ATTACHMENT 1.—DERIVATION OF
ANALYTICAL SOLUTIONS







STEP RESPONSE FOR FLOW FROM A SEMI-INFINITE
CONFINED OR LEAKY AQUIFER

The following is a derivation of the analytical solutions for flow to a fully penetrating stream from a semi-
infinite confined or leaky aquifer.

Head Distribution Due to a Step Change in Stream Stage

The governing differential equation of ground-water flow in the aquifer is

2 S
M—_Yah +q’

¥ e = Xo<x |, (Al.1)

, K' (oh’
where ¢ = - X3\ L

In equation (A1.1), ¢’ is equal to zero for a confined aquifer. The aquifer is of constant thickness » and is underlain
by an impermeable base.

Initial and boundary conditions for the aquifer are

h(x, 0) = h, (A1.2)
h(o, t) = h, (A1.3)
h(xg () = hy . (Al.4)

The governing differential equation of ground-water flow in the aquitard is

ot _ S on

. = A b<z<b+b' . (A1.5)

Initial and boundary conditions for the aquitard are
h'(z,0) = h, b<z<h+b' (A1.6)
h'(b,t)y=h . (AL1.7)

The boundary condition at the top of the aquitard for the condition of a constant head overlying the aquitard
(case 1) is
R (b+b',t)=h; ; (Al.8a)

for the condition of an impermeable layer overlying the aquitard (case 2), the boundary condition is

%’;-'(b+b', H=0 : (A1.8b)

and for the condition of a water-table aquitard (case 3) the boundary condition is

’ S’ '
Plosvn=-2Livrp . (Al8¢)
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Substituting the dimensionless variables listed in table 1 into equations (A1l.1) through (A1.8) results in the
following dimensionless boundary-value problem. For the aquifer, the governing equation is

Oy _ Oy 2 O

= - I<xp<oo . (A1.9)
o o 0z z=0 ’
Initial and boundary conditions are
hp(xp, 0) =0 (A1.10)
hp(,tp) =0 (Al.11)
hp(l,t5) =1 . (Al1.12)
For the aquitard, the governing equation is
2. ’
oh
Ohp _ 91 Ohp 0<z,<1 (A1.13)
2 2 Ot
aZD Y] D
with initial and boundary conditions
hp(zp, 0) =0 (Al.14)
hp(0,1p) = hp (Al.15)
( hp(1,t,) =0  constant head overlying the aquitard (case 1) (Al.16a)
oh, . . .
—=(1,75) = 0 impermeable layer overlying the aquitard (case 2) (Al.16b)
ozy,
oh, oOh,
—2(1, tp) = — Lz —2  water-table aquitard (case 3) (Al.16¢)
Z, c'y ot
D 1
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After performing Laplace transformations, the subsidiary boundary-value problem for the aquifer is

*hp

2~ php—yt 22 I<yp<o (AL17)
6xD 6ZD . o
with boundary conditions
hp(e, p) = 0 (A1.18)
ho(1,p) =1 (AL.19)
p
The subsidiary boundary-value problem for the aquitard is
2=
ThD — miy 0<zy<1 | (A1.20)
oz},
where m = %7 .
11
Boundary conditions are
hp(0,p) = hp (A1.21)
( hp(l,p) = 0 constant head overlying the aquitard (case 1) (Al.22a)
%(1, p) =0  impermeable layer overlying the aquitard (case 2) (A1.22b)
ZD
6}_1’[) h bp .
— (Lp)=-— water-table aquitard (case 3) (A1.22¢)
ZD a'Y
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A solution to (A1.20) is

hp = Acosh(z)x/m) + Bsinh(z},A/m)

Applying (A1.21) at zj, = 0 gives

A= hp
Applying (A1.22a) at z, = 1 gives for case 1
_
tanh (/m)
or, applying (A1.22b) at z;, = 1 gives for case 2
Be——ho_
coth(/m)

or, applying (A1.22c) at z,, = 1 gives for case 3

A Jmsinh (i) + B.Jmcosh(Jm) =  plAcosh(/m) + Bsinh(m)]

;2
(SN

which leads to

_ _glm(s"rcosh(m) + psinh(./m)]
[/m(c"y})sinh(m) + peosh(/m)]

Hence, for case 1 from (A1.24) and (A1.25a),

sinh(z),A/m)

