The potentiometric surface of the intermediate aquifer system is shown as Figure 1. The potentiometric surface is used to determine the location of ground water movement and to estimate the rate of ground water flow. The potentiometric surface is also used to determine the thickness of the intermediate aquifer system and to estimate the amount of ground water contained in the system. The potentiometric surface is determined by measuring the elevation of the ground water surface at various points in the system. The potentiometric surface is then plotted on a map to show the location of the ground water surface at different points in the system. The potentiometric surface is an important tool for water resource management and for the protection of ground water quality.

The potentiometric surface of the intermediate aquifer system is shown as Figure 2. The potentiometric surface is used to determine the location of ground water movement and to estimate the rate of ground water flow. The potentiometric surface is also used to determine the thickness of the intermediate aquifer system and to estimate the amount of ground water contained in the system. The potentiometric surface is determined by measuring the elevation of the ground water surface at various points in the system. The potentiometric surface is then plotted on a map to show the location of the ground water surface at different points in the system. The potentiometric surface is an important tool for water resource management and for the protection of ground water quality.

Figure 1. Composite potentiometric surface of the intermediate aquifer system.

Figure 2. Potentiometric surface of the intermediate aquifer system.