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ABSTRACT

A physically-motivated model for earthquake recurrence based on the
Brownian relaxation oscillator is introduced. The renewal process defining
this point process model can be described by the steady rise of a state vari-
able from the ground state to failure threshold as modulated by Brownian
motion. Failure times in this model follow the Brownian passage time
(BPT) distribution, which is specified by the mean time to failure, µ, and the
aperiodicity of the mean, α (equivalent to the familiar coefficient of varia-
tion). Analysis of 37 series of recurrent earthquakes, M -0.7 to 9.2, suggests
a provisional generic value of α = 0.5. For this value of α, the hazard func-
tion (instantaneous failure rate of survivors) exceeds the mean rate for times
> µ⁄2, and is ∼∼ 2 ⁄ µ for all times > µ. Application of this model to the next
M 6 earthquake on the San Andreas fault at Parkfield, California suggests
that the annual probability of the earthquake is between 1:10 and 1:13.

INTRODUCTION

It has been one quarter century since Utsu (1972a, 1972b), Rikitake (1974) and
Hagiwara (1974) proposed a probabilistic approach for forecasting the time of the next
earthquake on a specific fault segment. Their proposals were based on a model of
earthquake occurrence that assumed that the probability of an earthquake was initially
low following a segment-rupturing earthquake, and increased gradually as tectonic
processes reloaded the fault. This approach to earthquake forecasting has been widely
applied, particularly in Japan and the United States, as one basis for long-term fore-
casts of future seismic activity.

The conceptual model proposed by Utsu, Rikitake and Hagiwara considers earthquakes
as a renewal process, in which the elastic strain energy accumulates over a long period
of time after the occurrence of one earthquake before the fault is prepared to release in
the next earthquake. This hypothesis has its roots in the ideas set forth by Gilbert



- 2 -

(1884) and Reid (1910). In his formulation of the elastic rebound hypothesis, Reid
(1910) wrote:

"It seems probable that a very long time will elapse before another important
earthquake occurs along the San Andreas fault which broke in 1906; for we
have seen that the strains causing the slip were probably accumulating for
100 years... It seem that the most consistent results might be obtained
regarding the periodicity of earthquakes if only the earthquakes occurring in
exactly the same place were considered in the series."

To forecast the likelihood that a particular earthquake will occur at some time in the
future under these restrictions requires the specification of a probability distribution of
failure times. A number of candidate statistical models have been proposed for the
computation of conditional probabilities of future earthquakes, including the Double
Exponential (Utsu, 1972b), Gaussian (Rikitake, 1974), Weibull (Hagiwara, 1974), Log-
normal (Nishenko and Buland, 1987) and Gamma (Utsu, 1984) distributions.

All of these distributions have been widely discussed as failure model for a broad
range of reliability and time-to-failure problems (e.g. Mann et al., 1974), although
none of them has any particular claim as a proper model for earthquake recurrence.
They have been used in the past chiefly because they are mathematically well-
developed functions with well-known statistical properties; in other words the usual
suspects. At present, it is not possible to discriminate between such candidate models,
given the limited and uncertain nature of earthquake recurrence data, although we can
firmly reject a Poisson process or Exponential model (Ellsworth, 1995). Furthermore,
because the predictions obtained from these specific models differ significantly from
one another, particularly at times removed from the mean failure time, it is important
to consider alternatives to these familiar (and possibly inappropriate) probability
models.

In this paper, we introduce a new (to earthquake forecasting) probability model that is
based on a simple physical model of the earthquake cycle. This model has many
desirable statistical properties that make it a suitable candidate for describing the
statistics of earthquake recurrence. We determine the maximum likelihood estimate of
the parameters of this model for 37 series of recurrent earthquakes, M -0.7 to 9.2, and
propose a provisional generic model for recurrent earthquakes.

