracy. Smaller time steps will improve 
solution accuracy but increase the amount of 
time required for the program to run a 
particular simulation (see Sample Problem 1).

IPRINT—An option to print or suppress the 
printing of stress data to the results file:
IPRINT = 0: Do not print stress data.
IPRINT = 1: Print stress data.

Line 4:

IXL—Extent of aquifer being simulated. Two 
options are provided:
IXL = 0: Semi-infinite aquifer.
IXL = 1: Finite-width aquifer.

IAQ—Type of aquifer being simulated. Four 
options are provided:
IAQ = 0: Confined aquifer.
IAQ = 1: Leaky aquifer, with constant head 

overlying the aquitard (leaky aquifer 
case 1).

IAQ = 2: Leaky aquifer, with an impermeable 
layer overlying the aquitard (leaky 
aquifer case 2).

IAQ = 3: Leaky aquifer overlain by a water-
table aquitard (leaky aquifer case 3).

IXA—Streambank code. Two options are 
provided:
IXA = 0: semipervious streambank material 

is absent.
IXA = 1: semipervious streambank material 

is present.

Line 5:

XZERO—Half-width of stream, in units of length. 
Must be greater than 0.0D0. Note: the half-
width of the stream does not need to be 
known for the solution. The variable XZERO 
is simply used to nondimensionalize some of 
the parameters in the analytical solutions. 
Therefore, an arbitrary value of XZERO may 
be used; however, all distances from the 
center of the stream channel used in the input 
file must be consistent with the value of 
XZERO that is selected.
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XLL—Width of aquifer, in units of length. Use for 
finite-width aquifers. Enter 0.0D0 if IXL = 0.

XAA—Streambank leakance, in units of length. 
Streambank leakance is defined in equation 
14. Enter 0.0D0 if IXA = 0.

XSTREAM—Length of stream reach, in units of 
length. Must be greater than 0.0D0. 
XSTREAM is used to calculate total seepage 
and bank-storage volume over the stream 
reach of interest.

Line 6:

AK—Horizontal hydraulic conductivity of aquifer, 
in units of length per time.

AS—Specific storage of aquifer, in units of 
inverse length. The program will calculate the 
storativity of the aquifer by multiplying 
specific storage (AS) by the thickness of the 
aquifer at the beginning of the simulation 
(AB).

AB—Thickness of aquifer at beginning of 
simulation, in units of length.

Line 7:

AKT—Vertical hydraulic conductivity of aquitard, 
in units of length per time. Enter 0.0D0 if 
IAQ = 0.

AST—Specific storage of aquitard, in units of 
inverse length. The program will calculate 
the storativity of the aquitard by multiplying 
specific storage (AST) by the saturated 
thickness of the aquitard at the beginning 
of the simulation (ABT). Enter 0.0D0 if 
IAQ = 0.

ABT—Thickness or saturated thickness of 
aquitard at beginning of simulation, in units 
of length. Enter 0.0D0 if IAQ = 0.

ASYT—Specific yield of aquitard, dimensionless. 
Enter 0.0D0 if IAQ ≠ 3.

Line 8:

X—Distance to observation well from stream-
channel center, in units of length.

HINIT—Initial head at observation well, in units 
of length. Heads calculated by the program 
are added to or subtracted from HINIT.

TINIT—Simulation start time, in units of time. A 
start time to which simulation results are 
referenced.

Line 9:

NS—Number of terms used in the Stehfest 
algorithm. This must be an even number, the 
value of which depends upon computer 
precision. If the computer holds 16 
significant figures in double precision, let NS 
= 8 to 12. A value of 8 is often sufficient. If 
numerical results for head and seepage are 
unstable, NS can be reduced to 6 (or even 4). 
Precision will be reduced, however, and 
results should be checked for accuracy. The 
user can compare simulation results using 
alternative values of NS (such as 6, 8, and 12) 
to determine if numerically stable results 
have been attained.

Line 10:

NT—Number of time steps. Program STLK1 is 
dimensioned to handle up to 1,000 time steps. 
If NT > 1,000, parameter IMAXX must be 
increased to a value of at least NT in the main 
routine and in subroutine DATAIO of 
program STLK1.

Lines 11 to NT+10:

Lines 11 to NT + 10 contain the stress data for 
each simulation.
XTIME(I)—Time of stream-stage and/or 

recharge/ET input for time step I.
STAGE(I)—Stream stage for time step I.
RECH(I)—Recharge/ET for time step I.
A summary of the data-input requirements for 

STLK1 is shown in table 5. An example data-input file, 
which is named "input.prob1a" and is used in sample 
problem 1 below, is shown in figure 24. The data-input 
file is based on the hypothetical confined aquifer 
described in table 3. Variable names are shown for 
convenience on the right side of each line of the 
example data-input file (fig. 24).
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Table 5. Input data format for program STLK1

[Free-format input style--each variable in a line must be separated by at least one space; for real variables use double precision values, such as 1.33D-3 or 
0.00133; ET, evapotranspiration]

Line
Variable

name
Type Explanation

1 TITLE1 Character First line of title (up to 70 characters)

2 TITLE2 Character Second line of title (up to 70 characters)

3 ISTRESS Integer Stress type: ISTRESS = 0 : stream-stage fluctuations 
ISTRESS = 1: recharge/ET 
ISTRESS = 2 : stream-stage fluctuations and recharge/ET

DELT Real Time-step size. A uniform time-step size must be used.

