U. S. DEPARTMENT OF THE INTERIOR

Geologic Maps and Block Diagrams of the Barite Hill Gold-Silver Deposit and Vicinity, South Carolina and Georgia

By Sandra H.B. Clark
U.S. Geological Survey, National Center, MS 954, Reston, VA 22092

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic code. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Geologic Maps and Block Diagrams of the Barite Hill Gold-Silver Deposit and Vicinity, South Carolina and Georgia

By Sandra H.B. Clark, U.S. Geological Survey, National Center, MS 954, Reston, VA 22092

Barite Hill is a metavolcanic-rock-hosted, stratiform gold-silver deposit located in the Piedmont physiographic province in McCormick County, South Carolina. The deposit is in the Lincolnton-McCormick district, which includes other mines and prospects for gold, silver, copper, zinc, lead, kyanite, and manganese, in rocks of the southern Carolina slate belt (pl. 1). The Barite Hill deposit was mined from 1990 to 1994, and, during this time, approximately 1,835,000 grams of gold and 3,390,280 grams of silver were produced (S. Wilkerson and D.W. Halverson, Nevada Goldfields, oral commun., 1994), mainly from oxidized ores in the Main and Rainsford Pits (pl. 2).

The purpose of this report is to make available a regional geologic map (pl. 1), and geologic maps (pl. 2) and block diagrams (pl. 3) of the Barite Hill mine to supplement a brief summary of the geology of the deposit (Clark, 1997) and a more detailed report by Clark, Gray, and Back (in press). The maps in this report supersede geologic maps that appear in preliminary reports on geochemical profiles (Clark and others, 1993) and results of petrographic studies (Back and Clark, 1993).

Host rocks for the Barite Hill deposit are sericitically-altered, felsic metavolcanic and metasedimentary rocks of the Late Proterozoic Persimmon Fork Formation, which consists of the Lincolnton metaryholite and the overlying lower and upper pyroclastic units. The Barite Hill deposit lies stratigraphically below an overturned contact between the upper and lower pyroclastic units. The Main Pit contains four parallel zones of gold-silver mineralization: footwall, middle, hanging wall, and Red Hill ore zones. The Rainsford Pit contains only one gold-silver-rich zone, which is the stratigraphic equivalent of the footwall ore zone in the Main Pit. Gold-silver-rich zones in the Main Pit are partly coincident with lenses of siliceous barite rock, but not confined to them, and occur more commonly in pyrite-quartz altered fragmental rock. The stratigraphically uppermost of the four ore zones in the Main Pit is overlain by a zone of barite and base-metal enrichment, which is, in turn, overlain by a talc-tremolite alteration zone. Siliceous barite zones are absent in the Rainsford Pit and gold-silver minerals are associated with silicified rocks and chert.

The Barite Hill deposit is interpreted to be the result of Kuroko-type submarine volcanogenic base-metal sulfide mineralization followed by precious metal deposition under epithermal conditions. The stages of evolution of the Barite Hill deposit as related to the regional volcanic, tectonic, and thermal history are summarized in Table 1.
Table 1. Summary of stages of evolution of the Barite Hill gold deposit.

<table>
<thead>
<tr>
<th>Sequence of Events Recorded at Barite Hill</th>
<th>Results</th>
<th>Probable Correlation with Regional Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submarine volcanism; hydrothermal fluids moved through, altered, and mineralized the volcanic pile, and were exhaled onto the seafloor.</td>
<td>Deposition massive sulfide, barite, and fine-grained silicic exhalites in pyroclastic sequence. Alteration of volcanic host rocks and sediments near the seawater interface.</td>
<td>Late Proterozoic to Cambrian volcanism and sedimentation related to plate convergence and subduction, possibly in a microcontinental or island-arc setting distant from the ancestral North American continental plate.</td>
</tr>
<tr>
<td>Waning stages of hydrothermal activity in a failed massive sulfide system or a separate epithermal event.</td>
<td>Au-Ag-Te and base- and precious-metal telluride-selenide-bismuth mineralization.</td>
<td>Late stages of the volcanic phase or a later event.</td>
</tr>
<tr>
<td>Greenschist facies metamorphism, folding and thrust faulting.</td>
<td>Development of pervasive cleavage parallel to axial planes of tight to isoclinal folds, shearing of folds, development of greenschist-facies mineral assemblage, recrystallization of siliceous-barite and massive sulfide minerals in lenses that are elongate parallel to regional cleavage.</td>
<td>Middle to Late Ordovician Taconic collision of the Carolina terrane with the North American continent.</td>
</tr>
<tr>
<td>Late- to post-tectonic remobilization of quartz, barite, and gold.</td>
<td>Cross-cutting quartz and barite veins.</td>
<td>Late phases of Taconic orogeny, Middle Paleozoic thermal events, and (or) the Alleghanian orogeny.</td>
</tr>
<tr>
<td>High-angle faulting.</td>
<td>Offset of orebodies.</td>
<td>Mesozoic rifting.</td>
</tr>
<tr>
<td>Deep weathering and oxidation.</td>
<td>Removal of base-metal sulfides and precipitation of ferric oxide-hydroxide gossans and barite crystals in upper part of mineralized zone.</td>
<td>Quaternary exposure to ground water and atmospheric conditions.</td>
</tr>
</tbody>
</table>
REFERENCES CITED

Plate 1. Bedrock geologic map showing the regional setting of the Barite Hill gold deposit and locations of other gold, base-metal sulfide, and alumino-silicate mines in the Lincolnton-McCormick district.