BROWNIAN PASSAGE TIME MODEL

Matthews (submitted) has recently proposed a physically-based renewal model for the
earthquake cycle. This model considers the earthquake as a realization of a point pro-
cess in which earthquakes only occur when a state variable reaches a fixed threshold
(Yf ), at which time the state variable returns to a fixed ground state (Y 0). In
Matthews’ model, the loading of the system has two components, a constant-rate load-
ing component, λt , and a random component, ε(t ), that is defined as Brownian motion
or a random walk (Figure 1). An event occurs when Y (t ) = λt +ε(t ) = Yf . Matthews
defines the Brownian motion as δW (t ), where W is standard Brownian motion, and δ
is a nonnegative scale parameter. So, Y (t ) = λt +δW (t ) defines the state of a Brownian
relaxation oscillator.
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In this model, the times between events are independent, identically distributed random
variables. The distribution function of "passage times" across the failure threshold is
known as the Brownian passage time (BPT) distribution in the physics literature, and
the inverse Gaussian distribution in the statistics literature. The BPT distribution is
defined by two parameters, the mean time or period between events, µ, and the
aperiodicity of the mean time, α. The aperiodicity, α, is equivalent to the familiar
coefficient of variation. The probability density for the BPT model (Figure 2) is given
by:

√  2πα2t 3

µ_ ______ exp[−
2α2µt

(t −µ)2
_ _____]

Several important properties of the model include: (1) The probability of failure is 0 at
t =0. (2) As t → ∞ the hazard function, or instantaneous failure rate of survivors is
finite. (3) The asymptotic value of the hazard function for the model with α = 1⁄ √   2 is
equal to the failure rate for a Poisson process with the same mean rate. (4) The mean
residual lifetime at t →∞ is 2µα2. It is higher than the mean rate when α<1⁄ √   2 and
lower when α>1⁄ √   2. (5) Properties of the time to failure may also be expressed in
terms of the parameters of the Brownian relaxation oscillator: loading rate λ, failure
threshold Yf , and "noise" (diffusion) scale δ. For example, mean time to failure,
µ =Yf ⁄ λ, and α = δ ⁄√  Yf λ.

It is sometimes useful to identify the state variable, Y , with stress, since the saw-
toothed path that Y (t ) follows in the Brownian relaxation oscillator resembles the
stress cycle in a simple block-and-slider model. In this interpretation, the random
component represents perturbations to the stress state, and perturbations to the stress
state due to external causes, such as a nearby earthquake, may be explicitly calculated
(Matthews, submitted). The rate at which strain is observed to accumulate along
faults, however, tends to be both monotonic and uniform. So, an objection to this
interpretation of the state variable might be raised on the ground that the stress loading
path is smoother than a random walk. For example, it seems unlikely that the mean
load path for a great earthquake occurring on a major plate boundary could be as
irregular as the state histories of Figure 1.

It should be emphasized, however, that the state variable is a formal parameter of a
point process model. The resulting BPT captures not only the stochastic nature of the
accumulating tectonic stress but also the spatial irregularities in the stress and the
strength of the fault. Many factors contribute to the irregularity of earthquake times,
including the details of the stress state of the fault after the last earthquake, time
dependent changes in fault strength caused by healing of the gouge and other chemical
processes, evolution of the pore pressure due to compaction and/or fluid migration to
name just a few. Indeed, it may well be that such factors play the dominant role in
the irregularity of earthquake series. It is also noteworthy that the BPT distribution
also describes a Brownian ratchet, in which the random perturbations, ε(t ) are non
negative and the resulting growth of the state toward failure is strictly monotonic.
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COMPARISON OF THE BROWNIAN PASSAGE TIME MODEL WITH
OTHER PROPOSED EARTHQUAKE FAILURE MODELS

It is useful to compare the properties of the BPT model with other candidate models.
The most elementary model is the Exponential distribution, in which there is no
memory of the past. This model has been widely applied in probabilistic seismic
hazard modeling, and is, for instance, the basis of the new U.S. National Earthquake
Hazard Maps. The Gamma and Weibul distributions are generalizations of the
Exponential model. The Lognormal model is obtained by taking the exponential
transformation of a Gaussian distribution. All of these distributions, except for the
Exponential distribution, have probability densities that are generally similar (Figure
3). Conditional probabilities are also similar up to the mean recurrence time, at which
point the distributions diverge.