IPRINT Integer Option for printing stress data to result file: 
IPRINT = 0: do not print stress data 
IPRINT = 1: print stress data

4 IXL Integer Aquifer extent: IXL = 0: semi-infinite 
IXL = 1: finite width

IAQ Integer Aquifer type: IAQ = 0: confined 
IAQ = 1: leaky, with constant head 
IAQ = 2: leaky, with impermeable layer 
IAQ = 3: leaky, with water-table aquitard

IXA Integer Streambank code: IXA = 0: semipervious streambank material absent 
IXA = 1: semipervious streambank material present

5 XZERO Real Half width of stream. Must be > 0.0D0
XLL Real Width of aquifer. Enter 0.0D0 if IXL = 0
XAA Real Streambank leakance. Enter 0.0D0 if IXA = 0
XSTREAM Real Length of stream reach

6 AK Real Horizontal hydraulic conductivity of aquifer
AS Real Specific storage of aquifer
AB Real Thickness of aquifer

7 AKT Real Vertical hydraulic conductivity of aquitard. Enter 0.0D0 if IAQ = 0
AST Real Specific storage of aquitard. Enter 0.0D0 if IAQ = 0
ABT Real Thickness or saturated thickness of aquitard. Enter 0.0D0 if IAQ = 0
ASYT Real Specific yield of aquitard. Enter 0.0D0 if IAQ ≠ 3

8 X Real Distance to observation well from stream-channel center.
HINIT Real Initial head at observation well.
TINIT Real Simulation start time. 

9 NS Integer Number of Stehfest terms. Must be an even integer. 8 terms are usually sufficient

10 NT Integer Number of time steps: If NT > 1,000, increase parameter  IMAXX in program STLK1  
to a value of at least NT 

11 to 
(NT+10)

XTIME(I) Real Time of stream-stage and/or recharge/ET input for time step I

STAGE(I) Real Stream stage for time step I
RECH(I) Real Recharge/ET for time step I



Sample problem 1a. Sample input file for program STLK1                  TITLE1
One-day stream-stage flood event. Confined aquifer. Delt is 0.25 days.  TITLE2
    0    0.25D+0  1                                       ISTRESS  DELT IPRINT
    0      0      0                                              IXL  IAQ  IXA
 25.0D0  0.0D0   0.0D0  1.0D3                         XZERO  XLL  XAA  XSTREAM
  2.0D2  1.0D-5 25.0D0                                              AK  AS  AB
  0.0D0  0.0D0   0.0D0  0.0D0                              AKT  AST  ABT  ASYT
  1.0D3  0.0D0   0.0D0                                         X  HINIT  TINIT
    8                                                                       NS
   21                                                                       NT
  0.00     0.0000     0.0000                       XTIME(I)  STAGE(I)  RECH(I)
  0.25     0.5000     0.0000
  0.50     1.0000     0.0000
  0.75     0.5000     0.0000
  1.00     0.0000     0.0000
  1.25     0.0000     0.0000
  1.50     0.0000     0.0000
  1.75     0.0000     0.0000
  2.00     0.0000     0.0000
  2.25     0.0000     0.0000
  2.50     0.0000     0.0000
  2.75     0.0000     0.0000
  3.00     0.0000     0.0000
  3.25     0.0000     0.0000
  3.50     0.0000     0.0000
  3.75     0.0000     0.0000
  4.00     0.0000     0.0000
  4.25     0.0000     0.0000
  4.50     0.0000     0.0000
  4.75     0.0000     0.0000
  5.00     0.0000     0.0000

Figure 24. Example data-input file for program STLK1.
Program STWT1

Line-by-line instructions for creating a data-
input file for program STWT1 follow. Variable names 
that are used in the input file and computer program are 
shown in upper-case text.

Line 1:

TITLE1—First line of title, which can be up to 70 
characters in length. Leave this line blank if 
no title is specified.

Line 2:

TITLE2—Second line of title, which can be up to 
70 characters in length. Leave this line blank 
if no title is specified.

Line 3:

ISTRESS—Type of stress being simulated. Three 
options are provided:
ISTRESS = 0: Stream-stage fluctuations are 

simulated.
ISTRESS = 1: Recharge/ET are simulated. 

Valid only for water-table aquifer 
(IAQ = 1).

ISTRESS = 2: Both stream-stage fluctuations 
and recharge/ET are simulated. Valid 
only for water-table aquifer (IAQ = 1).

DELT—Time-step size. A uniform time-step size 
must be used throughout the simulation. Note 
that the value of DELT will affect solution 
accuracy. Smaller time steps will improve 
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solution accuracy but increase the amount of 
time required for the program to run a 
particular simulation (see Sample Problem 1).

IPRINT—An option to print or suppress the 
printing of stress data to the results file:
IPRINT = 0: Do not print stress data.
IPRINT = 1: Print stress data.

Line 4:

IXL—Extent of aquifer being simulated. Two 
options are provided:
IXL = 0: Semi-infinite aquifer.
IXL = 1: Finite-width aquifer.

IAQ—Type of aquifer being simulated. Two 
options are provided:
IAQ = 0: Confined aquifer.
IAQ = 1: Water-table aquifer.

IXA—Streambank code. Two options are 
provided:
IXA = 0: semipervious streambank material 

is absent.
IXA = 1: semipervious streambank material 

is present.

Line 5:

XZERO—Half-width of stream, in units of length. 
Must be greater than 0.0D0. Note: the half-
width of the stream does not need to be 
known for the solution. The variable XZERO 
is simply used to nondimensionalize some of 
the parameters in the analytical solutions. 
Therefore, an arbitrary value of XZERO may 
be used; however, all distances from the 
center of the stream channel used in the input 
file must be consistent with the value of 
XZERO that is selected.

XLL—Width of aquifer, in units of length. Use for 
finite-width aquifers. Enter 0.0D0 if IXL = 0.

XAA—Streambank leakance, in units of length. 
Streambank leakance is defined in equation 
14. Enter 0.0D0 if IXA = 0.

XSTREAM—Length of stream reach, in units of 
length. Must be greater than 0.0D0. 
XSTREAM is used to calculate total seepage 
and bank-storage volume over the stream 
reach of interest.

Line 6:

AKX—Horizontal hydraulic conductivity of 
aquifer, in units of length per time.

XKD—Ratio of vertical to horizontal hydraulic 
conductivity of aquifer, dimensionless. Enter 
0.0D0 if IAQ=0.

AS—Specific storage of aquifer, in units of 
inverse length. The program will calculate the 
storativity of the aquifer by multiplying 
specific storage (AS) by the saturated 
thickness of the aquifer at the beginning of 
the simulation (AB).

ASY—Specific yield of aquifer, dimensionless. 
Enter 0.0D0 if IAQ=0.

AB—Saturated thickness of aquifer at beginning 
of simulation, in units of length.

