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Cover: Cross-section of a three-dimensional ground-water flow model showing dipping high- 
and low-permeability beds of the Brunswick Group in northwestern Lansdale, Pennsylvania (see 
figure 24 of this report, and related discussion). “Keystone” and “Rex” designate properties where 
aquifer tests were conducted to provide drawdown and recovery data for calibration of the 
model.
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CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Vertical datum: In this report, “sea level” refers to the National Geodetic Vertical Datum of 1929—a 
geodetic datum derived from a general adjustment of the first-order level nets of the United States and 
Canada, formerly called Sea Level Datum of 1929.

Multiply By To obtain

Length

inch (in) 25.4 millimeter
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SIMULATION OF AQUIFER TESTS AND GROUND-WATER FLOWPATHS AT THE 
LOCAL SCALE IN FRACTURED SHALES AND SANDSTONES OF THE 
BRUNSWICK GROUP AND LOCKATONG FORMATION, LANSDALE, 

MONTGOMERY COUNTY, PENNSYLVANIA

by Daniel J. Goode and Lisa A. Senior

ABSTRACT

The U.S. Geological Survey, as part of technical assistance to the U.S. Environmental Protection 
Agency, has constructed and calibrated models of local-scale ground-water flow in and near Lansdale, Pa., 
where numerous sources of industrial contamination have been consolidated into the North Penn Area 6 
Superfund Site. The local-scale models incorporate hydrogeologic structure of northwest-dipping beds 
with uniform hydraulic properties identified in previous studies. Computations associated with mapping 
the dipping-bed structure into the three-dimensional model grid are handled by a preprocessor using a 
programmed geographic information system (GIS). Hydraulic properties are identified by calibration of 
the models using measured water levels during pumping and recovery from aquifer tests at three sites. 
Reduced flow across low-permeability beds is explicitly simulated. The dipping high-permeability beds 
are extensive in the strike direction but are of limited extent in the dip direction. This model structure 
yields ground-water-flow patterns characteristic of anisotropic aquifers; preferred flow is in the strike 
direction. The transmissivities of high-permeability beds in the local-scale models range from 142 to 1,900 
ft2/d (feet squared per day) (13 to 177 m2/d). The hydraulic conductivities of low-permeability parts of 
the aquifer range from 9.6 x 10-4 to 0.26 ft/d (feet per day) (2.9 x 10-4 to 0.079 m/d). Storage coefficients and 
specific storage are very low, indicating the confined nature of the aquifer system. The calibrated models 
are used to simulate contributing areas of wells under alternative, hypothetical ground-water-
management practices. Predictive contributing areas indicate the general characteristics of ground-water 
flow towards wells in the Lansdale area. Recharge to wells in Lansdale generally comes from infiltration 
near the well and over an area that extends upgradient from the well. The contributing areas for two wells 
pumping at 10 gal/min (gallons per minute) extend about 1,500 ft (feet) upgradient from the wells. The 
contributing area is more complex at ground-water divides and can extend in more than one direction to 
capture recharge from more than 3,300 ft away, for pumping at a rate of 30 gal/min. Locally, all recharge in 
the area of the pumping well is not captured; recharge in the downgradient direction about 150 ft from the 
pumping well will flow to other discharge locations.

INTRODUCTION

Ground water in the area of the Borough of Lansdale, Pa., has been withdrawn since the early 20th 
century for use as drinking water and for industrial supply. In 1979, water from public-supply wells in the 
area was found to be contaminated with trichloroethylene (TCE), tetrachloroethylene (PCE), and other 
human-made organic compounds (CH2M Hill, 1991). Through additional sampling, an area of ground-
water contamination was identified, and the site, known as North Penn Area 6, was placed on the National 
Priority List (NPL) by the U.S. Environmental Protection Agency (USEPA). The North Penn Area 6 site 
encompasses about 3 mi2 (square miles) [2.6 km2 (square kilometers)] and includes at least six sources of 
contamination on separately-owned properties largely within the Borough of Lansdale (CH2M Hill, 1991). 
The site is located on the U.S. Geological Survey (USGS) Lansdale and Telford 7.5-minute topographic 
quadrangle maps (fig. 1). 
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Figure 1.-- Location of North Penn Area 6 site, Lansdale, Pa.
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Since 1995, abandonment of public-supply wells in favor of an alternative surface-water supply 
source and closure of industrial facilities has changed the location and rate of ground-water withdrawals 
in Lansdale. Concerned about contaminant migration, the USEPA needed information about the effects of 
these changes in water use on the direction of ground-water flow. In 1995, the USGS, in cooperation with 
USEPA, began a study to describe the ground-water system and simulate ground-water flow on a regional 
scale using a numerical model in the area of Lansdale. Data collected for the study from 1996 through 1998 
included geophysical logs of wells, water levels in wells, streamflow measurements, aquifer-interval-
isolation tests, and multiple-well aquifer tests (Conger, 1999; Senior and Goode, 1999). This work was done 
to assist the USEPA in preparing a remedial investigation and feasibility study (RI/FS) of the North Penn 
Area 6 site (Black & Veatch Waste Science, Inc., 1994, 1998).