Some of the analytic properties of these distributions are listed in Table 1. The
columns labeled "Shape", "r (0)", and "r ∞ ⁄rave " refer to properties of the hazard func-
tion, or instantaneous failure rate of survivors. In the case of the BPT model, the
failure rate is 0 immediately after an event. It grows to a peak and then declines to a
finite asymptotic rate at times long compared to the mean time. These are unique pro-
perties among this suite of models. Compare this behavior with that of the Lognormal
model, for which the asymptotic failure rate is always 0. The Gamma distribution,
like the BPT model, also has a finite asymptotic failure rate. However, when θ>1, the
failure rate is always smaller than the mean rate. Failure rate functions of Weibull
variates either start at zero and increase to inifinity or start at a finite value and
decrease to zero

We assert that the properties of the the BPT model not only satisfy the spirit of the
hypothesis proposed by Reid (1910), Utsu (1972a), Rikitake (1974) and Hagiwara
(1994), but also provide more realistic asymptotic behavior of the failure rate than the
alternative models. In one sense, the behavior of the BPT model is similar to a
delayed Poisson process, for which the failure rate is zero for a finite time following
an event and then steps up to an approximately constant failure rate at all succeeding
times.

PARAMETER ESTIMATION FOR THE BPT MODEL

The technically challenging problem of estimating the parameters for earthquake
renewal models has been the focus of recent work in both Japan (Ogata, 1998; Work-
ing Group on Assessment Methods of Long-Term Earthquake Probability, 1998) and
the U.S. (Matthews, submitted). Past workers, such as Nishenko and Buland (1987),
attempted to study the shape of the recurrence distribution by normalizing individual
earthquake series by their sample mean and then stacking the results. Unfortunately,
this process alters the shape of the sampling distribution, thereby invalidating the use
of series so normalized for discrimination between candidate models.

An important technical advance in the recent work of both Ogata and Matthews has
been the incorporation of open intervals into the estimation procedure. Here, we apply
adjusted maximum likelihood estimators for µ and α developed by Matthews. These
estimators can be used with both closed and open recurrence interval data. The inclu-
sion of open intervals typically becomes important when the open interval approaches
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the length of the sample mean. In general, both µ̂ and α̂ increase once the length of
an open interval exceeds the mean when compared to estimates made without open
intervals.

We face a particular problem in applying these estimators to data because the number
of events in any earthquake series is typically very small. For a series with two events
and no open intervals, we can estimate µ but not α. With three or more events, we
can estimate both parameters. But how reliable are these estimates, since by
hypothesis they are realizations of a random process?

To estimate how short a series can be and still have value for estimation purposed, we
have used a bootstrap method to assess the parametric uncertainties in estimated
values, µ̂ and α̂ as a function of the length of the earthquake series. Figure 4 illus-
trates bootstrap result for the case of µ=1 and α=0.5. The upper two plots show five
representative synthetic series drawn from the BPT distribution for earthquake "cata-
logs" with lengths of 3.5 µ (left) and 10 µ (right). We have arbitrarily set the time of
the most recent event at time 3 and 10, respectively, creating an open interval of 0.5 in
the former case. The lower plots show bootstrap estimates of µ̂ (left) and α̂ (right),
and their 68% confidence intervals. Neither quantity is estimated with much
confidence for catalogs containing 3 - 10 events. It is particularly sobering to see how
uncertain α̂ is, particularly for small samples. The large uncertainties in parameters
estimated from short catalogs is not unique to either the BPT model or the estimators
developed by Matthews. This problem exists for any probability distribution whose
parameters must be estimated from short data samples, and in particular all of the
alternative models of Table 1.

In addition to the parametric uncertainty created by short series, we must confront
another issue when analyzing paleoseismically recognized earthquakes: the dates of the
events themselves are uncertain. Our approach to this problem has been to perform a
Monte Carlo analysis on each paleoseismic earthquake sequence. We use the probabil-
ity distributions that constrain the dates of each individual event to construct 1000
realizations of the earthquake dates drawn at random from those distributions. Each of
the realizations represents one possible set of dates for all of the earthquakes in that
series, and it is analyzed individually to determine µ̂ and α̂. We report the mean
values of µ̂ and α̂ as the preferred parameter estimates.