Line 7: See figure 13A for definitions of ZP, Z1, 
and Z2.

X—Distance to observation well from stream-
channel center, in units of length.

IOWS—Type of observation well:
IOWS = 0: Partially penetrating observation 

well.
IOWS = 1: Fully penetrating observation 

well.
IOWS = 2: Observation piezometer.

Z1—Vertical distance from bottom of aquifer to 
bottom of screened interval of observation 
well. Use for IOWS = 0 or 1. Enter 0.0D0 if 
IOWS = 2.

Z2—Vertical distance from bottom of aquifer to 
top of screened interval of observation well. 
Use for IOWS = 0 or 1. Enter 0.0D0 if 
IOWS = 2.

ZP—Vertical distance from bottom of aquifer to 
observation piezometer. Use for IOWS = 2. 
Enter 0.0D0 if IOWS = 0 or 1.

Line 8:

HINIT—Initial head at observation well, in units 
of length. Heads calculated by the program 
are added to or subtracted from HINIT.

TINIT—Simulation start time, in units of time. A 
start time to which simulation results are 
referenced.
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Line 9: Variables NS, RERRNR, and XTRMS are 
program-solution variables that are used in the 
numerical-inversion algorithm. Suggested values 
are provided for each variable. Relatively smaller 
values of RERRNR will increase solution 
precision and time.

NS—Number of terms used in the Stehfest 
algorithm. This must be an even number, the 
value of which depends upon computer 
precision. If the computer holds 16 
significant figures in double precision, let NS 
= 8 to 12. A value of 8 is often sufficient. If 
numerical results for head and seepage are 
unstable, NS can be reduced to 6 (or even 4). 
Precision will be reduced, however, and 
results should be checked for accuracy. The 
user can compare simulation results using 
alternative values of NS (such as 6, 8, and 12) 
to determine if numerically stable results 
have been attained.

RERRNR—Relative error for Newton-Raphson 
iteration and summation. Use for IAQ = 1. A 
value of 1.D-10 is suggested. Enter 0.0D0 for 
IAQ = 0. If RERRNR is exceeded after 100 
Newton-Raphson iterations, then a message 
is printed to the result file and the program is 
stopped.

XTRMS—Factor used to determine number of 
terms in the finite sums for head and seepage. 
Suggested values are 20.0D0 or 30.0D0. The 
user should ensure that a sufficient number of 
terms are being used in the summations by 
making multiple runs in which XTRMS is 
increased from one simulation to the next (for 
example, doubled), continuing until 
simulation results do not vary substantially 
when XTRMS is increased.

Line 10:

NT—Number of time steps. Program STWT1 is 
dimensioned to handle up to 1,000 time steps. 
If NT > 1,000, parameter IMAXX must be 
increased to a value of at least NT in the main 
routine and in subroutine DATAIO of 
program STWT1.

Lines 11 to NT+10:

Lines 11 to NT + 10 contain the stress data for 
each simulation.
XTIME(I)—Time of stream-stage and/or 

recharge/ET input for time step I.
STAGE(I)—Stream stage for time step I.
RECH(I)—Recharge/ET for time step I.
A summary of the data-input requirements for 

STWT1 is shown in table 6. An example data-input 
file, which is named "input.prob2a" and is used in 
sample problem 1 below, is shown in figure 25. The 
data-input file is based on the hypothetical water-table 
aquifer described in table 4. Variable names are shown 
for convenience on the right side of each line of the 
example data-input file (fig. 25).

Result and Plot Files

Example result and plot files for program STLK1 
(files "result.prob1a" and "plot.prob1a," respectively) 
are shown in figures 26 and 27. The example files were 
created by the program using data-input file 
"input.prob1a" (fig. 24). After the program banner (fig. 
26), the result file first gives the title of the simulation 
and a listing of the parameters that were specified in the 
data-input file. The program then gives a summary of 
the stress data that were specified in the data-input file. 
Several dimensionless parameters that are defined in 
table 1 and are calculated by STLK1 are printed in the 
next block of program output. Small, nonzero values 
are shown for parameters SIGMA1 and GAMMA1 
(0.1D-03), which are variables that are used for leaky-
aquifer conditions. These small values are used to 
prevent division by zero in the computer program; they 
do not affect the confined-aquifer solutions. The final 
block of output data shows the calculated results for the 
simulation. Several quantities are listed (time, head, 
seepage, total seepage, bank storage, and bank-storage 
volume); definitions of the quantities can be found in 
the “General Theoretical Background” section of this 
report. Negative values of seepage and total seepage 
indicate streamflow seepage to the aquifer; positive 
values of seepage and total seepage indicate ground-
water discharge to the stream. Positive values of bank 
storage and bank-storage volume indicate a net flow of 
stream water into the aquifer during the simulation; 
negative values of bank storage and bank-storage 
volume indicate a net discharge of ground water out of 
the aquifer.
40 Analytical Solutions and Computer Programs for Hydraulic Interaction of Stream-Aquifer Systems
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Table 6. Input data format for program STWT1

[Free-format input style--each variable in a line must be separated by at least one space; for real variables use double precision values, such as 1.33D-3 or 
0.00133; ET, evapotranspiration]

Line
Variable

name
Type Explanation

1 TITLE1 Character First line of title (up to 70 characters)

2 TITLE2 Character Second line of title (up to 70 characters)

3 ISTRESS Integer Stress type: ISTRESS = 0 : stream-stage fluctuations 
ISTRESS = 1 : recharge/ET 
ISTRESS = 2 : stream-stage fluctuations and recharge/ET

DELT Real Time-step size. A uniform time-step size must be used.