The numerical model used by USGS (Senior and Goode, 1999) to simulate ground-water flow in the 
area of Lansdale provided estimates of bulk aquifer transmissivity and general ground-water-flow paths 
on a regional scale, but not at the local or site scale. The regional-scale model structure did not incorporate 
local heterogeneity or the geologic structure of dipping beds, aquifer characteristics that appear to affect 
local ground-water flow as determined from aquifer tests at four properties in North Penn Area 6 in 1997 
(Senior and Goode, 1999). Therefore, the USGS proposed, in late 1999, additional simulations to more 
accurately simulate ground-water flow at the local scale in selected areas where pumping may be used as 
part of the ground-water remediation.

Purpose and Scope

This report presents numerical simulations of ground-water flow using the porous-media model 
MODFLOW (Harbaugh and McDonald, 1996) at the local scale for two areas in and near Lansdale, Pa. The 
simulations are based on a model structure that includes the geologic structure of dipping beds.The 
automatic, nonlinear optimization program, MODFLOWP (Hill, 1992), is used to calibrate the model to 
water levels measured during aquifer tests done in 1997. Contributing areas for wells pumped during 
these aquifer tests and drawdown in the pumped well and observation wells are simulated. 

Previous Work

Work done by USGS for USEPA on North Penn Area 6, Lansdale, Pa., is described in reports by 
Goode and Senior (1998), Conger (1999), and Senior and Goode (1999). Senior and Goode (1999) discuss 
results of numerous previous studies in the Lansdale area. Aquifer tests at the J.W. Rex Co. property are 
summarized in the report prepared by QST, Inc. (1998).

Acknowledgments
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SUMMARY AND CONCLUSIONS

Ground water in the Lansdale area is contaminated with organic solvents, and contaminant 
migration is of concern as pumping patterns in the area change. The U.S. Geological Survey (USGS) 
provided technical assistance from 1995 to 1999 to the U.S. Environmental Protection Agency (USEPA) in 
remedial investigations at the North Penn Area 6 site, Lansdale, Pa. This assistance included describing 
the ground-water system and simulating of ground-water flow on a regional scale. Lansdale is underlain 
by dipping beds of Triassic-age shales, siltstones, and sandstones of the Brunswick Group and Lockatong 
Formation that form a layered aquifer. The calibrated regional model indicated that the aquifer appeared 
to be anisotropic; transmissivity is greatest in the strike direction of underlying rocks. However, the 
regional model did not incorporate local hydrogeologic detail that could be inferred from geophysical 
logs, aquifer tests, and other data. In late 1999, the USGS began additional modeling of ground-water flow 
in selected areas of Lansdale on a local scale.

On a local scale, ground-water flow in the Lansdale area occurs primarily in high-permeability bed-
oriented features that dip northwest with the regional geologic structure. Numerical models of local-scale 
ground-water flow are developed using the dipping hydrogeologic structure and measured water levels 
during aquifer tests at three locations in north-central and northwestern Lansdale. Predictive contributing 
areas for individual pumping wells are simulated using the calibrated local-scale flow models, in 
conjunction with a previously developed calibrated steady-state model of regional flow. 

The local-scale flow models approximately simulate measured drawdown and recovery during 
pumping. The heterogeneous hydrogeologic structure is explicitly incorporated in the local-scale models, 
and the hydraulic properties of the dipping beds are identified by model calibration. The complex three-
dimensional structure in the models cannot be included in simpler analytical models commonly used for 
aquifer-test analysis. Transmissivities determined from calibration of the local-scale models, nevertheless, 
are similar to those calculated using analytical methods for the aquifer tests. Computations associated 
with mapping the dipping bed structure into the three-dimensional model grid are handled by a 
preprocessor using a programmed geographic information system. Reduced flow across low-permeability 
beds is explicitly simulated. The dipping high-permeability beds are extensive in the strike direction but 
are of limited extent in the dip direction. This model structure yields ground-water-flow patterns 
characteristic of anisotropic aquifers; preferred flow is in the strike direction. The transmissivities of high-
permeability zones in the local-scale models range from 142 to 1,900 ft2/d (13 to 177 m2/d). The hydraulic 
conductivities of low-permeability parts of the aquifer range from 9.6 x 10-4 to 0.26 ft/d (2.9 x 10-4 to 0.079 
m/d). In comparison, the geometric mean or “effective” transmissivity of the regional scale model was 
1,050 ft2/d, a value that lies in the range of transmissivities determined from the local-scale model and 
represents bulk properties of the Brunswick Group aquifer. Storage coefficients and specific-storage values 
are very low, indicating the confined nature of the aquifer system. 

Predictive contributing areas indicate the general characteristics of ground-water flow towards 
wells in the Lansdale area. Recharge to wells in Lansdale generally comes from infiltration near the well 
and over an area that extends upgradient from the well. Locally, all recharge in the area of the pumping 
well is not captured; recharge in the downgradient direction about 150 ft from the pumping well will flow 
to other discharge locations. The contributing areas for two wells pumping at 10 gal/min (Mg-1609 in 
north-central and Mg-1610 in northwestern Lansdale) extend about 1,500 ft upgradient from the wells. The 
contributing area is more complex at ground-water divides and can extend in more than one direction and 
capture recharge from more than 3,300 ft away, for pumping at a rate of 30 gal/min (well Mg-625 in 
northwestern Lansdale). The contributing area for well Mg-625 in northwestern Lansdale is compared for 
simulations using the local-scale model and the previously developed regional scale-model. The 
contributing area simulated by the regional-scale model is more elongated in the strike direction than the 
contributing area simulated by the local-scale model. Differences in the shape of the contributing area 
simulated by the two models may be caused partly by grid-size differences and the anisotropic character 
of the aquifers in the regional-scale model.
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