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ABSTRACT

The Permian Phosphoria Formation of southcastern Idaho is one of the largest
phosphate producing deposits in the world. Despite the economic significance of this
Formation, the fine-grained nature of this phosphorite deposit has discouraged detailed
mineralogical characterization and quantification studies. Recently, the issue of naturally
occurring Se and other potentially hazardous trace elements from mine wastes has drawn .
increased attention to this Formation, and motivated more extensive study. Part of this
effort has focused on conducting a more detailed geological, including a mineralogical,
characterization of the area.

Past research has identified the presence of major minerals in the formation,

including carbonate-fluorapatite, quartz, and dolomite, along with a varicty of shect

+
t

silicates and feldspar phases. Minor phases such as pyrite and sphalerite have also been
identified in the deposit and have been suggested as possible sites for Se residence.

This study used powder X-ray diffraction (XRD), with Rietveld quantification
software, to characterize the 67 samples collected from two stratigraphic sections
measured by the U.S. Geological Survey at the Enoch Valley mine in the Meade Peak
" Member of the Phosphoria Formation. This analysis shows extensive variability of
carbonate substitution into the fluorapatite structure, determined by measurements of the
apatite a-cell dimension. The analysis produced quantitative mineralogical results for the
67 samplcs, éhowing some patterns of corrclation between mineralogy and the

stratigraphy.
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INTRODUCTION
Location and Background

The U. S. Geological Survey (USGS) has studied the Permian Phosphoria
Formation and related rock units in southeastern Idaho and the entire Western Phosphate
Field through much of the twentieth century. The Phosphoria Formation hosts one of the
worlds most economically significant phosphate deposits; however, it is also enriched in
Se and other environmentally sensitive trace elements, including As, Cd, Cr, Mo, Ni, V,
and Zn. Elevated concentrations of these trace elgments and the possible environmental
impact they pose have increased interest in the geology of the area. In response to a
request by the Bureau of Land Management (BLM), a new series of resource, geological,
and gecoenvironmentatl studies was undertaken by the USGS in 1998. To carry out these
studies, the USGS has formed collaborative research relationships with two federal
agencies, the BLM and the U.S. Forest Service (FS), tasked with land managément and
resource conservation on public lands, and with five companies currently leasing or
developing phosphate resources in southeast Idaho. The five companies are Agrium U.S.
Inc. (Rasmussen Ridge mine), FMC Corporation (Dry Valley mine), J. R. Simplot
Company (Smokey Canyon mine), Rhodia Inc. (Wooley Valley mine - inactive), and
Solutia Inc. (Enoch Valley mine).

Present studies consist of integrated, multidisciplinary research directed toward
(1) resource and reserve estimation of phosphate in selected 7.5-minute quadrangles; (2)
elemental residence, mineralogical, and petrochemical characteristics; (3) mobilization
and reaction pathways, transport, and fate of potentially toxic elements associated with

the occurrence, development, and societal use of phosphate; (4) geophysical signatures;



and (5) improved'understanding of depositional origin. Because raw data acquired during
the project will require time to interpret, the data are rcleased in open-file reports for
prompt availability to other workers. Open-file reports associated with this series of
resource and geoenvironmental studies are submitted to each of the Federal and industry
cooperators for technical review; however, the USGS is solely responsible for the data
contained in the reports. This report summarizes the results of mineralogical studies
conducted on samples collected from two measured stratigraphic sections at an operating

mine in the central part of Rasmussen Ridge (figure 1).

Previous Studies

Historic mineralogical analyses of the Phosphoria Formation produced qualitative
characterizations ofli'%c distribution of major and minor mineral phases in the deposit.
Petrographic analyses, particutarly Mabic and Hess (1963) combined with XRD studies
supported by chemical analyses (Lchman, 1966) identificd many of the minerals found in
the arca. The most significant attempt to quantify the mincralogy of the region was made
by Medrano and Piper (1992). This study used normalizing techniques to arrive at the
mineralogy of the Phosphoria Formation. Along with the more common minerals
considered in these studies, Gulbrandson (1974) identified the presence of the ammonium
feldspar buddingtonite in the Phosphoria Formation. These studies, along with current

work on the mineral chemistry (Desborough and others, 1999), constitute the foundation

of background literature for the mineralogical investigation.
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METHODS

Materials analyzed for the mineralogical study were splits from samples collected
by the USGS from two measured stratigraphic sections across the Meade Peak
Phosphatic Shale Member of the Phosphoria Formation exposed on the central part of
Rasmussen Ridge, Caribou County, Idaho. Lithologic descriptions of the measured
stratigraphic sections are reported in Tysdal and others (1999), and chemical analyses of
samples are presented in Herring and others (1999). The two measured sections include
one from a shallow (less that 10 m), more weathered exposure (A) and the other from a
deeper, less-weathered exposure (B) at an active mine. Data sets for this study include
XRD and Inductively Coupled Plasma (ICP) analyses f(_)r each sample. XRD analyses’
were conducted with a 2-Theta scan from 2° - 62° over 28 minutes, using Cu radiation on
a Stemens D5000 diffractometer operating at 40 kV and 30 mA. These relatively fast
scans reveal the major phascs in the samples; however, low peak to background ratios
prevent accurate identification of minor phases (generally those less than 1%) in the
samples. Once the phases in the scans are identified, the patterns are analyzed using the
Siroquant program (Taylor 1991). Using Rictveld analysis, the program generates a scan
with a known mineralogy, matching it to the collected scan, thus quantifying and
characterizing the collected scan. Siroquant refines the shapes of the XRD peaks,
accounts for shifts in cell parameters, and considers preferred orientation of minerals
when necessary. Mineralogical characterization of the samples is also used to determine
the extent of carbonate substitution into the fluorapatite structure. Measurement of the a-
cell dimensions of the fluorapatite provides an estimate of the CO;Z' substitution for PO43'