IPRINT Integer Option for printing stress data to result file: 
IPRINT = 0: do not print stress data 
IPRINT = 1: print stress data

4 IXL Integer Aquifer extent: IXL = 0: semi-infinite 
IXL = 1: finite width

IAQ Integer Aquifer type: IAQ = 0: confined 
IAQ = 1: water table

IXA Integer Streambank code: IXA = 0: semipervious streambank material absent 
IXA = 1: semipervious streambank material present

5 XZERO Real Half width of stream. Must be > 0.0D0
XLL Real Width of aquifer. Enter 0.0D0 if IXL = 0
XAA Real Streambank leakance. Enter 0.0D0 if IXA = 0
XSTREAM Real Length of stream reach

6 AKX Real Horizontal hydraulic conductivity of aquifer
XKD Real Ratio of vertical to horizontal hydraulic conductivity of aquifer. Enter 0.0D0 if IAQ = 0
AS Real Specific storage of aquifer
ASY Real Specific yield of aquifer. Enter 0.0D0 if IAQ = 0
AB Real Thickness or saturated thickness of aquifer

7 X Real Distance to observation well from stream-channel center.
IOWS Integer Type of observation well: 

IOWS = 0: Partially penetrating observation well 
IOWS = 1: Fully penetrating observation well 
IOWS = 2: Observation piezometer

Z1 Real Use for IOWS = 0 or 1. Vertical distance from bottom of aquifer to bottom of screened 
interval of observation well. Enter 0.0D0 if IOWS = 2

Z2 Real Use for IOWS = 0 or 1. Vertical distance from bottom of aquifer to top of screened interval 
of observation well. Enter 0.0D0 if IOWS = 2

ZP Real Use for IOWS = 2. Vertical distance from bottom of aquifer to observation piezometer. 
Enter 0.0D0 if IOWS = 0 or 1

8 HINIT Real Initial head at observation well.
TINIT Real Simulation start time. 

9 NS Integer Number of Stehfest terms. Must be an even integer. 8 terms are usually sufficient
RERRNR Real Relative error for Newton-Raphson iteration and summation. Suggested value is 1.D-10
XTRMS Real Factor used to determine number of terms in the finite sums for head and seepage. 

Suggested values are 20.D0 or 30.D0

10 NT Integer Number of time steps: If NT > 1,000, increase parameter IMAXX in program STWT1 to a 
value of at least NT 

11 to
(NT+10)

XTIME(I) Real Time of stream-stage and/or recharge/ET input for time step I

STAGE(I) Real Stream stage for time step I
RECH(I) Real Recharge/ET for time step I
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Figure 25. Example data-input file for program STWT1

Sample problem 2a. Sample input file for program STWT1.                 TITLE1
One-day stream-stage flood event. Water-table aquifer. DELT=0.25days.   TITLE2
    0    0.25D+0  1                                        ISTRESS DELT IPRINT
    0      1      0                                               IXL IAQ  IXA
 25.0D0  0.0D0   0.0D0   1.0D3                        XZERO  XLL  XAA  XSTREAM
  2.0D2  2.0D-1  1.0D-5  2.5D-1 25.0D0                   AKX  XKD  AS  ASY  AB
  1.0D2    1     0.0D0   25.0D0  0.0D0                     X  IOWS  Z1  Z2  ZP
  0.0D0  0.0D0                                                    HINIT  TINIT
    8  1.0D-10  30.0D0                                       NS  RERRNR  XTRMS
   21                                                                       NT
  0.00     0.0000     0.0000                       XTIME(I)  STAGE(I)  RECH(I)
  0.25     0.5000     0.0000
  0.50     1.0000     0.0000
  0.75     0.5000     0.0000
  1.00     0.0000     0.0000
  1.25     0.0000     0.0000
  1.50     0.0000     0.0000
  1.75     0.0000     0.0000
  2.00     0.0000     0.0000
  2.25     0.0000     0.0000
  2.50     0.0000     0.0000
  2.75     0.0000     0.0000
  3.00     0.0000     0.0000
  3.25     0.0000     0.0000
  3.50     0.0000     0.0000
  3.75     0.0000     0.0000
  4.00     0.0000     0.0000
  4.25     0.0000     0.0000
  4.50     0.0000     0.0000
  4.75     0.0000     0.0000
  5.00     0.0000     0.0000
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Figure 26. Example result file for program STLK1

                *****************************************************
                *                                                   *
                *         ****  U.S. GEOLOGICAL SURVEY  ****        *
                *                                                   *
                *          **** STLK1: PROGRAM OUTPUT ****          *
                *                                                   *
                * ONE-DIMENSIONAL MODEL OF STREAM-AQUIFER HYDRAULIC *
                *                                                   *
                *    INTERACTION FOR CONFINED AND LEAKY AQUIFERS    *
                *                                                   *
                *       BOUNDED BY A FULLY PENETRATING STREAM       *
                *                                                   *
                *           VERSION CURRENT AS OF 09/01/98          *
                *                                                   *
                *****************************************************

     Sample problem 1a. Sample input file for program STLK1                
     One-day stream-stage flood event. Confined aquifer. Delt is 0.25 days.

                    SUMMARY OF INPUT DATA
                    ---------------------

   STRESS TYPE (ISTRESS):               0 (stream-stage fluctuations)
   TIME-STEP SIZE (DELT):               0.250D+00 (units of time)
   PRINTING CODE (IPRINT):              1 (stress data printed)

 AQUIFER AND STREAMBANK CHARACTERISTICS (INPUT LINES 4 AND 5)
   AQUIFER EXTENT (IXL):                0 (semi infinite)
   AQUIFER TYPE (IAQ):                  0 (confined)
   STREAMBANK CODE (IXA):               0 (semipervious streambank absent)
   STREAM HALF WIDTH (XZERO):           0.250D+02 (units of length)
   LENGTH OF STREAM (XSTREAM):          0.100D+04 (units of length)

 AQUIFER PROPERTIES (INPUT LINE 6) 
   HYDRAULIC CONDUCTIVITY (AK):         0.200D+03 (units of length per time)
   SPECIFIC STORAGE (AS):               0.100D-04 (units of inverse length)
   SATURATED THICKNESS (AB):            0.250D+02 (units of length)

 AQUITARD PROPERTIES (INPUT LINE 7) 
   HYDRAULIC CONDUCTIVITY (AKT):        0.000D+00 (units of length per time)
   SPECIFIC STORAGE (AST):              0.000D+00 (units of inverse length)
   SATURATED THICKNESS (ABT):           0.000D+00 (units of length)
   SPECIFIC YIELD (ASYT):               0.000D+00 (dimensionless)

 OBSERVATION WELL DATA AND INITIAL CONDITIONS (INPUT LINE 8)
   DISTANCE TO OBSERVATION WELL (X):  0.100D+04 (units of length)
   INITIAL HEAD AT WELL (HINIT):      0.000D+00 (units of length)
   START TIME OF SIMULATION (TINIT):  0.000D+00 (units of time)
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Figure 26. Example result file for program STLK1—Continued.