This process is illustrated in Figure 5 for the Brigham City segment of the Wasatch
fault. McCalpin and Nishenko (1996) reported C 14-constrained dates of paleoearth-
quakes along this fault segment. They determined a mean recurrence interval of
1282±138 years for events younger than 5600 years. The upper part of Figure 5
shows the probability distributions of the six most recent events, and five examples of
earthquake series drawn at random from those distributions. The lower plots show
histograms of µ̂ and α̂ determined from 1000 realizations. Their mean values are
1476 years and 0.31, respectively. Note that not only is µ̂ greater than the mean
recurrence interval determined by McCalpin and Nishenko (1996), but the aperiodicity
is substantially greater than their coefficient of variation of 138/1282 = 0.11. The
increase in both µ and α is directly attributable to the length of the current open inter-
val.
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TOWARDS A GENERIC BROWNIAN PASSAGE TIME MODEL: PROVI-
SIONAL ESTIMATION OF APERIODICITY FROM GLOBAL EARTHQUAKE
RECURRENCE DATA

A global data set of recurrent earthquake sequences has been assembled from the pub-
lished literature to explore the range of α as a function of earthquake magnitude and
tectonic style (Table 2). The data include repeating microearthquakes (M -0.6 to 1.6)
(Nadeau and Johnson, 1998); repeating moderate earthquakes (M 3.7 to 5.1) (Ells-
worth, 1995); historically documented sequences of large-magnitude events (e.g. Nan-
kai Trough, Ishibashi and Satake, 1998), and sequences inferred from paleoseismic
investigations (e.g. Cascadia megathrust events, Atwater and Hemphill-Haley, 1997).
The bootstrap analysis of uncertainties strongly implies that sequences with just 2 or 3
recurrence intervals will be of little value for estimation of α. By restricting the
sequences to those that have at least 4 closed intervals (5 events), a total of 35
sequences have been identified that are suitable for analysis. We also analyze two
sequences, with 3 and 4 closed intervals, respectively, that have long open intervals on
both ends of the catalog, giving us a total of 37 sequences.

The parameters of the BPT model have been estimated for each sequence using the
adjusted maximum likelihood method of Matthews as described above. The current
open interval was used in the estimation procedure in the case of those sequences
where the open interval is longer than the mean of the closed intervals.

DISCUSSION

The estimated values of α̂ of Table 2 range from 0.11 for a Parkfield microearthquake
to 0.93 for ground rupturing events at Pitman Canyon on the San Andreas fault. The
mean value of α̂ is 0.44 and 68% confidence interval is ±0.22. We found no sys-
tematic difference between the values of α̂ when the data were grouped by tectonic
style, or when they were examined as a function of either the number of events in the
estimate or event magnitude (Figure 6). However, we caution that the total number of
sequences is very limited, and the data are dominated by strike slip earthquakes of the
San Andreas fault system.

The variability in α̂ is consistent with what would be expected if α=0.5, and 37
sequences were drawn at random from a suite of earthquake sequences with the same
population statistics as the actual data. The lower part of Figure 6 compares the meas-
ured distribution of α̂ with those created using a bootstrap procedure with α = 0.5. On
this basis, we suggest that α=0.5 can serve as a working estimate of the aperiodicity
for recurrent earthquake sequences of all sizes and in all tectonic environments.

Some properties of the BPT distribution for α = 0.5 are shown in Figure 7. As with all
BPT distributions, the probability density peaks before the mean time is reached. The
95% range of recurrence intervals is from 0.36µ to 2.26µ. There is less than 1 chance
in 400 of failure occurring within µ ⁄ 4 of the preceding event, and the probability of
failure in the first 0.1µ is vanishingly small. The asymptotic mean residual lifetime is
2µ. Both the failure rate and conditional probability approach their asymptotic values
at times only slightly longer than µ.

Adopting our provisional value of α = 0.5, we have estimated the mean recurrence
time, µ0.5 for each of the 37 sequences (Table 2). In general, µ0.5 < µ when α > 0.5
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and µ0.5 > µ when α < 0.5. The value of µ0.5 for Brigham City, Utah is exceptional,
due to the long open interval. The very low expectation of failure at times < µ0.5 ⁄ 4
suggests that we should have some statistical leverage to reject this model in some
cases. For the 27 sequences in Table 2 that have accurately know dates, none of the
147 recurrence intervals fall within this "forbidden" zone.