in the fluorapatite structure, as calculated by McClellan (1980). Finally, a calculated



chemistry is determined, based on the quantification results from the XRD, and then

compared to the ICP data of Herring and others (1999).

RESULTS
Carbonate substitution

As well as quantifying the mineralogy of a sample, Rietveld analysis can be used
to characterize individual mineral phases. This is particularly useful for the primary ore
mineral in the Phosphoria Formation and other phosphorite deposits, carbonate-
fluorapatite. In this mineral, varying amounts of planar CO;> groups substitute into the
fluorapatite structure for PO, tetrahedra. The resulting charge imbalance can be
accounted for with an additional F~ entering the structure. This relationship has been
observed (McClellan gﬁ‘ud van Kauwenbergh, 1990) in numerous chemical analyses where
substitution of CO;Z' for PO, is coupled with F™ to balance the charges. However, the
charge can also be balanced with the addition of an OH™ or with the substitution of a
monovalent cation such as Na® for Ca*". McClellan (1980) devised a method with which
to estimate the degree of substitution in a given carbonate-fluorapatite based on the
change of the a-cell parameter, as can be measured using the Rietveld analysis.
McClellan’s formula yields the proportion of carbonate to phosphate in a sample based

on the following equation:

COST I POY =Z/(6-Z) = (9.369 — ags) / 0.185

McClellan also determined that substitution of Na and Mg could be estimated using the

measured a-cell parameter:

(Moles Na) x = 7.173 (9.309 — aw,)
(Moles Mg) y = 2.784 (9.369 — aps)



These substitutions are based on the assumption that the formula for carbonate-
fluorapatite is Cajg - x-y Nay Mg, (PO4)s.; (CO3), Fo4.F2.

This method has been used for preliminary compositional estimates based on the
a-cell parameters measured using the Siroquant software. For each sample, the calculated
CO,*, Na”, and Mg”* content in the carbonate fluorapatite are produced (table 1, figure
2). However, the method does not take into account other substitutions such as SO,* for
PO, so the presented data can only be considered a preliminary estimate.

While table 1 lists the average amounts of substitution in the samples, the samples
are not homogenous in their apatite composition. Splitting of the apatite peaks on the
XRD pattern (figure 3) reveals that the degree of CO,* substitution varies not only
between samples but within individual samples as well. Some of the peak splitting in the
samples could be a result of slight mineralogical variation over the length of the sample
trenches. However, this phenomenon has also been observed in grab samples collected
from the same locality. This multi-apatite phase presence suggests that the apatite has

recrystallized since deposition.

Calculated mineralogy from ICP data

To establish a baseline for comparison, the normative mineralogy (table 2) of the
samples (reported in weight percent) was determined using chemical data from Herring
and others (1999). This method made many assumptions, oversimplifying the data to
acquire estimates and establish limits for the mineral composition of the samples. This

method was designed to arrive at semi-quantitative results for the mincralogy.



Fluorapatité quantities were calculated assuming that all of the P in each of the
samples resides in fluorapatite, but it neglects to account for the significant presence of
carbonate substitution for phosphate as discussed above. Likewise, values for maximum
"quartz’ are based on a calculation in which all of the silica in each sample is contained
in quartz. This assumption is obviously inaccurate, as there are certainly other silicate
phases present; howcver; it is useful in that it provides an upper limit on the total amount
of silicate phases in each sample. Doloniite compositions are estimated twice: (1) based
on the assi gﬁment of all Mg in the samples to dolomite; and (2) based on the carbonate
content. Other phases present in the sample, such as feldspars and sheet silicates, cannot
be easily estimated using the bulk chemistry due to their complex stoicheomectry, so these
are not included in this aspect of the study. A more complete normative-calculation to

;
arrive at the mineral abundance was completed by Medrano and Piper (1992).