 PROGRAM SOLUTION VARIABLES (INPUT LINE 9) 
   NUMBER OF STEHFEST TERMS (NS):                 8

                    SUMMARY OF STRESS DATA
                    ----------------------

   NUMBER OF SPECIFIED TIME STEPS (NT):             21

          TIME        STAGE         RECH
          ----        -----         ----
       0.0000D+00   0.0000D+00   0.0000D+00
       0.2500D+00   0.5000D+00   0.0000D+00
       0.5000D+00   0.1000D+01   0.0000D+00
       0.7500D+00   0.5000D+00   0.0000D+00
       0.1000D+01   0.0000D+00   0.0000D+00
       0.1250D+01   0.0000D+00   0.0000D+00
       0.1500D+01   0.0000D+00   0.0000D+00
       0.1750D+01   0.0000D+00   0.0000D+00
       0.2000D+01   0.0000D+00   0.0000D+00
       0.2250D+01   0.0000D+00   0.0000D+00
       0.2500D+01   0.0000D+00   0.0000D+00
       0.2750D+01   0.0000D+00   0.0000D+00
       0.3000D+01   0.0000D+00   0.0000D+00
       0.3250D+01   0.0000D+00   0.0000D+00
       0.3500D+01   0.0000D+00   0.0000D+00
       0.3750D+01   0.0000D+00   0.0000D+00
       0.4000D+01   0.0000D+00   0.0000D+00
       0.4250D+01   0.0000D+00   0.0000D+00
       0.4500D+01   0.0000D+00   0.0000D+00
       0.4750D+01   0.0000D+00   0.0000D+00
       0.5000D+01   0.0000D+00   0.0000D+00

              DIMENSIONLESS PARAMETERS (CALCULATED BY PROGRAM)
              ------------------------------------------------

   DIMENSIONLESS DISTANCE TO WELL (XD):                      0.400D+02
   DIMENSIONLESS DISTANCE TO STREAMBANK (XZEROD):            0.100D+01
   DIMENSIONLESS WIDTH OF AQUIFER (XLLD):                     INFINITE
   DIMENSIONLESS STREAMBANK LEAKANCE (XAAD):                 0.000D+00
   DIMENSIONLESS RATIO OF AQUITARD TO AQUIFER
      STORATIVITY (SIGMA1):                                  0.100D-03
   DIMENSIONLESS RATIO OF AQUITARD TO AQUIFER HYDRAULIC
      CONDUCTIVITY (GAMMA1):                                 0.100D-03
   DIMENSIONLESS RATIO OF AQUIFER STORATIVITY
      TO AQUITARD SPECIFIC YIELD (SIGMAP):                   0.000D+00
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Figure 26. Example result file for program STLK1—Continued.

                                      RESULTS
                                      -------

                                           TOTAL       BANK     BANK-STORAGE
      TIME         HEAD       SEEPAGE     SEEPAGE     STORAGE      VOLUME
      (T)          (L)        (L**2/T)    (L**3/T)     (L**2)      (L**3)
      ----         ----      ----------  ----------    -------      ------
  0.000000D+00  0.00000D+00  0.0000D+00  0.0000D+00  0.0000D+00  0.0000D+00
  0.250000D+00  0.37891D+00  -.6308D+00  -.1262D+04  0.1577D+00  0.3154D+03
  0.500000D+00  0.79261D+00  -.1077D+01  -.2154D+04  0.4269D+00  0.8539D+03
  0.750000D+00  0.46414D+00  -.1794D+00  -.3589D+03  0.4718D+00  0.9436D+03
  0.100000D+01  0.75475D-01  0.3973D+00  0.7946D+03  0.3725D+00  0.7450D+03
  0.125000D+01  0.40842D-01  0.2127D+00  0.4255D+03  0.3193D+00  0.6386D+03
  0.150000D+01  0.26984D-01  0.1400D+00  0.2800D+03  0.2843D+00  0.5686D+03
  0.175000D+01  0.19625D-01  0.1016D+00  0.2031D+03  0.2589D+00  0.5178D+03
  0.200000D+01  0.15131D-01  0.7819D-01  0.1564D+03  0.2394D+00  0.4787D+03
  0.225000D+01  0.12139D-01  0.6266D-01  0.1253D+03  0.2237D+00  0.4474D+03
  0.250000D+01  0.10024D-01  0.5170D-01  0.1034D+03  0.2108D+00  0.4215D+03
  0.275000D+01  0.84628D-02  0.4362D-01  0.8724D+02  0.1999D+00  0.3997D+03
  0.300000D+01  0.72703D-02  0.3746D-01  0.7491D+02  0.1905D+00  0.3810D+03
  0.325000D+01  0.63349D-02  0.3262D-01  0.6525D+02  0.1823D+00  0.3647D+03
  0.350000D+01  0.55848D-02  0.2875D-01  0.5750D+02  0.1752D+00  0.3503D+03
  0.375000D+01  0.49723D-02  0.2559D-01  0.5118D+02  0.1688D+00  0.3375D+03
  0.400000D+01  0.44644D-02  0.2297D-01  0.4594D+02  0.1630D+00  0.3260D+03
  0.425000D+01  0.40377D-02  0.2077D-01  0.4154D+02  0.1578D+00  0.3157D+03
  0.450000D+01  0.36749D-02  0.1890D-01  0.3780D+02  0.1531D+00  0.3062D+03
  0.475000D+01  0.33635D-02  0.1730D-01  0.3459D+02  0.1488D+00  0.2976D+03
  0.500000D+01  0.30938D-02  0.1591D-01  0.3181D+02  0.1448D+00  0.2896D+03



Figure 27. Example plot file for program STLK1.

