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ABSTRACT

Fusion techniques can be applied to multispectral and higher spatial resolution panchromatic images to create a composite 
image that is easier to interpret than the individual images. Wavelet transform-based multisensor, multiresolution fusion (a 
type of band sharpening) was applied to Landsat thematic mapper (TM) multispectral and coregistered higher resolution 
SPOT panchromatic images. The objective was to obtain increased spatial resolution, false color composite products to 
support the interpretation of land cover types wherein the spectral characteristics of the imagery are preserved to provide the 
spectral clues needed for interpretation. Since the fusion process should not introduce artifacts, a shift invariant 
implementation of the discrete wavelet transform (SIDWT) was used. These results were compared with those using the shift 
variant, discrete wavelet transform (DWT). Overall, the process includes a hue, saturation, and value color space transform to 
minimize color changes, and a reported point-wise maximum selection rule to combine transform coefficients. The 
performance effusion based on the SIDWT and DWT was evaluated with a simulated TM 30-m spatial resolution test image 
and a higher resolution reference. Simulated imagery was made by blurring higher resolution color-infrared photography with 
the TM sensors' point spread function. The SIDWT based technique produced imagery with fewer artifacts and lower error 
between fused images and the full resolution reference. Image examples with TM and SPOT 10-m panchromatic illustrate the 
reduction in artifacts due to the SIDWT based fusion.
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1. INTRODUCTION

Image classification techniques can be applied to the moderate spatial resolution multispectral imagery of the Landsat 
thematic mapper (TM) to produce thematic maps of land surface cover. One classification method (i.e., supervised 
classification) requires extracting training pixels that represent the spectral signatures of the land cover types. This process is 
facilitated by having field-collected information about cover type. In some cases, cover type may be identified by visual 
interpretation of the multispectral (XS) imagery, displayed as a false composite on a red, green, blue (RGB) color monitor. In 
conducting photointerpretation of an XS image, an analyst may use spectral clues based on prior knowledge and experience 
with spectral reflectance characteristics of ground cover types [1]. To augment this process, the analyst may use 
panchromatic (P) imagery of higher spatial resolution to gather additional clues related to spatial information (i.e., size, 
shape, orientation, and texture.)

Interpretation may be improved by using a composite image created from XS and coregistered higher spatial resolution P 
data. The process of combining image data to create a composite having the best characteristics of both is called merging, 
fusion, or sharpening of the lower resolution image [2]. There are many reported techniques for mult-image fusion, and much 
of the earlier reported work was with lower spatial resolution XS data (e.g., SPOT and TM) and higher resolution SPOT P; 
for a complete description see [2].
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The fusion result should be a meaningful combination of the data, and to be effective, requires radiometric correlation 
between the two images [2]. The composite should be free of artifacts and preserve, as much as possible, the spectral 
characteristics (radiometric fidelity) of the original data to facilitate interpretation based on spectral clues and knowledge of 
the spectral signatures of cover types from the original data [1].

The fusion technique described herein transfers the higher spatial frequency information of a P image to improve the spatial 
resolution of an XS image. The sharpening/fusion/merging examples are for three of the 30-m ground-projected 
instantaneous field of view (GIFOV) TM bands and a 10-m GIFOV SPOT P image. The fused result can be displayed as an 
RGB image. The fusion process makes use of the discrete wavelet transform (DWT), specifically a shift invariant 
implementation, for multiresolution image decomposition.

2. BACKGROUND

A brief summary of reported image fusion techniques that use multiresolution image pyramids or wavelets follows.

Burt [3] described an image fusion technique where a pair of coregistered images were first decomposed into multiresolution 
Gaussian, Laplacian image pyramids and the spatial details of the Laplacian images were combined, per pixel, on the basis of 
a "select the maximum amplitude" rule. Image reconstruction with the combined samples produced the fused result. The 
decomposition process is exactly reversible; each image can be recovered without error from its image pyramid 
representation.

Toet [4] described image fusion using multiresolution ratio image pyramids. Similar to Gaussian pyramid techniques, this 
process is reversible without loss. Decomposition was based on a ratio, in contrast to difference, between the image and a 
lowpass filtered image. Spatial details, as represented in the ratio images, were combined with a "maximum" selection rule.

Burt and Kolczynski [5] described image fusion based on gradient image pyramids. Two modes, averaging and selection, 
were used to combine directionally sensitive spatial details of the two respective gradient image pyramids. The mode 
determined for each pixel was based on the correlation between spatial patterns of the two gradient pyramids and computed 
from neighboring samples. A salience measure (local energy) determined which image to select.