Quantified mineralogy

The Siroquant software package uses Rictveld analysis to quantify the
mincralogical content in weight percent based on the XRD patterns. First, the phases in
cach sample must be identified, and then the program will match a calculated XRD
pattern based on the known crystal structure of the mineral to the actual pattern to
determine the quantities of each phase. Siroquant refines each identified phase,
correcting for variable peak shape, preferred orientation, and shifts in cell parameters
(figure 4). The quantity of each phase is reported along with an error value (table 3,

figure 5). The overall quality of the match between the calculated and collected patterns
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is shown in the ¥* value, where lower values are more accurate and any value under 3.0 is
considered acceptable

Two main problems were encountered while quantifying these samples. First, not
all of the phases were accounted for in some of the samples. Those samples marked with
an (*) in table 3 have a significant crystalline phase that was not analyzed. In most of
these, such a phase is believed to be the mineral rectorite, an interlayered illite-smectite
clay. The database on the Siroquant program does not contain all minerals, and less
common phases such as rectorite must be added. Analysis of this and other minor phases
will be completed in a later study. Still, data for these samples displays the proportions
of other phases to one another, so they are included. In addition, because the scans that
were analyzed were short (28 minutes), each sample i1s currently being reanalyzed using
an 8-hour scan, which should greatly improve the peak-background ratio. Improved
resolution will enable better analysis of minor phases and more dctailed minenglogical

characterization, such as resolution between feldspars.

Comparison of XRD and ICP data

To compare the results from the ICP with those from the XRD, the quantified
mineralogical data derived from XRD analysis were used to calculate a theoretical
chemical composition and were then compared to the ICP data (table 4, figure 6).
Weight percents for the major elements were calculated using ideal formulas for the
identified mineral phases. These formulas include; apatite Cas(PO,);, quartz SiOs,
muscovite-illite KAl(AlSi3)10(OH),, albite NaAlSi;Og, orthoclase KAISi;Os,

buddingtonite (NH;)AISi;0g° 0.5H,0, AL,Si-05(OH),, dolomite CaMg(CO3)», and calcite

10



CaCO;. A slight adjustment factor was applied to the calculated chemical data to account
for NH," and OH" because these were not measured on the ICP. These weight percents
were then compared to the values gathered on the ICP. The ICP values were adjusted to
exclude those elements that were not accounted for in the mineralogy (such as Fe, S, and
the trace elements) in order to improve the comparability of the data sets. The quality of
the correlation between the two data sets is variable. While many of the samples show
nearly perfect matches for some elements, others reveal differences of more than 100%
between them. These differences can be attributed to a combination of causes, a
testament to the complexity of the mineral chemistry in the samples.

First, both data sets are subject to standard experimental error, which undoubtedly
has some role in the discrepancies. Errors for the ICP data are listed in table 5,
accounting for some o:f the discrepancies. In addition, the simplicity of the assumed
stotcheometry in transferring mineralogical data to chemical data has likely skewed the
results. By using the ideal chemical formulas, the presence of significant substitutions
would not be taken into account. For instance, reportcd K values could be affected by
this oversimplification. With sufticient NH" <-> K substitution in orthoclasc, the
mineral buddingtonite is formed, as discussed by Gulbrandssen (1974). While orthoclase
and buddingtonite are both analyzed, it is possible that a solid solution between K* and
NH," exists in these phases, as well as in muscovite and other sheet silicates. The
substitution of NH;" <> K" is only considered for the end-member compositions;
consequently, failure to recognize the possibility of this and other solid solution series

could play a major role in the discrepancies between the calculated and measured

chemical compositions.
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Another source of significant error is the potential failure to recognize phases in
the XRD analysis. Quantification of both minor crystalline and amorphous phases has
not yet been determined in many of the samples. For instance, sample WPSA062C
shows an extremely large difference between the calculated chemistry and the measured
chemistry. This sample is from a carbon seam, rich in noncrystalline organic matter that
is not accounted for in this Siroquant quantification, thus falsely elevating the relative
percents of the crystalline phases present. In addition, the presence of minor phases such
as pyrite, which has been reported to be present in concentrations as high as 5%, will
most certainly skew the calculated chemistry because it is based on the incomplete

mineralogy.

SUMDMARY AND FURTHER WORK

These preliminary studies reveal an extremely complicated and highly sfariable
mincralogy throughout the two sections mcasured and sampled across the Meade Peak
Phosphatic Shale Member of the Phosphoria Formation. Major minerals observed thus
far include carbonate-fluorapatite, quartz, dolomite, albite, orthoclase, buddingtonite, and
muscovite. Numerous other minor phases can be seen in a number of the samples as
well. Graphs of the major mineral phases, plotted in stratigraphic order, show evidence
of a pattern (figure 5). The graphs include gaps to visually separate the middle waste
shale from the upper and lower ore producing bodies. These plots show the strong
presence of feldspars, particularly the ammonium feldspar buddingtonite, in the middle
waste shale of both benches. Additionally, the presence of fluorapatite and quartz, both

in the middle waste as well as in the ore bodies, is highly variable. As expected based on



the ICP data, the A-bench is very low in dolomite in comparison to the lcss-weathered B-
bench. These are only preliminary observations, and many more comparisons will be
made combining the mineralogical data and much of the other data that has been, and
continues to be, produced as a part of the USGS Western U.S. Phosphate Project.