DY = hpsinh[J/m (1 —z))]/sinh(Jm)  ;
tanh (/m)

hp = }_chosh(z'DA/n?) —hp

or, for case 2 from (A1.24) and (A1.25b),

hp = hpcosh[fm (1 -z)]/ cosh(Jfm)

or, for case 3 from (A1.24) and (A1.25¢),

[/m(c'y})sinh(J/m) + pcosh (/m)]

}_l’ =/Tl h ; _}_l h !
b = hoeosh(zpm ) —hosin ol ) = ]
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Substituting (A1.26a) into (A1.17) yields for case 1
O’ _
axé

pl_u) + yfﬂ 1_113 coth(ﬂ)

= php +qphp (A1.27a)

where ¢p = y?A/n—1 coth(/m) .
Substituting (A1.26b) into (A1.17) yields for case 2
o’ hp

A g php + 71 Jm hptanh(.Jm)

oxp)
= php+4qp, (A1.27b)

where c_]D = y%ﬂtanh(ﬂ) .
Substituting (A1.26¢) into (A1.17) yields for case 3

b _ i+ mlafm(s " Dsinh(Jm) + peosh(/m)]
ox) U m(o" v cosh(/m) + psinh (/)]
= php+qphp (A1.27¢)

where g¢p = yzﬁ[ﬂ(c'ﬁ)tanh(ﬁ) +p]
D - .
1 [A/gi(c'y?)+ptanh(A/;1)]
Now, the subsidiary boundary-value problem for the aquifer becomes

Oho _ 5o
—° = ho(p+aqp) (A1.28)
0x},
with boundary conditions
hp(e, p) = 0 (A1.29)
hn(1,py =1 . (A1.30)
p
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A solution to (A1.28) is

hp = Cexp(xDA/p+(_]D )+Dexp(—xDA/p+§D) . (A1.31)

Because of (A1.29), C =0 and because of (A1.30), D = l—lyexp(a/p +¢p) . Thus, (A1.31) becomes,

o = éexp[—Jpr&D (rp-DI (A132)
where for a confined aquifer
ap =0 ;

for a leaky aquifer with constant head overlying the aquitard (case 1)

o = Yim coth(Jm)

for a leaky aquifer with impermeable layer overlying the aquitard (case 2)

4p = Yi/m tanh(Jm) ;

and for a leaky aquifer overlain by a water-table aquitard (case 3)

o = 2 k(e v anh () + p)
Y n(o'y?) + ptanh (Jm)]

Dimensionless Seepage at Streambank Due to Step Change in Stream Stage

Dimensionless seepage at x = xj (the streambank) due to a unit-step change in stream stage is
0p = - 2o (A1.33)

dxp,
evaluated at xp = 1. Differentiating (A1.32) with respect to xp gives

%) - P; D expl=nlp + dp(xp-1)] . (A1.34)
D

.

Now, evaluating (A1.34) at xp = 1, (A1.33) becomes

Op dp+ap (A1.35)

p
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STEP RESPONSE FOR FLOW FROM A FINITE-WIDTH CONFINED OR
LEAKY AQUIFER WITH A SEMIPERVIOUS STREAMBANK

The following is a derivation of the analytical solutions for flow to a fully penetrating stream with a
semipervious streambank from a finite-width confined or leaky aquifer.

Head Distribution Due to a Step Change in Stream Stage

The governing differential equation of ground-water flow in the aquifer is

2, 8
% _ & %H], Xy <¥<x, | (A1.36)
X X

K’ (6}1’

where ¢’ = - an —) . For a confined aquifer, ¢’ is equal to zero. The aquifer is of constant thickness » and is
X z=Db

0z
underlain by an impermeable base.

Initial and boundary conditions for the aquifer are

h(x,0) = h, (A1.37)
Dix1y =0 (A1.38)
D= 2= hGip D] (A139)

In the same way as derived for a semi-infinite aquifer, the dimensionless subsidiary boundary value problem
for the finite-width aquifer becomes

2_ - -
T hpp+an) (A1.40)

Oxp
with boundary conditions
Ohp

E(XLD’ ip) =0 (AL.41)

Ohp i v L(G 1
52 =4 (k- ) (A1.42)

and where ¢ is defined for case 1, case 2, and case 3 following equation (A1.32).
A solution to (A1.40) is

hp = Cexp(xDA/p+éD )+Dexp(—xDA/p+(_]D) . (A1.43)

Applying boundary condition (A1.41) to (A1.43) yields

oh - - - [+
5 = Cip+ap exp(x,plp + 4D )~ Dolp + dp eXp(=x,palp +4p) =0 . (Al.44)
D
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Let 7, = «/p+qp . Then, from (A1.44)