Iverson and Lersch [6] reported image sharpening by using image pyramids and an adaptive technique for predicting, rather 
than selecting, higher resolution spatial details needed to increase spatial resolution. Relying on the local correlation between 
the Laplacian pyramid representation of the two images (P and XS), a multilayer feedforward neural network (NN) was 
trained to generate the spatial details of the lower resolution image given neighboring samples from the P image. At higher 
resolutions, output of the trained network produced the data for sharpening.

Aloisi and Grabit [7] described a method based on the discrete wavelet transform (DWT) for fusion of SPOT XS and higher 
resolution P images. Coregistered images were decomposed, and spatial details (as represented by DWT coefficients) needed 
to enhance the lower resolution image were estimated using an NN-implemented model to estimate XS coefficients. 
Similar to the technique of [6], an NN was trained, at lower resolution, to generate XS coefficients from neighboring P 
coefficients. The NN was then used to synthesize the higher resolution wavelet coefficients of the XS image.

Yocky [8] described image merging and data fusion with the DWT for two spatially registered images wherein wavelet 
coefficients of the lower resolution image were simply replaced by those of the higher resolution image.

Li, et al., [9] described image fusion using the DWT. The algorithm for combining wavelet coefficients used an area based 
activity measure around a center pixel (maximum absolute value within a window) to determine which wavelet image to 
select from. The selection was also subject to a consistency rule. They reported that their fusion results surpassed those for a 
point (or pixel) based maximum selection rule using either Laplacian pyramid or wavelet transform decomposition.

Recently, Rockinger and Fechner [10] reported the application of a shift invariant discrete wavelet transform (SIDWT) to the 
fusion of image sequences. A point based, select-the-maximum-amplitude rule was used to combine WT coefficient data. 
Their results, which were evaluated by using a mutual information quality measure, reported that the SIDWT fusion method 
outperformed those using Laplacian pyramid, gradient pyramid, and shift variant DWT.



There is some similarity between the work reported in this paper and that of Rockinger and Fechner [10] because (1) an 
SIDWT is also used, and (2) their very effective method for illustrating shift dependency of the DWT fusion process is 
repeated here. In contrast, the multispectral image fusion method described herein used a different implementation of the 
SIDWT, and the performance was evaluated with simulated TM resolution test data.

The remainder of the paper includes (1) a brief overview of the DWT and implementation of an SIDWT, (2) a description of 
the fusion technique for three XS bands of TM and the SPOT P data, (3) examples that illustrate the shift variance of DWT 
fusion, and (4) a comparison between DWT and SIDWT fusion performance using simulated TM sensor data.

3. DISCRETE WAVELET TRANSFORM

The following overview of the DWT is summarized primarily from Rioul and Vetterli [11] and Strang and Nguyen [12]. A 
starting point for describing the DWT is the two-channel perfect reconstruction filter bank of figure la, where x(ri) is an input 
sequence, and g(«) and h(ri) are, respectively, impulse responses of lowpass (LP) and highpass (HP) convolution filters; (12) 
denotes downsampling by 2 (every other sample discarded) and (T2) is upsampling by 2 (zeroes inserted between samples). 
Thus, the analysis filter convolution and downsampling of figure la is the inner product of sequence x(n) and time reversed 
g(«), h (n). That is,

(n) g(-n + 2k)

The reconstructed signal x(ri) is obtained by upsampling yo(ri) and y\(ri), filtering by g'(ri) , h'(ri) and adding. For certain 
filters having perfect reconstruction properties, then reconstructed x(ri) equals x(ri) within a possible shift. For example, for

even length, L, filters and where analysis filters h(ri) and g(ri) are related (as mirror filters) by h(L -1 - n) = (-1) g(ri) and the 
synthesis filters g'(ri) and h'(n) are time reversed copies of g(ri) and h(n\ then x(ri) is reconstructed from
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Figure 1. Two-channel filter bank and discrete wavelet transform.



Fig. Ib shows the filter bank tree for the fast DWT, and inverse DWT. Filters g'(«) and h'(ri) are time reversed copies of 
g(n) and h(ri); however, the specific requirements are as follows. In fig. Ib the two channel analysis (decomposition) filter 
bank process is iterated on the LP (and downsampled) output. If g(ri) and h(n) are halfband LP and HP filters, each iteration 
halves the width of the lowband. The current highband spectrum corresponds to the difference between the current and 
previous lowband spectra. In addition, the time resolution is halved because of the subsampling. The relationship between 
wavelets and filters g(ri), h(n) is [12]

#/) = 2 >/2 g(n)fl2t - ri) and w(/) = IV2 h(ri) <f(2t - n),

where (JXJ) and w(f) are, respectively, the continuous-time scaling function and wavelet. The scaling function has the same 
general shape as the LP filters' impulse response g(ri). Development of the DWT needs only a discrete LP filter g(n) that 
meets certain conditions [11]. As described in [12] [13], Daubechies constructed a family of orthogonal filters that generate 
orthogonal wavelets having compact support. The filters used in this work were for the Haar wavelet, and the 4 coefficient 
(Db2) and 8 coefficient (Db4) Daubechies wavelets.