Along with the quantitative results, numerous other alternative observations were
made. The CO;% substitution into fluorapatite is shown to be highly variable, both over
the stratigraphic sections and within individual samples. Through the two measured
sections, the degree of substitution is highly variable, with few obvious stratigraphic
controls (figure 2). The B-bench does show a generally higher level of CO;? substitution
than the A-bench. Because of the relatively unstable presence of the CO;* in the
fluorapatite structure, the more weathered samples should contain less CO;* rich apatite,
as is indeed secn with {hc more weathered A-bench having lower CO;* levels than the B-
bench. The presence of multi-apatite phases in samples from the scctions suggests that
apatite has recrystallized since initial deposition. This suggests that the rocks have
undergone weathering to remove CO;™ and then a recrystallization period. While this
change can be observed in the fluorapatite, it could also have affected other phases and
clements.

Also of note in this study is the significant presence of the rare ammonium
feldspar mineral buddingtonitce, first reported to exist in the Phosphoria Formation by
Gulbrandson (1974). Although relatively uncommon, this mineral was found at levels of

over 30%5 in one sample and above 20% in many others. The large amount of

buddingtonite suggests a significant presence of ammonium in the Formation. - The



possibility of extensive solid solutions between buddingtonite and orthoclase, as well as
between muscovite/illite and an ammonium sheet silicate must be considered as well.
Plans for additional studies include continuations of much of the work reported
here. More detailed XRD scans should lead to a better resolution for understanding
minor phases as well as more complicated phases such as the feldspars. Ultimately, these
mineralogical studies will be integrated with the ongoing research of others associated
with the project. These other studies, such as microprobe and scanning electron
microscope analyses, could be combined with this and further mineralogical work, to

establish a better understanding of the mineralogy and overall geology of the area.
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Table 1: Composition of fluorapatite for each sample based a-cell dimensions. The concentrations of
CO,*, Na*, and Mg? in the fluorapatite are given in moles for the unit formula:

Cayq., .y Na, Mg, (PO,)¢., (CO;), Fo,Fa, (McClellan 1980).
CO,* content is also given as percent molar substitution for PO

Sample # fluorapatite a- CO,* content Percent CO,> Nacontent (X) Mg content
cell (A) (Z) per unit  substitution for per unit (Y) per unit
formula PO* formula formula
WPSA002C 9.365 0.12 2% 0.03 0.01
WPSAQ006C 9.360 0.28 5% 0.06 0.03
WPSA008C 9.358 0.33 5% 0.08 0.03
WPSAOQL5C 9.361 0.26 4% 0.06 0.02
WPSA022C 9.362 0.21 3% 0.05 0.02
WPSA024C 9.362 0.21 3% 0.05 0.02
WPSA026C 9.368 0.02 . 0% 0.00 0.00
WPSA030C 9.362 0.21 3% 0.05 0.02
WPSA035C 9.360 0.27 4% 0.06 0.02
WPSA040C 9.362 0.23 4% 0.05 0.02
WPSAO050C 9.368 0.02 0% 0.00 0.00
WPSA057C 9.359 0.30 5% 0.07 0.03
WPSA060C 9.364 0.16 3% 0.04 0.0!1
WPSA062C 9.362 0.21 3% 0.05 0.02
WPSA063C 9.361 0.24 4% 0.05 0.02
WPSAQ70C 9.363 0.18 3% 0.04 0.02
WPSAQ72C 9.358 0.35 6% 0.08 0.03
WPSAQ80C 9.362 0.21 3% 0.05 0.02
WPSAQ85C 9.371 -0.06* -1% -0.01 0.00
WPSA087C 9.357 0.38 6% 0.09 ».' 0.03
WPSA096C 9.366 0.1l 2% 0.03 0.0
WPSA100C 9.365 0.14 2% 0.03 0.01
WPSAI123C 9.366 .11 2% 0.02 0.0t
WPSA124C 9.373 -0.14 2% -0.03 -0.01
WPSA127C 9.366 0.10 2% 0.02 0.01
WPSA129C 9.368 0.02 0% 0.00 0.00
WPSA131C 9.377 -0.27 5% -0.06 -0.02
WPSA133C 9.364 0.17 3% 0.04 0.02
WPSA134C 9.361 0.24 4% 0.06 0.02
WPSAI138C 9.362 0.23 4% 0.05 0.02
WPSAI44C 9.358 033 6% 0.08 0.03
WPSAI147C 9.358 0.35 6% 0.08 0.03
WPSAISIC 9.355 0.42 1% 0.10 0.04
WPSA153C 9360 0.28 5% 0.06 0.03
WPSA154C 9.363 0.20 3% 0.05 0.02
WPSAL56C 9.361 024 4% 0.06 0.02
WPSA158C 9.364 0.16 3% 0.04 0.01
WPSA163C 9.364 0.16 3% 0.04 0.01

-

Negative values result from either inaccurate a-cell measurements or a weakness in the model.