        T            H          SEEP        SEEPT       BANK        BANKV
  0.000000E+00  0.00000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00
  0.250000E+00  0.37891E+00  -.6308E+00  -.1262E+04  0.1577E+00  0.3154E+03
  0.500000E+00  0.79261E+00  -.1077E+01  -.2154E+04  0.4269E+00  0.8539E+03
  0.750000E+00  0.46414E+00  -.1794E+00  -.3589E+03  0.4718E+00  0.9436E+03
  0.100000E+01  0.75475E-01  0.3973E+00  0.7946E+03  0.3725E+00  0.7450E+03
  0.125000E+01  0.40842E-01  0.2127E+00  0.4255E+03  0.3193E+00  0.6386E+03
  0.150000E+01  0.26984E-01  0.1400E+00  0.2800E+03  0.2843E+00  0.5686E+03
  0.175000E+01  0.19625E-01  0.1016E+00  0.2031E+03  0.2589E+00  0.5178E+03
  0.200000E+01  0.15131E-01  0.7819E-01  0.1564E+03  0.2394E+00  0.4787E+03
  0.225000E+01  0.12139E-01  0.6266E-01  0.1253E+03  0.2237E+00  0.4474E+03
  0.250000E+01  0.10024E-01  0.5170E-01  0.1034E+03  0.2108E+00  0.4215E+03
  0.275000E+01  0.84628E-02  0.4362E-01  0.8724E+02  0.1999E+00  0.3997E+03
  0.300000E+01  0.72703E-02  0.3746E-01  0.7491E+02  0.1905E+00  0.3810E+03
  0.325000E+01  0.63349E-02  0.3262E-01  0.6525E+02  0.1823E+00  0.3647E+03
  0.350000E+01  0.55848E-02  0.2875E-01  0.5750E+02  0.1752E+00  0.3503E+03
  0.375000E+01  0.49723E-02  0.2559E-01  0.5118E+02  0.1688E+00  0.3375E+03
  0.400000E+01  0.44644E-02  0.2297E-01  0.4594E+02  0.1630E+00  0.3260E+03
  0.425000E+01  0.40377E-02  0.2077E-01  0.4154E+02  0.1578E+00  0.3157E+03
  0.450000E+01  0.36749E-02  0.1890E-01  0.3780E+02  0.1531E+00  0.3062E+03
  0.475000E+01  0.33635E-02  0.1730E-01  0.3459E+02  0.1488E+00  0.2976E+03
  0.500000E+01  0.30938E-02  0.1591E-01  0.3181E+02  0.1448E+00  0.2896E+03
The plot file (fig. 27) provides tabulated 
simulation results only, which can be used for graphing 
packages. The results are listed by column in the same 
order in which they were printed in the output file: 
T (time), H (head), SEEP (seepage), SEEPT (total 
seepage), BANK (bank storage), and BANKV  
(bank-storage volume).

Result and plot files for program STWT1 are 
very similar to those for program STLK1, and 
examples of these files are not provided here. The 
dimensionless parameters listed in the result file for 
program STWT1 are defined in Table 2.

Sample Problems

Three sample problems are provided to 
demonstrate application of programs STLK1 and 
STWT1 to time-varying stream-stage and recharge 
inputs. The sample problems also illustrate the effect of 
time-step size on simulation results. It is suggested that 
program users read both Sample Problems 1 and 2 
before using program STWT1 because the concepts 

related to discretization of the stream-stage hydrograph 
discussed in Sample Problem 1 also are applicable to 
water-table aquifers.

Sample Problem 1—Response of a Confined 
Aquifer to a Sinusoidal Flood Wave

Cooper and Rorabaugh (1963) developed 
analytical solutions for ground-water heads, seepage 
rates, and bank storage in a semi-infinite confined 
aquifer in response to a sinusoidal variation of stream 
stage. Their closed-form solutions are exact and 
therefore do not require discretization of the stream-
stage hydrograph or convolution method. The solutions 
are used here to test the convolution equations used in 
programs STLK1 and STWT1 and to demonstrate the 
effect of discretization of the stream-stage hydrograph 
on simulation results.

A semi-infinite confined aquifer with the 
hydraulic properties and dimensions listed in table 3 
was simulated by use of program STLK1 and by use of 
the analytical solutions of Cooper and Rorabaugh 
(1963). The effects of a one-day sinusoidal flood wave 
with a peak stream stage of 1.0 ft (fig. 28, inset) were 
simulated over a 5-day period. Ground-water heads 
46 Analytical Solutions and Computer Programs for Hydraulic Interaction of Stream-Aquifer Systems
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SOLUTIONS OF COOPER AND RORABAUGH (1963)

SOLUTIONS USING PROGRAM STLK1.  
     CONVOLUTION TIME-STEP SIZE, IN DAYS
     0.010
     0.100
     0.250

EXPLANATION

Figure 28. (A) Ground-water head at observation well, (B) seepage rate between stream and aquifer, and (C) bank 
storage in aquifer, for a one-day sinusoidal flood wave (inset), semi-infinite confined aquifer. Observation well is 
975 feet from stream-aquifer boundary. Model parameters and dimensions given in table 3.
were calculated at an observation well 1,000 ft from the 
middle of the stream (975 ft from the stream-aquifer 
boundary). Three separate simulations were made with 
STLK1 using three values of the time-step size (input 
variable DELT, table 5): 0.010 days, 0.100 days, and 
0.250 days. The number of time steps (input variable 
NT, table 5) required for each simulation were: 501 
(DELT=0.010 days), 51 (DELT=0.100 days), and 21 
(DELT=0.250 days, fig. 24). Figure 24, described 
previously, shows the data-input file for STLK1 for 
this problem using a time-step size of 0.250 days. A 
schematic diagram of the discretization scheme used 
for stream-stage fluctuations was previously described 
(fig. 23A). 

Figure 28 shows calculated ground-water heads, 
seepage rates, and bank storage for the simulated con-
ditions. The match between ground-water heads calcu-
lated by use of the solution of Cooper and Rorabaugh 
(1963) and those calculated by use of program STLK1 

(fig. 28A) improves as the time-step size is decreased 
from 0.250 days to 0.010 days, as would be expected. 
Whereas differences in calculated heads between the 
closed-form solution and convolution equations are 
insignificant for a time-step size of 0.010 days, differ-
ences between the two solution methods for seepage 
rates (fig. 28B) and bank storage (fig. 28C) can be sig-
nificant even when using a relatively small time-step 
size, particularly at the times of maximum and mini-
mum seepage rates. These results point to the necessity 
of using a relatively fine discretization of the stream-
stage hydrograph for accurate calculations of seepage 
rates and bank storage.