3.1 Shift invariant discrete wavelet transform (SIDWT)

A major drawback of the DWT for multiscale image and signal analysis is the fact that transform is not shift invariant and 
consequently, the wavelet coefficients can change (in fact, dramatically) for minor shifts of the input signal [14]. In contrast, 
however, a translation of the input that is a multiple of all subsampling factors produces a simple translation of the transform 
coefficients. Because of this shift variance, pixel-level image fusion results based on the DWT will depend on the scene shift 
[10].

Shensa [15] described a method for removing the shift-variant effects of the DWT: compute the transform for all shifts of the 
input sequence. However, an alternative implementation is to replace the decimation (i.e., downsampling by 2) occurring at 
each level (scale) of decomposition by a split into odd and even indexed sequences, each of which becomes a starting point 
for the next level of decomposition [15]. The result is a nonorthogonal, overcomplete multiresolution decomposition that is 
shift invariant (SI.) Lang, et. al., [16] in their description of an SIDWT algorithm and the work of Shensa [15] note that when 
the downsampling operator, which retains even indexed samples, is applied to a sequence that has been shifted by one, odd 
indexed samples are retained. This property leads to an algorithm for an SIDWT decomposition.

In this report, implementation of the SIDWT was based on the two channel, ID DWT filter bank tree decomposition (fig. Ib) 
applied to unshifted and shifted (by one) input sequences. This produces a split into even/odd indexed sequences as required 
by the alternative implementation for SIDWT [15]. For subsequent scales of decomposition, this process is repeated on both 
the odd and even sequences of the lowpass filter results. At each scale of the reconstruction, the odd and even sequence 
decompositions are each reconstructed separately (as shown by the fast DWT reconstruction of figure Ib) and the results 
averaged, after realignment to correct for the shift.

Application of the ID DWT to rows and columns of an image gives the separable 2D WDT [11]. The shift invariance of this 
scheme is demonstrated later in this paper using the methodology of [10].

4. MULTISPECTRAL IMAGE FUSION PROCESS

The multispectral fusion process, with SIDWT, shown in figure 2 is for a three spectral band image and coregistered higher 
resolution P image. For color image interpretation, the fusion of XS (as an RGB false-color composite) and P should produce 
an enhanced image with minimal distortion of the original color. Visually perceived color properties of image features can 
often be better described in terms of intensity, hue, and saturation instead of red, green, and blue [2], [17]. Intensity (I), and 
the closely related value (V), hue (H), and saturation (S) refer, respectively, to the subject sensations of brightness, color, and 
color purity [2]. As shown in figure 3, the RGB image is first transformed to HSV; then V is enhanced by pixel-level fusion.

The RGB-HSV transform, which is based on a hexcone model, converts RGB values into a color space more suitable for 
color image processing. The intensity component, or roughly V (as V is the maximum of R, G, and B), can be contrast 
stretched, with no change in H and S of the resulting image [2].
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Figure 2. Multispectral (XS) image fusion process for shift invariant-discrete wavelet transform.

XS data are transformed to hue, saturation, and value. A "maximum" selection rule [3] is used to 
combine transform coefficients of the coregistered XS and higher resolution panchromatic image. 
The    > shows single band data used for a non-HSV fusion process that is described later.

The three spectral band TM data are first transformed from RGB to HSV. The fusion is then done for the V and higher 
resolution P image, after multiresolution decomposition using an SIDWT. Because this image pair (P, V) fusion process uses 
an SIDWT decomposition and pixel-based "maximum" selection rule for combining transform coefficients, it is similar to the 
fusion process of [10]. However, as previously noted, this report used a different implementation of the SIDWT and 
addresses multispectral images.

5. RESULTS

The shift dependency of the two fusion schemes (DWT and SIDWT) is illustrated in the error plots of figure 3. This analysis 
closely follows the informative example in [10]. For each fusion scheme, the RMSE is between the fusion result for the 
unshifted image pair and the fusion result, (after realignment) of a shifted (along rows) image pair. This test was for a single 
band of TM data (band 2) coregistered to a georeferenced SPOT P image (the HSV transform was omitted so as to simplify 
the test.) The P image, at 10-m ground sample interval (GSI), was produced by registering (cubic resampling) the SPOT 
"system corrected" (level 1 A) data to a 1-m GSI color-infrared (CIR) digital orthophotoquad image [18]. Two wavelet filters, 
Haar and 8-coefficent Db4 , and two fusion methods were used. The plots for SIDWT are coincident at RMSE equal to zero, 
and demonstrate the shift invariance of this process. With DWT fusion, the smoother wavelet has lower error. For three 
scales of decomposition, the period of the plots is 8 = 2 because a translation of the input that is a multiple of all sub- 
sampling factors produces a simple translation of the transform coefficients [10],
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The four plots shown are DWT fusion with the Haar (o) and Db4 (+) wavelet and shift- 
invariant DWT fusion for Haar (.) and Db4 (*) wavelet. The RMSE is between: (a) the 
fusion image for a nonshifted image pair, and (b) realigned result after fusion of the 
right-shifted image pair. Plots for the shift-invariant examples are coincident at zero 
error. There were three scales of wavelet decomposition.