~
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Table 1: Composition of fluorapatite for each sample based a-cell dimensions. The concentrations of
CO,*, Na*, and Mg?* in the fluorapatite are given in moles for the unit formula:

Cayy_, .y Na, Mg, (PO,)s, (CO;), Fy4,F2, ( McClellan 1980).
CO,* content is also given as percent molar substitution for PO

Sample # fluorapatite a- CO,” content Percent CO,> Nacontent (X) Mg content
cell (A) (Z) per unit  substitution for  per unit (Y) per unit
formula PO*> formula formula
WPSB003C 9.369 0.01 0% 0.00 0.00
WPSB00SC 9.359 0.31 5% 0.07 0.03
WPSB018C 9.356 0.39 7% 0.09 0.04
WPSB025C 9.360 0.29 5% 0.07 0.03
WPSB026C 9.354 0.46 8% 0.11 0.04
WPSB027C 9.352 0.50 8% 0.12 0.05
WPSB033C 9.366 0.1 2% 0.02 0.01
WPSB038C 9.361 0.25 4% 0.06 0.02
WPSB047C 9.362 0.23 4% 0.05 0.02
WPSB059C 9.363 0.18 3% 0.04 0.02
WPSB065C 9.371 -0.07 1% -0.01 -0.01
WPSB070C 9.363 0.19 3% 0.04 0.02
WPSB080C 9.363 0.19 3% 0.04 0.02
WPSB084C 9.356 0.40 7% 0.10 0.04
WPSB087C 9.364 0.16 3% 0.04 0.01
WPSB091C 9.361 0.24 4% 006 , 0.02
WPSB095C 9.362 0.22 4% 005 0.02
WPSB097C 9.364 0.16 3% 0.04 0.01
WPSB100C 9.359 0.30 5% 0.07 0.03
WPSB107C 9.366 0.11 2% 0.02 0.01
WPSB117C 9.360 0.27 5% 0.06 0.02
WPSBI3IC 9.358 0.35 6% 0.08 0.03
WPSB133C 9.357 0.36 6% 0.09 0.03
WPSB134C 9363 - 0.19 3% 0.04 0.02
WPSB136C 9.360 0.28 5% 0.07 0.03
WPSB137C 9.369 0.00 0% 0.00 0.00
WPSB139C 9.355 0.41 7% 0.10 0.04
WPSB145C 9.367 0.07 1% 0.02 0.01
WPSB157C 9.366 0.08 1% 0.02 0.01
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Figure 2: Graphical view of the data presented in Table 1, showing variations in carbonate substitution in
fluorapatite through the measured stratigraphic section. Gaps are inserted to separate the middle waste

from the upper and lower ore producing bodies.
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Table 2: Theoretical mineral quantities based on the ICP data. Quantities are maximum amounts of a
given mineral that can occur in a sample assuming that all P is in apatite (Ca;(PO,);F), all CO,* and Mg are
in dolomite (CaMg(CO),), and all Si is quartz (SiO,). This neglects other silicate phases, so "quartz” is
used here as a proxy for all silicate phases.

Sample # maximum % maximum % maximum % maximum %
apatite (P)  dolomite (Mg) dolomite "quartz” (Si)
(CO.») )
WSPA002C 9 3 1 60
WSPA006C 84 1 3 8
WSPAOOSC 57 1 2 27
WSPA015C 72 1 2 15
WSPA022C 20 1 1 55
WSPA024C 67 1 2 17
WSPA026C 23 1 1 47
WSPA030C 72 1 2 15
WSPA035C 55 1 2 26
WSPA040C S8 1 2 23
WSPA050C 34 2 1 39
WSPAOS7C 35 1 1 37
WSPAQ60C 28 3 1 33
WSPA062C 10 3 ) 1
WSPA063C 37 2 1 29
WSPA070C 29 2 1 36
WSPA072C 18 1 1 48
WSPA08S0OC 16 1 0 49
WSPA085C 7 2 0 54
WSPAO087C 14 1 1 46
WSPA096C 70 1 1 17
WSPA100C 40 2 1 33
WSPA123C 27 2 1 48
WSPA124C 17 1 0 55
WSPA127C 24 1 0 53
WSPA129C 38 1 1 43
WSPA131C 8 0 0 61
WSPAI33C 47 1 1 35
WSPA134C 7 ] 2 18
WSPA138C 30 2 1 39
WSPA144C 11 3 0 53
WSPA147C 67 2 2 19
WSPAISIC 92 1 3 6
WSPA153C 34 2 1 49
WSPAL54C 79 1 2 15
WSPA156C 19 2 57
WSPAI158C 87 1 5
WSPA163C 10 2 64
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Table 2: Theoretical mineral quantities based on the ICP data. Quantities are maximum amounts ofa
given mineral that can occur in a sample assuming that all P is in apatite (Cay(PO,),F), all CO,* and Mg are
in dolomite (CaMg(CQs),). and ali Si is quartz (SiO,). This neglects other silicate phases, so "quartz" is
used here as a proxy for all silicate phases.