Sample Problem 2—Response of a Water-Table 
Aquifer to a Sinusoidal Flood Wave

A semi-infinite water-table aquifer with the 
hydraulic properties and dimensions listed in table 4 
was simulated by use of program STWT1. The effects 
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of a one-day sinusoidal flood wave with a peak stream 
stage of 1.0 ft (fig. 29, inset) were simulated over a 5-
day period. No closed-form analytical solution is 
available to which the results of the STWT1 simulation 
can be compared. Ground-water heads were calculated 
at a fully penetrating observation well (variable 
IOWS=1, data-input line 7, fig. 25) 100 ft from the 
middle of the stream (75 ft from the stream-aquifer 
boundary). Three separate simulations were made with 
STWT1 for water-table conditions using values of  
(the ratio of vertical to horizontal hydraulic 
conductivity) of 0.2, 0.02, and 0.002, respectively, and 
a time-step size (variable DELT) of 0.010 days. Figure 
25, described previously, shows the data-input file for 
STWT1 for this same problem using a DELT of 0.250 
days.

Results for the water-table aquifer conditions 
were compared to those for a confined aquifer with the 
same hydraulic properties, aquifer dimensions, and 
observation-well location as were used for the water-
table aquifer, but using two values of aquifer storativity 
(2.5 x 10-4 and 2.5 x 10-1), in two separate simulations. 
These are the limiting storativities for the hypothetical 
water-table aquifer: the value of 2.5 x 10-4 represents 
the hypothetical condition in which there is no water 
table present (that is, specific yield equals zero); the 
value of 2.5 x 10-1 equals the specific yield of the 
aquifer and represents the hypothetical condition in 
which the aquifer is rigid and the water is 
incompressible (that is, specific storage equals zero). 
The confined results also were determined using 
STWT1.

KD
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Figure 29. (A) Ground-water head at observation well, (B) seepage rate between stream and aquifer, and (C) bank 
storage in aquifer, for a one-day sinusoidal flood wave (inset), semi-infinite water-table aquifer. Observation well is 
75 feet from stream-aquifer boundary; time-step size is 0.010 days; KD, ratio of vertical to horizontal hydraulic 
conductivity of aquifer; S, storativity of aquifer; other model parameters and dimensions given in table 4.



Figure 29 shows calculated ground-water heads, 
seepage rates, and bank storage for the simulated 
conditions. The two solutions for confined-aquifer 
conditions are shown by solid lines in the figure. 
Calculated heads at the observation well for water-table 
aquifer conditions approach those for the confined-
aquifer condition with  = 2.5 x 10-4 as the value of 

 is decreased (fig. 29A). Also, calculated seepage 
rates (fig. 29B) and bank storage (fig. 29C) for the 
water-table aquifer decrease as the value of  is 
decreased. These trends are caused by the increased 
resistance to vertical movement of the water table that 
results from the smaller values of vertical hydraulic 
conductivity. Figures 29B and 29C also demonstrate 
that seepage rates and bank storage that occur in water-
table aquifers are substantially larger than those of the 
confined aquifer with only elastic storage (that is,  = 
2.5 x 10-4).

Sample Problem 3—Response of a Water-Table 
Aquifer to Recharge

In this sample problem, program STWT1 is used 
to simulate a 1-day period of constant-rate recharge to a 
finite-width water-table aquifer with the stream stage 
held constant. The aquifer is 2,000 ft in width as 
measured from the center of the stream to an 
impermeable boundary at the edge of the hypothetical 
river valley (see figure 14A for aquifer conditions). 
The aquifer has a hydraulic conductivity of 200 ft/day, 
a ratio of vertical to horizontal hydraulic conductivity 
of 0.2, a specific storage of 1 x 10-4 ft-1, a specific yield 
of 0.3, and a saturated thickness of 25 ft. A maximum 
ground-water-level increase of 0.1 ft (fig. 30, inset) 
occurs by the end of the 1-day recharge. The ground-
water-level increase that is specified in the model is 
calculated by dividing the recharge rate to the aquifer 
(0.03 ft during the one day, for a recharge rate of 
0.03 ft/day) by the specific yield of the aquifer (0.3). 
After the recharge event, the ground-water-level is 
held constant at 0.1 ft for four additional days (fig. 30, 
inset; fig. 31, data-input lines 15–31). This specified 
increase is that which is assumed to occur under ideal 

conditions; the actual change in ground-water level 
resulting from a recharge event will depend on 
antecedent conditions, the thickness of the unsaturated 
zone, the height of the capillary fringe, and variations 
in specific yield due to aquifer heterogeneity.

Three separate simulations were made with 
STWT1 using three values of the time-step size: 0.010 
days, 0.100 days, and 0.250 days. Figure 31 shows the 
data-input file for this problem using DELT=0.250 
days. A schematic diagram of the discretization scheme 
used for recharge events was previously described 
(fig. 23B).