It is of some note that both the great earthquakes (M 7.8 - 9.2) and smallest
microearthquakes (M < 2) display such a wide range of α̂. In the case of the
microearthquakes, it is quite natural to expect that wide variability in recurrence time
would be the norm when repeating earthquakes are influenced by elastic stress transfer
from other nearby earthquakes, particularly those of larger magnitude. Stress transfer
from nearby earthquakes may similarly be influencing the recurrence history, and
thereby the aperiodicity, of the largest earthquakes. For example, it is well known that
the Nankaido and Tonankai segments of the Nankai subduction zone in Japan some-
times fail in a single earthquake, or in closely spaced pairs of events. A similar
phenomenon has been noted for the M 4-5 earthquakes on the San Andreas fault at
Stone Canyon (Ellsworth, 1995). Thus, we should be optimistic that some portion of
the aperiodicity can be understood, if not modeled, using elastic interactions of the
kind envisioned by Matthews (submitted) in the formulation of the point process
model.

A question arises as to when the estimated mean, µ̂, and aperiodicity, α̂, should be
favored over the generic value of µ0.5 and α = 0.5. We believe that Bayesian methods
should be useful in this regard, but have not as yet tested this proposition. As always,
independent estimates of the parameters can be of great value in deciding this ques-
tion. For example, in the case of great earthquakes in the Cascadian subduction zone,
our estimates come from one paleoseismic site of Atwater and Hemphill-Haley (1997)
at Willipa Bay, where coseismic submergence provides the earthquake chronology.
Adams (1990) also developed and earthquake chronology for Cascadia from the sedi-
mentary records of turbidites in the Cascadia deep-sea channel. Although dates could
not be determined for individual events, Adams established that 13 events occurred
since the Mazama eruption with a mean interval of 590+-50 years. Accordingly the
value of µ0.5 = 490 obtained from the Willipa Bay is on the statistical edge of accepta-
bility (p=0.05).

We conclude with an application of the BPT model to the next M 6 earthquake at
Parkfield on the San Andreas fault in California. The prediction of the next earth-
quake is based upon the series of characteristic earthquakes that are hypothesized to
have ruptured this segment of the fault in 1857, 1881, 1901, 1922, 1934 and 1966.
Many studies have attempted to quantitatively estimate the occurrence time (or condi-
tional probability) of the next earthquake in this series, including Lindh (1983), Sykes
and Nishenko (1984), Bakun and Lindh (1985), Davis et al. (1989), the 1988 and 1990
Working Groups on California Earthquake Probabilities, and Jackson and Kagan
1998). Because each estimate is fundamentally tied to these same dates, with the
exception of Jackson and Kagan who a priori reject the recurrence hypothesis, these
studies differ in their choice of statistical model and treatment of the open interval.

The annual probability of the Parkfield earthquake as estimated with models advocated
by most of these authors are compared in Figure 8, together with the results of this
investigation. We computed a BPT model without an open interval to simulate results
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that would have been obtained in the early- to mid-1980’s. Models with the current
open interval were also computed with both α free and set to the generic value. The
range of annual probabilities from all the models is noteworthy, and serves to under-
score the critical role the underlying hypothesis plays in the estimate. Although all
probability estimates (except for Jackson and Kagan) give similar estimates up to the
mean time (∼ 1988), they rapidly diverge at later times. If the generic BPT model had
been used in the mid-1980’s, that model would have given current probability of 1:10
for the Parkfield earthquake occurring this year. We believe that this un-updated
model still provides a robust estimate of the hazard at Parkfield.

CONCLUSIONS

We have introduced a new failure time distribution for recurrent earthquake sequences,
the Brownian passage time model. This model is based upon a simple physical model
of the earthquake cycle, the Brownian relaxation oscillator, and is parameterized by the
mean period between earthquakes, µ, and the aperiodicity about the mean, α. Both of
these quantities can be estimated from data using adjusted maximum likelihood pro-
cedures.

Analysis of 37 recurrent earthquake sequences suggests a provisional value of α=0.5.
This represents substantially greater aperiodicity than the value for the coefficient of
variation of 0.21 obtained by Nishenko and Buland (1987) in their analysis of another
global data set with the Lognormal model.