Sample # maximum % maximum %  maximum %  maximum %
apatite (P)  dolomite (Mg) dolomite "quartz” (Si)
(CO.%)
WSPB003C 1 28 29 48
WSPB0OOSC 79 1 4 6
WSPBO18C 82 1 4 6
WSPB025C 34 48 51 11
WSPB026C 72 4 6 12
WSPR027C 1 61 64 14
WSPB033C 79 2 4 11
WSPB038C 5 67 70 18
WSPB047C 55 7 8 20
WSPB059C 44 16 18 19
WSPB065C 2 65 73 17
WSPB070C 27 3 3 34
WSPB08OC 17 1 0 51
WSPB084C 36 5 7 31
WSPBO08§7C 41 3 2 28
WSPB091C st 1 1 23
WSPB095C 15 8 7 49
WSPB097C 68 1 2 16
WSPB100C 20 1 1 5t
WSPB107C 8 0 0 56
WSPBI117C 22 7 7 40
WSPBI31C 69 1 3 9
WSPB133C 83 1 3 12
WSPB134C 28 2 | 51
WSPB136C 82 1 3 10
WSPB137C 7 2 0 68
WSPB139C 89 1 3 4
WSPB145C ] 3 0 67
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Figure 5: Graphical view of the data presented in Table 3. Variations over the two measured stratigraphic
sections are shown for each of the major mineral phases, including; apatite, quartz, muscovite, total
feldspar (including albite, orthoclase, and buddingtonite), buddingtonite, and dolomite. Gaps are inserted
in the graph to separate the middle waste from the upper and lower ore producing bodies.
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Figure 5: Graphical view of the data presented in Table 3. Variations over the two measured stratigraphic
sections are shown for each of the major mineral phases, including; apatite, quartz, muscovite, total
feldspar (including albite, orthoclase, and buddingtonite), buddingtonite, and dolomite. Gaps are inserted
in the graph to separaie the middle waste from the upper and lower ore producing bodies.
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Figure 5: Graphical view of the data presented in Table 3. Variations over the two measured stratigraphic
sections are shown for each of the major mineral phases, including; apatite, quartz, muscovite, total
feldspar (including albite, orthoclase, and buddingtonite), buddingtonite, and dolomite. Gaps are inserted
in the graph to separate the middle waste from the upper and lower ore producing bodies.
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Figure 5: Graphical view of the data presented in Table 3. Variations over the two measured stratigraphic
sections are shown for each of the major mineral phases, including; apatite, quartz, muscovite, total
feldspar (including albite, orthoclase, and buddingtonite), buddingtonite, and dolomite. Gaps are inserted
in the graph to separate the middle waste from the upper and lower ore producing bodies.
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Figure 5: Graphical view of the data presented in Table 3. Variations over the two measured stratigraphic
sections are shown for each of the major mineral phases, including; apatite, quartz, muscovite, total
feldspar (including albite, orthoclase, and buddingtonite), buddingtonite, and dolomite. Gaps are inserted
in the graph to separate the middle waste from the upper and lower ore producing bodies.
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Figure 5: Graphical view of the data presented in Table 3. Variations over the two measured stratigraphic
sections are shown for each of the major mineral phases, including; apatite, quartz, muscovite, total
feldspar (including albite, orthoclase, and buddingtonite), buddingtonite, and dolomite. Gaps are inserted
in the graph to separate the middle waste from the upper and lower ore producing bodies.
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Figure 5: Graphical view of the data presented in Table 3. Variations over the two measured stratigraphic
sections are shown for each of the major mineral phases, including; apatite, quartz, muscovite, total
feldspar (including albite, orthoclase, and buddingtonite), buddingtonite, and dolomite. Gaps are inserted
in the graph to separate the middle waste from the upper and lower ore producing bodies.
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Figure 5: Graphical view of the data presented in Table 3. Variations over the two measured stratigraphic
sections are shown for each of the major mineral phases, including; apatite, quartz, muscovite, total
feldspar (including albite, orthoclase, and buddingtonite), buddingtonite, and dolomite. Gaps are inserted
in the graph to separate the middle waste from the upper and lower ore producing bodies.
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Figure 5: Graphical view of the data presented in Table 3. Variations over the two measured stratigraphic
sections are shown for each of the major mineral phases, including; apatite, quartz, muscovite, total
feldspar (including albite, orthoclase, and buddingtonite), buddingtonite, and dolomite. Gaps are inserted
in the graph to separate the middle waste from the upper and lower ore producing bodies.
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Figure 5: Graphical view of the data presented in Table 3. Variations over the two measured stratigraphic
sections are shown for each of the major mineral phases, including; apatite, quartz, muscovite, total
feldspar (including albite, orthoclase, and buddingtonite), buddingtonite, and dolomite. Gaps are inserted
in the graph to separate the middle waste from the upper and lower ore producing bodies.
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Figure 5: Graphical view of the data presented in Table 3. Variations over the two measured stratigraphic
sections are shown for each of the major mineral phases, including; apatite, quartz, muscovite, total
feldspar (including albite, orthoclase, and buddingtonite), buddingtonite, and dolomite. Gaps are inserted
in the graph to separate the middle waste from the upper and lower ore producing bodies.
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Figure 5: Graphical view of the data presented in Table 3. Variations over the two measured stratigraphic
sections are shown for each of the major mineral phases, including; apatite, quartz, muscovite, total
feldspar (including albite, orthoclase, and buddingtonite), buddingtonite, and dolomite. Gaps are inserted
in the graph to separate the middle waste from the upper and lower ore producing bodies.
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Table 4: Comparison of ICP data (Herring and others 1999) and calculated chemistry based on mineral
compositions from Rietveld analysis. ICP data are normalized to include the elements that are calculated
using the XRD data. The average difference shows whether the XRD data overstate ("-" values) or
understate ("+" values) the ICP data. A weighted error is calculated by multiplying the error's absolute
value by a weighting factor (measured / measured average). This value shows the comparability of the two

data sets.
Ca
Sample # Mecasured % Normalized %  Calculated % Difference % Error Weighted %
(ICP) (ICP) (XRD) (Normalized - (Difference / error
Calculated) Normalized)