Figure 30 shows calculated ground-water 
discharge from the aquifer to the stream for the 
simulated conditions. The peak discharge rate increases 
as the time-step size is decreased from 0.250 days to 
0.010 days. Note that ground-water discharge rates 
decrease after the recharge event ends at 1.0 days; this 
is the recession limb of the ground-water-discharge 
hydrograph.
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Sample problem 3a. Sample input file for program STWT1.                 TITLE1
One-day recharge event. Water-table aquifer. Delt=0.250 days.           TITLE2
    1    0.25D+0  1                                       ISTRESS  DELT IPRINT
    1      1      0                                              IXL  IAQ  IXA
 25.0D0  2.0D3  0.0D0   1.0D3                         XZERO  XLL  XAA  XSTREAM
  2.0D2  0.2D0  1.0D-4  0.3D0  25.0D0                    AKX  XKD  AS  ASY  AB
  1.0D2    1     0.0D0   25.0D0  0.0D0                     X  IOWS  Z1  Z2  ZP
  0.0D0  0.0D0                                                    HINIT  TINIT
    8  1.0D-10  30                                             NS RERRNR XTRMS
   21                                                                       NT
   0.0000    0.0000    0.0000                      XTIME(I)  STAGE(I)  RECH(I)
   0.2500    0.0000    0.0250
   0.5000    0.0000    0.0500
   0.7500    0.0000    0.0750
   1.0000    0.0000    0.1000
   1.2500    0.0000    0.1000
   1.5000    0.0000    0.1000
   1.7500    0.0000    0.1000
   2.0000    0.0000    0.1000
   2.2500    0.0000    0.1000
   2.5000    0.0000    0.1000
   2.7500    0.0000    0.1000
   3.0000    0.0000    0.1000
   3.2500    0.0000    0.1000
   3.5000    0.0000    0.1000
   3.7500    0.0000    0.1000
   4.0000    0.0000    0.1000
   4.2500    0.0000    0.1000
   4.5000    0.0000    0.1000
   4.7500    0.0000    0.1000
   5.0000    0.0000    0.1000

Figure 31. Example data-input file for program STWT1 for recharge event (sample problem 3).
SUMMARY

The hydraulic interaction of ground water with 
adjoining streams, canals, and drains is an important 
aspect of many hydrogeologic systems. Because of 
their relative simplicity, analytical solutions of stream-
aquifer hydraulic interaction combined with the 
method of convolution (a superposition method) are an 
advantageous means for determining ground-water 
head variations, seepage rates, and bank-storage 
volumes that result from time-varying fluctuations in 
the water level of a bounding stream or from recharge 
and evapotranspiration from the water table.

This report describes the derivation and 
evaluation of analytical solutions to the ground-water 
flow equation for ten cases of transient, hydraulic 
interaction between a fully penetrating stream and a 
confined, leaky, or water-table aquifer. These solutions 
assume one-dimensional, horizontal flow in confined 
and leaky aquifers and two-dimensional, horizontal and 
vertical flow in water-table aquifers. The ten aquifer 
types for which analytical solutions are derived are: a 
semi-infinite or finite-width confined aquifer; a semi-
infinite or finite-width leaky aquifer with constant head 
overlying the aquitard; a semi-infinite or finite-width 
50 Analytical Solutions and Computer Programs for Hydraulic Interaction of Stream-Aquifer Systems



leaky aquifer with an impermeable layer overlying the 
aquitard; a semi-infinite or finite-width leaky aquifer 
overlain by a water-table aquitard; and a semi-infinite 
or finite-width water-table aquifer. All aquifer types 
allow for the presence or absence of a uniform 
semipervious streambank.

The solutions are based on the governing 
differential equation of transient ground-water flow in 
a saturated, homogeneous, slightly compressible, and 
anisotropic aquifer. All of the solutions are derived for 
the condition of an instantaneous step change (input) in 
stream stage and are equally applicable to the condition 
of an instantaneous regional rise or decline in the 
altitude of the water table or piezometric surface of an 
aquifer, caused, for example, by area-wide recharge, 
irrigation, or evapotranspiration.

Of primary interest are newly derived solutions 
for water-table aquifers and for leaky aquifers overlain 
by water-table aquitards. For these aquifers, it is 
assumed that water is released (or taken up) instanta-
neously in a vertical direction from (or into) the zone 
above the water table in response to a decline (or rise) 
in the elevation of the water table. This assumption 
implies that the equilibrium profile of soil moisture 
versus depth in the unsaturated and nearly-saturated 
zones moves instantaneously in the vertical direction 
by an amount equal to the change in altitude of the 
water table. The general aspects of the response of 
water-table aquifers and water-table aquitards to 
changes in the water level of a bounding stream are 
similar to those that occur in response to the with-
drawal or injection of ground water from a well pump-
ing from a water-table aquifer or leaky aquifer overlain 
by a water-table aquitard, and, consequently, conclu-
sions drawn in this study from an evaluation of the ana-
lytical solutions for these aquifer types are similar to 
previous investigations in the field of well hydraulics.

It is assumed that each of the stream-aquifer 
systems for which analytical solutions are derived can 
be described by linear partial differential equations of 
ground-water flow and by linear boundary and initial 
conditions. The linearity of the systems allows for the 
use of the convolution (superposition) equation. For 

linearity to hold, however, it is necessary that changes 
in ground-water heads due to stream-stage fluctuations, 
recharge, or evapotranspiration be small in comparison 
to the initial saturated thickness of the aquifer.

Two computer programs (STLK1 and STWT1) 
that are based on the analytical solutions and method of 
convolution are described in this report. The program 
designated STLK1 was developed for application to 
confined or leaky aquifers and the program designated 
STWT1 was developed for application to water-table 
aquifers. The programs calculate changes in ground-
water levels at an observation well or observation pie-
zometer, seepage rates at the stream-aquifer boundary, 
and bank storage for time-varying stream-stage and/or 
recharge stresses that are specified by the user. The pro-
grams can simulate the response to stream-stage fluctu-
ations for all aquifer types. Simulation of the response 
to recharge or evapotranspiration at the water table is 
permitted only for water-table aquifers and leaky aqui-
fers overlain by a water-table aquitard. For these aqui-
fer types, the response to recharge and 
evapotranspiration can be simulated alone or in combi-
nation with the response to stream-stage fluctuations. 
The programs require approximation of input hydro-
graphs (continuous records of stream-stage, recharge, 
or evapotranspiration) as a time series of discrete step 
changes that occur in time steps that are a constant 
length. As with all discretization schemes, the accuracy 
of the convolution method, and therefore of the 
programs, is improved by use of smaller time steps.

The programs can be applied to the analysis of a 
passing flood wave, determination of ground-water 
discharge rates in response to recharge, determination 
of aquifer hydraulic properties, design of stream-
aquifer data-collection networks, and testing of 
numerical-model computer codes. Instructions are 
provided for constructing the necessary data-input files. 
Three sample problems are described to provide 
examples of the uses of the programs.
Summary 51
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