The paucity of reliably dated or otherwise constrained sequences of recurrent earth-
quakes, particularly those with at least 4 closed intervals, places severe limitations on
the conclusions that may be drawn about the earthquake process from these data, as
the measurement of α for individual sequences is dominated by small sample size
effects. We clearly must develop longer sequences of events if we are to begin to
understand both the scale and origin of the underlying "noise" processes that make
earthquakes aperiodic.
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FIGURE CAPTIONS

Figure 1. Three examples of a Brownian relaxation oscillator, showing the state vari-
able, Y (t ), in the case of relatively weak (top), moderate (middle) and strong (bottom)
aperiodicity.

Figure 2. Probability density of the Brownian passage time distribution for mean
period = 1, and a range of aperiodicity values.

Figure 3. Comparison of probability density (left) and conditional probability for six
different probability distributions. All distributions have a mean value of 1, and a
coefficient of variation (α for the BPT distribution). Note the similarity of the density
functions for all but the Poisson (Exponential) distribution, and the divergence in
behavior of the conditional probability the same models for times greater than the
mean time.

Figure 4. Bootstrap analysis of uncertainty in the adjusted maximum likelihood estima-
tion of µ and α for the BPT distribution as a function of the observation period. Top
figures show several realizations of sequences when the observation period is 3.5 (left)
and 10 (right) mean periods. Bottom figures show the median and confidence intervals
on the estimated mean period (left) and aperiodicity (right).

Figure 5. Illustration of Monte Carlo estimation procedure applied to paleoseismic
earthquake sequences. Probability density distributions for dates of 6 most recent
earthquakes on the Brigham City segment of the Wasatch fault, Utah (McCalpin and
Nishenko, 1996) and 5 earthquake series drawn at random from those distributions
(top). Histograms (bottom) of the mean recurrence time, µ̂, and aperiodicity, α̂ deter-
mined from 1000 realizations.

Figure 6. Properties of the estimated mean, µ̂, and aperiodicity, α̂ for the 37 earth-
quake series in Table 1. Tectonic style of faulting is indicated in a.) and b.) by "S"
for strike slip, "N" for normal, and "T" for thrust cases. Histograms of the estimated
aperiodicty in c.) compares favorably with d.) bootstrap estimate drawn from the BPT
distribution with α = 0.5.

Figure 7. Properties of the Brownian passage time distribution for a mean period of
µ=1 and aperiodicity of α=0.5.

Figure 8. Annual probability of the next characteristic M 6 earthquake at Parkfield,
California as estimated by a number of studies using probability models as indicated.
Probability estimates from the BPT were made with and without the open interval, and
using the suggested generic aperiodicity of α = 0.5.
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Brownian Passage Time densities
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Probability Density Functions
Mean=1, Aperiodicity=0.5
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Brigham City Segment of the Wasatch Fault, Utah
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a.) Aperiodicity versus Series Length
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b.) Aperiodicity versus Magnitude
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Probability Density
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Annual Probability of the Parkfield Earthquake
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1

Table 1. Properties of candidate interval distributions.. Columns are: 1. Name of

parametric family (and indication, as necessary, of parameter range restriction for following

columns). 2. Parametrized probability density function. 3. Shape of failure rate function:

↑= increasing, ↓= decreasing, →= constant; combination of symbols indicates changing

behavior with time, e.g., the BPT failure increases for some time then decreases and

flattens out to a constant asymptotic level. 4. Failure rate at t = 0. 5. Ratio of mean and

quasi-stationary mean recurrence interval.

Name Probability Density Shape h(0) µ/m∞

Brownian Passage Time
(

µ
2πα2t3

)1/2
exp

(
− (t−µ)2

2α2µt

)
↑↓→ 0 2α2

Exponential νe−nut → ν−1 1

θ < 1 ↓→ ∞

Gamma νθtθ−1e−νt

Γ(θ)
θ−1

θ > 1 ↑→ 0

θ < 1 ↓ ∞ 0

Weibull θνθtθ−1 exp(−νθtθ)