WPSA002C 34 39 2.1 1.2 30.9 7.0
WPSA006C 337 35.4 372 -1.8 4.9 10.3
WPSAQ08C 23.0 24.8 238 1.1 43 6.3
WPSAQ015C 29.0 30.8 30.1 0.7 23 4.1
WPSA022C 1.6 8.1 6.0 22 26.7 12.8
WPSA024C 25.2 26.8 24.6 2.1 8.0 12.5
WPSA026C 9.0 9.9 7.2 2.7 27.2 15.8
WPSA030C 274 29.3 312 -19 -6.6 11.3
WPSA035C 22.1 235 25.2 -1.7 -1.3 10.1
WPSA040C 225 244 224 2.0 8.0 11.5
WPSA050C 12.1 14.0 11.6 24 17.0 14.0
WPSA057C 13.6 15.5 16.6 -1.2 -1.6 6.9
WPSA060C 9.7 129 12.5 0.4 3.0 2.2
WPSA062C 58 19.5 15.8 38 19.3 22.1
WPSA063C 13.6 17.4 16.1 1.3 7.3 7.5
WPSAQ70C 11.0 13.1 12.6 0.5 3.6 2.8
WPSA072C 6.8 17 57 20 259 11.7
WPSA080C 5.6 7.2 52 2.0 27.3 1L5
WPSA085C 23 27 1.7 1.0 38.0 6.0
WPSA087C 4.2 49 4.5 0.4 .’.’ 7.6 2.2
WPSA096C 244 272 31.2 -4.0 -14.7 236
WPSA100C* 14.3 16.3 15.5 0.8 5.0 4.8
WPSA123C* 9.4 10.7 7.4 3.4 315 19.9
WPSA124C* 4.2 45 34 1.1 250 6.6
WPSA127C* 8.5 9.6 1.6 20 20.6 11.6
WPSA129C 14.6 15.8 10.3 5.5 34.8 324
WPSA131C 1.6 1.8 04 1.4 79.8 8.4
WPSA133C* 17.8 19.5 12.7 6.8 3s5.1 40.3
WPSAI134C* 215 294 323 -29 9.9 17.2
WPSA138C* 11.2 13.5 11.2 23 16.9 134
WPSA144C 4.2 47 28 1.9 40.9 114
WPSAL47C 26.9 29.1 23.8 53 18.3 313
WPSAILSIC 36.8 38.6 371 1.6 4.0 9.1
WPSAI153C 12.8 13.7 10.0 38 274 22.1
WPSA154C 30.8 319 334 -1.6 -4.9 9.2
WPSAI56C 7.3 79 4.0 39 49.2 23.0
WPSAI158C 349 36.2 364 -0.3 -0.7 1.5
WPSA163C 4.0 4.3 25 1.8 414 10.4
average 17.0 16.6 16.6

* Samples that contain a high percentage of an unanalyzed phase with a prominent peak at about 23 A, possibly the clay rectorite.
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Figure 6: Graphical view of the data presented in Table 4, showing the comparability of the ICP and XRD
data sets over the measured stratigraphic sections. Gaps are inserted in the graph to separate the middle
waste from the upper and lower ore producing bodies.
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Table 4: Comparison of ICP data (Herring and others 1999) and calculated chemistry based on mineral
compositions from Rietveld analysis. ICP data are normalized to include the elements that are calculated
using the XRD data. The average difference shows whether the XRD data overstate ("-" values) or
understate ("+" values) the ICP data. A weighted error is calculated by multiplying the error’s absolute
value by a weighting factor (measured / measured average). This value shows the comparability of the two
data sets.

P

Sample # Measured % Normalized %  Calculated % Difference % Error Weighted %

(ICP) (ICP) (XRD) (Normalized - (Difference / error

Calculated) Normalized)