C = Dexp(-2r,x;p) - (A1.45)
Substituting (A1.45) into (A1.43) gives
hp = Dexp(—rxp){exp[-2r (x;p—xp)]+ 1} (A1.46)
Applying (A1.42) to (A1.46) yields
exp(ry)

plAr {1 —exp[-2r (x,p = 1]} + exp[-2r(x,p - 1)] + 1]

) explry]

1 —exp[-2r(x;p—1)]
Py T+ exp[=2r,(x,p— 1)]

}+ 1}{1 +exp[-2r(x;p— 1]}

The Laplace transform solution for head in a finite-width leaky aquifer with a semipervious streambank is
obtained upon substitution of D into (A1.46). Thus,

= exp[-r(xp—1)] exp[-2r(x;p—xp)] +1 )
ho = p{l+Artanh[r (x;,— 1)]}| exp[-2r;(x;p—1)]+1 ’ (AL47)
or, substituting for r,
}_lD _ WCXp [_’Vp + éD(xD_ 1)] (Al 48)
p{1+Ap+gpAtanh[Jp + gp(x,, - 1)1}
where
W = eXp[—z/\JP + qD(xLD_xD)] +1 , (A148a)

exp[-24p +dp(xp— 1]+ 1

and ¢, is defined following equation (A1.32).
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Dimensionless Seepage at Streambank Due to Step Change in Stream Stage

Dimensionless seepage at x = xj (the streambank) due to a unit-step change in stream stage is
Op=-22 (A1.49)

dxp

evaluated at xp = 1.

Letting r, = J/p+9p, r, = {exp[-2r,(x;p— 1)1+ 1}, and ry= {1 +r Atanh[r (x,,-1)]}, equation (A1.47)
becomes

W = {exp[-2r(x;p—xp)]+ 1}
D =

texp[-r(xp- D]}

prars
1
= - {exp[—2r(x,p—xp)—ri(xp— D]+ exp[-ri(xp-1)]} . (A1.50)
213
Differentiating (A1.50) with respect to xp gives
dhp 1
Tr. = {riexp[-2r (x,p—xp)-ri(xp—1)]—riexp[-r (xp— D]} . (ALST)
Xp  Prarls
Now, evaluating (A1.51) at xp = 1 gives
d%D _ "1
E) ~ = przrs{exp[—Zrl(xLD— D]-1} (A1.52)

and (A1.49) becomes

Op = ~Jp+4p exp[-24p + dp(x,p— 1] - 1
P{1+p+gpAtanhlip+gp(r,p- D]} | XPL-24p +dp(xp= D] +1

(A1.53)

The solutions reduce to semi-infinite aquifer solutions and/or solutions without a semipervious streambank with
appropriate substitution of x, , »c« and/or 4 = 0.
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STEP RESPONSE FOR FLOW FROM A SEMI-INFINITE WATER-TABLE AQUIFER

The following is a derivation of the analytical solutions for flow to a fully penetrating stream from a semi-
infinite water-table aquifer.

Head Distribution Due to a Step Change in Stream Stage

The governing differential equation of ground-water flow in the aquifer is

2, K N <x<
Oh B:0h _ o5 0h Yosx=0 (A1.54)
axz Kx 22 K, ot 0<z<bh
Initial and boundary conditions for the aquifer are
h(x,z,0) =h; (A1.55)
oh Sy oh
&(Xa b, 1) =— X o (A1.56)
Oh 0.1y =0 (A1.57)
0z
h(oo, z, t) = h; (A1.58)
h(xg, t) = hy (A1.59)

Substituting the dimensionless variables in table 2 into equations (A1.54) through (A1.59) results in the
following dimensionless boundary-value problem. The governing equation is

2 2 1 <xp<o®
Chp g, T hp _ Ohp { P . (A1.60)

ox;) oz, Olp 0<z,<1

Initial and boundary conditions are
hp(xp,zp, 0) =0 (Al1.61)
D __ L9
aZD(xD, 1,tp) =— B, 7, (A1.62)
ohp

a—ZD(xD, 0,15)=0 (A1.63)
hp(,zp, 1) =0 (A1.64)
hp(1,t5) =1 (A1.65)
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After performing Laplace transformations, the subsidiary boundary-value problem for the aquifer is