Geologic Maps and Block Diagrams of the Barite Hill Gold Deposit and Vicinity, South Carolina and Georgia

By Sandra H.B. Clark
Persimmon Fork Formation (Late Proterozoic)

Upper pyroclastic unit

Metashales—Metamorphosed shales to marls, showing little alteration and lacking coarseness (flour or shelly material). Typically contains interbedded talc and quartz phyllosite in subphyllosite, palygorskite (claystone), silicified matrix (white where altered).

Metarhyolite—Massive to weakly foliated volcanic rock with alteration minerals and feldspar as crystals and in the matrix. Metasedimentary rocks locally preserve with felsic to intermediate metatuff. Metatuff typical contains quartz and feldspar and quartz phenocrysts in aphanitic, pale green (chloritic), siliceous matrix (white where altered).

Metadacite porphyry--Massive to weakly foliated volcanic rock with alteration and baking at contacts (flow or shallow intrusive). Typically contains subhedral quartz crystals and fragmental textures common. Includes some volcaniclastic epiclastic, rocks, typically tan to green (chloritic). Thinly bedded to finely laminated.

Metasedimentary rock--Immature, coarse to fine-grained volcaniclastic, and (or) epiclastic, rocks, typically tan to green (chloritic). Intercalated with felsic tuff.

Fragmental rocks; pyroclastic, tectonic, or hydrothermal breccias

Gold-enriched zone (average > 1 ppm)

Drill holes are drilled at an angle of about 45°, a bearing of 157°. All drill holes are drilled to the deepest point of the zone where barite is present and does not imply endorsement by the U.S. Government.

Geologic Maps and Block Diagrams of the Barite Hill Gold-Silver Deposit and Vicinity, South Carolina and Georgia

By

Sandra H.B. Clark

Plate 2. Geology of the Barite Hill Gold Deposit, South Carolina

Plate 2 of 3

OPEN FILE REPORT OF-99-148A

PLATE 2 OF 3

Geologic Maps and Block Diagrams of the Barite Hill Gold-Silver Deposit and Vicinity, South Carolina and Georgia
DESCRIPTION OF UNITS

Persimmon Fork Formation (Late Proterozoic)

Upper pyroclastic unit

Metahyaline--Hairline to weakly foliated rock of probable basaltic to andesitic composition. Polycrystalline to light-textured porphyry with minimal crystallization.

Metakeratophyre--Fine-grained massive to weakly foliated, light green porphyritic rock. Similar in rock, typically tan to green (chloritic). Thinly bedded to finely laminated. Intercalated with felsic siliceous barite-rich rock--Quartz-barite rock; typically fine-grained quartz with mosaic texture and Metadacite porphyry--Massive to weakly foliated volcanic rock (flow or shallow intrusive) in the Upper pyroclastic unit of the Middle Ore Zone. Typically contains abundant feldspar and quartz phenocrysts in aphanitic, pale green (chloritic), siliceous matrix (relative abundance unknown). Metavolcanic and metasedimentary rocks--Immature, thinly bedded to finely laminated, fine- to subhedral feldspar and quartz phenocrysts in aphanitic, pale green (chloritic), siliceous matrix. Intercalated with felsic and d. fine-grained siliceous vitric tuff, commonly pyritic. Metatuff is typically chloritic and contains quartz and feldspar as crystals and in the matrix. Metatuffaceous rocks locally preserve grading, rip-up clasts, and turbidite bedding. Includes marble lenses locally. Alteration minerals include talc, tremolite, and actinolite.

Lower pyroclastic unit

Metamorphic--Fine-grained to weakly foliated, light green porphyritic rock. Similar in hand specimen to metamorphic porphyry. Metamorphic--Fine-grained to weakly foliated, light green porphyritic rock. Similar in hand specimen to metamorphic porphyry. Metascammitite--Fine-grained to weakly foliated, light green porphyritic rock. Typically contains abundant feldspar and quartz phenocrysts in aphanitic, pale green (chloritic), siliceous matrix (relative abundance unknown). Metamorphic--Fine-grained to weakly foliated, light green porphyritic rock. Similar in hand specimen to metamorphic porphyry. Metasedimentary rock--Immature clastic, volcaniclastic, and(or) epiclastic coarse to fine-grained rock, typically tan to green (chloritic). Thinly bedded to finely laminated. Intercalated with felsic

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.