Fig. 4 compares imagery for SI and SV fusion of the P, TM-2 data for the Haar wavelet. Artifacts are clearly visible in the 
contrast-stretched difference image.

5.1. Results for Simulated Data

The SIDWT and DWT results were compared using simulated high and low spatial resolution test imagery that was derived 
from a 1-m GSI, CIR digital orthophotoquad image. The spectral bands of the CIR data (as false color RGB) are visible 
green, red, and near-infrared [19]. A 10-m RGB reference image was produced by 10-by 10-pixel averaging and 10:1 
downsampling; the coregistered P image was simply the average of the two visible bands. To simulate 30-m GSI imagery 
having the TM sensors spatial resolution, 1-m CIR data were convolved with the sensors' point spread function, separable 
and modeled at 1-m sample distance, and then 30:1 downsampled [2], [20].

Because of the TM sensors' scanning optics, image data are acquired in both forward and reverse scan directions, 16 lines 
(rows) at a time [1]. Thus, this test imagery simulates only a west to east scanned scene [22], and the consequences are 
believed minimal with respect to the objectives here - a relative comparison of SIDWT and DWT fusion methods. The 30-m 
and 10-m images were coregistered by an affme transformation with cubic interpolation and then fused. Results are given in 
table 1 as RMSE between fused and 10-m reference for three wavelets. The SIDWT based method produced the lower error, 
and this error decreases with the smoother wavelets. In part, the larger error for the near-IR (R) band is due to the lower 
correlation, as visible between P and R band images.

Wavelet 
Type

Haar
Db2
Db4

RMSE: SIDWT Fusion

R

10.13
9.61
9.50

G

6.72
5.91
5.75

B

6.69
5.88
5.71

RMSE: DWT Fusion

R

11.45
10.54
10.16

G

8.13
7.06
6.60

B

7.94
6.89
6.49

Table 1. Comparison of SIDWT and DWT Fusion Results for Simulated Data.

This table compares the RMSE between fused and true images for both SIDWT and DWT 
based methods; and three wavelet types. The lowest error (best fidelity) resulted from 
SIDWT fusion with the smoother wavelet (Db4)



Results including the simulated TM data at 30-m IFOV are shown in fig. 5 for one (near-IR) band of the C-IR RGB image. 
The RMSE between the R, G, B bands of the reference and co-registered simulated TM resolution image was, respectively, 
19.76, 19.55, and 18.38.

6. Conclusion

A shift invariant implementation of the discrete wavelet transform was described and applied to multispectral image fusion. 
The process makes use of a hue, saturation, and value color space transform to minimize color changes, and a reported point- 
wise "maximum" selection rule to combine transform coefficients. A comparison of the performance of SIDWT and DWT 
based fusion with simulated TM 30-m spatial resolution test data showed that the SIDWT technique produced imagery with 
fewer artifacts and lower RMSE between fused and the full-resolution reference. Image examples with TM and SPOT 10-m 
panchromatic illustrate the reduction in artifacts due to the SIDWT-based fusion.

a. SPOT 10-m panchromatic b. Shift invariant fusion c. Difference: b - e

d. TM2, 30-m IFOV e. Shift variant DWT fusion

Figure 4. Comparison of Shift Invariant-DWT and DWT based fusion.

For the single band test process of figure 2, using Haar wavelet, b shows the result for shift invariant DWT and e 
represents the DWT fusion of coregistered images a and d. a is SPOT 10-m panchromatic data (level 1A), after 
registration to an exact 10-m base image, d is TM 30-m GIFOV visible band 2 data, c is the difference between b and 
e (with contrast stretch) and shows artifacts related to shift variant DWT fusion process; compare with e. b, d, and e 
have identical contrast stretch.



a. Panchromatic, 10-m b. SIDWT Fusion of a, e. c. Difference: true - fusion result b.

d. Simulated 30-m TM (near-IR band) e. d coregistered to a.

Figure 5. Fusion of simulated TM and higher resolution panchromatic image.

b is one spectral band (near-IR) of the result of SIDWT fusion (fig. 2) of image a and the simulated TM resolution, three 
band image (one band shown in d). c is the difference, with contrast stretch to improve visibility, between b and a true, 10-m 
near-IR image (not shown).
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