27 27 _ 1<x,<
LTI LT S { P (A1.66)
2 2 0<z,<1
0x}, 0z D
with boundary conditions
dhp __php
aZD(xD, 1) = oB, (A1.67)
dhp _
aZD(xD, 0)=0 (A1.68)
hp(,z) = 0 (A1.69)
hp(1,p) =1 . (A1.70)
V4
A solution to (A1.66) that satisfies (A1.67) and (A1.68) is
hp = z g.(xp, p)cos(e,z,) (A1.71)
n= 0
where n = 0, 1,2, ... and g, are the roots of
g, tan(g,) = L (A1.72)
cBy
Substitution of (A1.71) into (A1.66) yields
_n - Al.73
Z [gn —(&, B +P)gn] c0s(&,2,)=0 ( )
n=>00
Hence, g, must satisty
én *(gnzﬁo +P)én =0 |, (A1.74)
the solution of which can be written as
g, = A,exp(q,xp) + B,exp(-q,xp) (A1.75)
where
1
) 2
9, = (Sn B0+p) . (A176)
Because of boundary condition (A1.69), A, = 0. Hence,
g, = B,exp(—-q,xp) . (A1.77)
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Substitution of (A1.77) into (A1.71) gives

0

hp = ZBnexp(—qnxD)cos(snzD) . (A1.78)

n=0

The coefficients B, can be obtained as follows: Apply boundary condition (A1.70) to obtain

['e]

ZBnexp(—qn)cos(snzD)= }7 : (A1.79)

n=>0

Multiply both sides of (A1.79) by cos(e

0

z,,) » where m is an integer. Then

m

z B,exp(-q,)cos(g,z,)cos(€,,z,)= })cos(ssz) (A1.80)

n=>0

It is now possible to take advantage of the orthogonality of the set {cos(e,z,)} by integrating over the
interval zp =0to zp =1,

0

1

1
ZB,,exp(—qn).[ cos(g,z,)cos(g,z,)dzp =}9I cos(g,zp)dzp
0 0

(A1.81)

n=>0

By use of trigonometric relations in combination with (A1.72), all terms on the left hand side of (A1.81) can be
shown by direct integration to be zero except those for which n = m. (For a discussion on the topic of orthogonality,
see Hildebrand, 1976.) Hence,

1 1
Bnexp(—qn)j cosz(snzD)dzD -1 I cos(e,zp)dzp (A1.82)
0 Py
or
B,,exp(_qn)[o.sJr S‘“(Z%)J _ sin(e) (A1.83)
48)1 pS}’l
Then,

"~ ple, + 0.5sin(2¢,)]
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Substitution of (A1.84) into (A1.78) yields

- 2Zexp ~q,(xp— D]sin(e,)cos(e,2,)

) (A1.85)
[e,+ 0.5sin(2¢,)]

where g, are defined by (A1.76) and ¢, are the roots of equation (A1.72).

Equation (A1.85) is the Laplace transform solution for head at a point xp, zp in the aquifer. For the case of a
partially penetrating observation well, screened over the interval zp; to zp,, equation (A1.85) is integrated over the
interval zp to zpy to give the average head in a partially penetrating observation well (75, ):

Zp2

J' hpdz,,

Zp1

=

(zp2— ZDl)

Zp2

_ 2 _ exp[_QH(xD_ 1)]Sin(8n)
- (zp2 ZDI)Z

Ple, +05sin(2a )] J CoS(En7n)dep
exp[— qn(xp— 1)]sin(e,)[sin(e,zp,) — sin(g,zp,)]
" G- ZDI) Z g,[e, +0.5sin(2¢,)] : (A1.86)

n=>0

By setting zp; = 0 and zp, = 1, one obtains the average head in a fully penetrating observation well (4p ):

- } exp[—q,(x, — 1)]sin’(e,)
P 22 p g,[e,+0.5sin(2e,)] (A1.87)

n=>0

Note that if specific yield becomes zero, c — «, and, from (A1.72), ¢, — nrn . Equation (A1.87) thus becomes
zero for all terms other than that for which » = 0 (thatis, » = 1,2,3, ...). For » = 0, one can take note of the fact
that

sinu
lim — — 1
u—>0 U

Also, for n = 0, and from (A1.76), ¢, = +/p. Hence, (A1.87) becomes

213 _ exp[—A/;?(xD— 1)] ’ (A1.88)

p

which is the solution for a confined aquifer equal to (A1.32), with ¢, = 0.
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Dimensionless Seepage at Streambank Due to Step Change in Stream Stage

Dimensionless seepage at x = xj (the streambank) due to a unit-step change in stream stage is