θ > 1 ↑ 0 ∞

Lognormal
(√

2πσt
)−1

exp
(
− (log t−µ)2

2σ2

)
↑↓ 0 0



_ _____________________________________________________________________________________________________________ ___________________________________________________________________________________________________________
Table 2. Recurrent Earthquake Sequences and Their Estimated Parameters for the Brownian Passage Time Model_ ____________________________________________________________________________________________________________ ___________________________________________________________________________________________________________
Location M Last N µ α µ0.5 Reference_ ___________________________________________________________________________________________________________
Copper River Delta, USA 9.2 1964 9 683 0.23 753 Plafker and Rubin, 1994.
Willipa Bay, USA 9.0 1700 7 526 0.53 530 Atwater and Hemphill-Haley, 1997.
Wairarapa fault, N.Z. 8.2 1855 5 1551 0.18 1355 Van Dissen and Berryman, 1996.
Nankaido, Japan 8.1 1946 9 158 0.40 166 Ishibashi and Satake 1998.
Tonankai, Japan 8.1 1944 7 210 0.75 192 Ishibashi and Satake 1998.
Pallett Creek, USA 7.8 1857 10 146 0.97 115 Sieh et al., 1989.
Wrightwood, USA 7.8 1857 6 150 0.71 138 Biasi and Weldon, 1998.
Pitman Canyon, USA 7.8 1812 6 180 0.96 144 Seitz, Weldon and Biasi, 1997.
Miyagi-Oki, Japan 7.5 1978 11 36 0.27 40 Utsu, 1984.
Brigham City, USA 7 -130 6 1476 0.31 1645 McCalpin and Nishenko, 1996.
Tanna fault, Japan 7.0 1930 7 972 0.65 866 Tanna Fault Trenching Research Group, 1983.
Irpinia fault, Italy 6.9 1980 5 2058 0.58 2042 Pantosti et al., 1993.
Parkfield, USA 6.4 1966 6 25.0 0.44 26.5 Bakun and Lindh, 1995.
Stone Canyon (San Andreas fault)

- Set 2 5.0 1995 4 14.6 0.40 18.6 Ellsworth, 1995.
- Set 3 4.7 1986 3 20.3 0.37 24.4 "
- Set 1 4.2 1995 5 14.7 0.29 16.2 "
- Set 10 4.1 1995 7 10.2 0.25 11.3 "
- Set 5 4.0 1990 6 10.6 0.32 12.4 "
- Set 8 4.0 1990 5 12.3 0.35 14.7 "
- Set 9 4.0 1990 5 13.0 0.42 14.7 "

Parkfield (San Andreas fault)
- PK1 1.4 1994 9 1.12 0.16 1.25 Ellsworth, 1995.
- S46 0.9 1993 5 1.3 0.22 1.5 Nadeau and Johnson, 1998.
- S44 0.9 1995 6 1.7 0.24 1.9 "
- S40 0.8 1995 5 1.6 0.23 1.8 "
- S39 0.7 1993 7 0.99 0.55 0.99 "
- S35 0.7 1994 5 1.8 0.26 2.0 "
- S34 0.6 1993 5 1.6 0.47 1.7 "
- S33 0.5 1992 5 1.4 0.87 1.2 "
- S27 0.5 1992 9 0.54 0.62 0.52 "
- S25 0.4 1996 6 1.6 0.43 1.7 "
- S22 0.4 1992 5 0.83 0.43 0.87 "
- S21 0.3 1995 8 1.1 0.50 1.2 "
- S20 0.3 1995 6 1.5 0.59 1.5 "
- S18 0.3 1992 5 1.3 0.33 1.4 "
- S07 0.0 1992 9 0.64 0.11 0.72 "
- S05 -0.1 1995 13 0.73 0.32 0.78 "
- S01 -0.7 1995 9 0.95 0.40 1.0 "_ ____________________________________________________________________________________________________________ ____________________________________________________________________________________________________________ 
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Notes to Table 2. Location - geographic placename of paleoseismic site, name of fault, or fault segment. M - magnitude
of typical event. Last - calendar year of last event; negative dates for B.C. N - number of events in earthquake series.
µ - estimated mean recurrence interval in years. α - estimated aperiodicity of earthquake series. µ0.5 - estimated mean
recurrence interval in years for α = 0.5. Reference - primary data source for this earthquake series.