~

Oy =~ o (A1.89)

dxp

evaluated at xp = 1. Differentiating (A1.87) with respect to xp gives

2 * )
dﬂ) =2 z q,€Xp [_qn(xD - 1)] s (gn) ) (A190)
dxp, p g,lg, +0.5sin(2¢,)]
n=>0

Now, evaluating (A1.90) at xp = 1, (A1.89) becomes

« .2
— q,sin"(¢g,)
=2
b Z p g, le,+0.5sin(2¢,)]
n=~0

(A1.91)

STEP RESPONSE FOR FLOW FROM A FINITE-WIDTH WATER-TABLE
AQUIFER WITH A SEMIPERVIOUS STREAMBANK

The following is a derivation of the analytical solutions for flow to a fully penetrating stream with a
semipervious streambank from a finite-width water-table aquifer.

Head Distribution Due to a Step Change in Stream Stage

The governing differential equation of ground-water flow in the aquifer is

’n K. & S, <
Oh 20k 50k {xo T (A1.92)
ot Koo Koot 0<z<b
Initial and boundary conditions for the aquifer are
h(x,z,0)=h, (A1.93)
oh S, oh
az(x7 b’ ZL) - Kz ¢ (A1.94)
oh
5, (0.0=0 (A1.95)
oh
5 (20 =0 (A1.96)
oh 1
5);()60’ 1) = 5[}[0 —h(xp, )] . (A1.97)
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Substituting the dimensionless variables in table 2 into equations (A1.92) through (A1.97) results in the
following dimensionless boundary-value problem. The governing equation is

: 2 1<xp<x
Thp s gy 2hn O { D= tLp (A1.98)
oxy, oz, Olp 0<z,<1
Initial and boundary conditions are
hp(xp, z2p, 0) =0 (A1.99)
ahD _ 1 ahD
aZD(xD’ 15 tD) - GBO atD (AllOO)
ohy,
E‘Z;(XD, 0,tp)=0 (A1.101)
Oh
ax, (i 2 fp) = 0 (AL.102)
Oh —
TD (1 1) = 2 (A1.103)
oxp,

After performing Laplace transformations, the subsidiary boundary-value problem for the aquifer is

27 27 _ 1<xp<x
Thp g Lhn = iy pooep (A1.104)
ox7, ozy) 0<zp<1
with boundary conditions
Ohp . |y - _Pho
6ZD(XD, 1)=- By (A1.105)
ohp B
azD(xD’ 0)=0 (A1.106)
oh
ﬁ(xw, zp) =0 (A1.107)
ohp hp 1
—(l,p)=-L-— Al.l
Sl ="2- (AL.108)
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A solution to (A1.104) that satisfies (A1.105) and (A1.106) is

0
}_ZD = Zén(xD,p)COS(gnZD) >
n=0

where n = 0, 1,2, ... and g, are the roots of

g, tan(e,) = gll—
0

Substitution of (A1.109) into (A1.104) yields

0

Z [én _(Snzﬁo +P)én] cos(snzD)= 0

n=0
Hence, g, must satisty

_n" 2 -
gn (&, Bo+p)gn =0

the solution of which can be written as

g, = A,exp(q,xp) + B,exp(~q,xp)

where
1

2 2
Qn = (Sn B0+p)

The solution (A1.109) satisfies (A1.107) if

ogn
ox, (xzpp) =0

Thus, substituting (A1.113) into (A1.115) and letting xp = xzp
Anqnexp(qnxLD) - Bnqn exp(_qnxLD) =0

Hence,

A, = B,exp(-2q,x;p)

Now, (A1.113) becomes

exp(2q,xp)exp(-2x;pq,)
exp(q,Xp)

én = Bn[ + exp(—qnxD)}

= B,exp(—¢q,xp){exp[-2q,(x;p—xp)]+ 1} .
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(AL.111)

(A1.112)

(A1.113)

(A1.114)

(A1.115)

(A1.116)

(A1.117)

(A1.118)



Substitution of (A1.118) into (A1.109) yields

0

hp = ZBnexp(—qnxD){exp[—2qn(xLD—xD)]+ 1}cos(e,z,) - (A1.119)

n=0>0

The coefficients B, can be obtained as follows:

Apply boundary condition (A1.108) to obtain

3 Byexp(=g,) {exp[-24,(x1p = )]+ 1} cos(s,2,)
=Y BiAd,exp (-0, {exp[-24,(p = D= D cos(e,zp) = & (A1.120)

n=>0

or, after rearranging terms, (A1.120) becomes

0

ZBnexp(—qn){l +Ag,tanh[q,(x;p—1)]}cos(g,z,) =

n=>0

1

(A1.121)
pil+exp[-2q,(x;p—- 1]}

Now, as demonstrated previously, by multiplying both sides of (A1.121) by cos(g,,z,,) , where m is an
integer, and integrating over the interval zp = 0 to zp = 1, one can make use of the property of orthogonality of the set
{cos(g,z,)} over the interval 0, 1, where ¢, are the roots of (A1.110). Thus, the terms for which m # n are zero and
one obtains

1
B,exp(~g,){1 + Aq,tanh[g,(x;p— D1} cos’(e,2,)dzp
0

1
1
e Erere i R G (Al122)
Thus,
B = 2exp(q,)sin(e,) . ’ (A1.123)
PR{1 +exp[-2q,(x;p— D)]}[e, +0.5sin(2¢,)]

where

R = 1+A4g,tanh[q,(x;p,—1)] . (Al1.124)

Attachment 1.—Derivation of Analytical Solutions 73



Substitution of (A1.123) into (A1.119) yields

0

- W,exp[-q,(xp— 1)]sin(g,)cos(g,z,)
o= 22 Rp[e, +0.5sin(2¢,)] ’ (A1.125)
n=~0
where
- Pt (A1.126)

exp[-2q,(x,p— D]+ 1

The ¢, are defined by (A1.114) and ¢, are the roots of (A1.110).

Equation (A1.125) reduces to the Laplace transform solution previously derived (A1.85) for the step
response for flow from a semi-infinite aquifer with no semipervious streambank if x,,, » « (thatis, w, —» 1) and
A4 =0 (thatis, R = 1).

Equation (A1.125) is the Laplace transform solution for head at a point xp, zp in the aquifer. For the case of a
partially penetrating observation well screened over the interval zp; to zp2, equation (A1.125) is integrated over the
interval zp; to zp, to give the average head in a partially penetrating observation well (%, ):

Zp2

j hpdz,,

Zp1

=

- (zZpa— ZDI)

Zp2

w, - —1)]si
= 2 z n X174, (xp - )]Sm(g”)"‘ cos(g,zp)dzy
(zZp2—2p1) Rple, + 0.5sin(2¢,)]

n=0 Zpi
2 W GXp[ qn(xD 1)]Sin(8n)[8in(8nzD2) - Sin(gnle)] (Al 127)
(zD2 le)Z Rpe,[g, + 0.5sin(2¢,)] ' '

n=>0

For a fully penetrating observation well screened over the interva] zp; = 0 to zp2 = 1, let zp; = 0 and zp> = 1 and one
obtains the average head in a fully penetrating observation well (%p):

W, exp[—q,(xp— 1)]sin2(s )
hD - 22 Rp g,[g,+0.5sin(2¢,)] ' (A1.128)

Dimensionless Seepage at Streambank Due to Step Change in Stream Stage

Dimensionless seepage at x = xj (the streambank) due to a unit-step change in stream stage is

Op = - Lo (A1.129)

dxp,

evaluated at xp = 1.
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Letting

.2
Sin (Sn)

"' Rpe,le, + 0.5sin(2e,)]

and

ry = {exp[-2q,(x;p - 1]+ 1} s

equation (A1.128) becomes

hp = zzg[exp[—qn(m— D14 exp[~2¢,(rp—xp)] + 1]

AN 1)-2 O 1 A1.130
zr—z{exp[—qn(xp— ) - qn(xLD_xD)]}+r_2{exp[_qn(xD_ )1} . (A1.130)

n=>0

Differentiating (A1.130) with respect to xp gives

d: _ r
T2 = 23 g,expl-q,0p - D)= 24,(1p - ¥p)] - g expl-q,0p- D1} . (ALI3D)
XD )

n=>0

Now, evaluating (A1.131) atxp =1

dhp _ r
o =22 nantel24,(up = DI (A1.132)
= n=0
and
— r
Op = 2% g, {exp[-2q,(x,p-DI-1} (AL.133)
2
n=>0

Substituting definitions of r; and r, into (A1.133) gives the solution for dimensionless seepage at the streambank

@ .2
5 anIH (8;1) eXp [_zqn(xLD - 1)] -1
Op = '22 Rp sn[gn+0.53in(28n)]{exp[—2qn(xw— D]+ 1}

n=>0

(A1.134)

For conditions in which a semipervious streambank is absent, the factor R becomes unity.
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