WPSA002C 1.6 1.8 1.2 0.6 326 7.2
WPSA006C 154 16.2 16.6 -04 -2.5 49
WPSA008C 10.5 11.3 10.5 0.8 7.1 99
WPSA015C 13.2 14.0 135 0.5 39 6.7
WPSA022C 36 39 2.7 12 30.9 14.7
WPSA024C 123 13.1 11.1 2.0 15.0 239
WPSA026C 4.1 4.6 33 1.2 27.1 15.1
WPSA030C 13.2 14.1 14.1 0.0 03 0.5
WPSA035C 10.2 10.8 11.2 -04 -39 5.1
WPSA040C 10.7 11.6 10.1 15 13.1 18.6
WPSAQ50C 6.2 7.2 54 1.8 249 218
WPSA057C 6.5 7.4 1.4 0.0 03 0.2
WPSAQ60C 5.2 6.9 57 1.3 18.2 15.4
WPSA062C 1.9 6.5 7.1 -0.6 9.1 72
WPSA063C 6.8 8.7 7.2 1.5 17.0 18.1
WPSA070C 53 6.3 5.7 0.6 92 7.0
WPSA072C 33 38 25 1.3 337 15.6
WPSA080C 29 37 23 14 37.1 16.9
WPSA085C 13 16 0.8 0.8 515 10.0
WPSAQOBTC 25 29 2.0 0.9 ‘:‘, 311 110
WPSA096C* 12.8 143 14.2 0.0 0.1 0.2
WPSAI100C* 14 8.4 7.1 14 16.1 16.6
WPSA123C* 49 5.6 33 2.3 40.2 274
WPSAI124C* 3.1 34 1.6 1.8 53.3 218
WPSAI127C* 4.4 4.9 3.5 14 29.2 176
WPSA129C 7.0 16 48 28 373 34.6
WPSAI31C 14 1.6 0.2 14 895 17.5
WPSA133C* 8.7 9.5 . 5.7 38 396 45.8
WPSA134C* 13.1 14.0 145 -0.5 -3.5 6.0
WPSA138C* 5.6 6.7 5.0 1.6 24.7 20.1
WPSA144C 20 23 1.2 1.1 45.8 12.8
WPSA147C 124 134 10.5 29 21.7 355
WPSAISIC 17.0 17.8 16.2 1.6 9.1 19.8
WPSA153C 6.2 6.6 44 22 328 26.5
WPSA154C 14.6 15.1 15.1 0.0 0.2 04
WPSA156C 3.5 38 1.8 2.0 525 243
WPSA158C 16.0 16.6 16.5 0.1 0.4 0.7
WPSA163C 1.9 2.0 1.1 0.9 44.5 11.1
average 73 8.2 7.0 1.1 229 15.0
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Figure 6: Graphical view of the data presented in Table 4, showing the comparability of the ICP and XRD
data sets over the measured stratigraphic sections. Gaps are inserted in the graph to separate the middle

waste from the upper and lower ore producing bodies.
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Table 4: Comparison of ICP data (Herring and others 1999) and calculated chemistry based on mineral
compositions from Rietveld analysis. ICP data are normalized to include the elements that are calculated
using the XRD data. The average difference shows whether the XRD data overstate ("-" values) or
understate ("+" values) the ICP data. A weighted error is calculated by multiplying the error’s absolute
value by a weighting factor (measured / measured average). This value shows the comparability of the two

data sets.

Si

Sample # Measured % Normalized %  Calculated % Difference % Error Weighted %

(ICP) (ICP) (XRD) (Normalized - (Difference / error

Calculated) Normalized)

WPSA002C 279 31.6 39.5 -8.0 -25.2 419
WPSA006C 35 3.7 4.2 -0.5 -13.9 2.7
WPSA008C 12.6 13.6 169 -33 =245 17.5
WPSAOLISC 7.1 1.5 109 -34 -45.9 18.1
WPSA022C 255 273 325 -5.2 -18.9 27.1
WPSA024C 8.0 8.5 15.5 -7.0 -82.6 36.9
WPSA026C 220 243 326 -8.3 -34.3 438
WPSA030C 6.8 12 9.8 25 -35.0 133
WPSA035C 120 127 15.2 25 -19.3 13.0
WPSA040C 109 11.8 17.8 -5.9 -50.2 312
WPSA050C 18.4 213 25.2 -39 -18.1 20.3
WPSAO0S57C 17.2 19.6 23.6 4.0 -20.6 21.2
WPSA060C 155 20.6 235 -29 -14.2 154
WPSA062C 53 18.0 19.0 -1.0 -5.8 5.5
WPSA063C 134 17.1 225 -54 <317 28.6
WPSA070C 169 20.1 25.7 -5.7 -28.3 29.8
WPSA072C 226 25.6 334 =77 -30.1 40.6
WPSA080C 23.0 29.7 329 -3.2 -10.9 17.1
WPSA085C 253 30.0 357 -5.7 -19.1 30.1
WPSA087C 214 249 28.5 -3.7 -14.8 19.3
WPSAQ096C* 7.9 8.8 9.7 -1.0 -11.0 5.1
WPSAL00C* 15.3 17.5 225 -5.0 -28.7 264
WPSA123C* 224 25.6 327 -7.1 =276 37.2
WPSA124C* 25.6 27.8 389 -11.1 -40.1 58.6
WPSAIL27C* 246 279 313 3.4 -12.2 18.0
WPSA129C 19.9 216 30.9 9.3 432 49.0
WPSA131C 28.7 32.0 375 -5.5 -17.2 289
WPSAI33C* 16.4 18.0 26.0 -8.0 -44.7 423
WPSA134C* 8.6 9.2 9.2 0.0 -0.1 0.1
WPSAL38C* 184 22.1 273 -5.2 -23.7 275
WPSA144C 249 28.0 34.2 -62 =222 327
WPSA147C 89 9.6 16.4 -6.8 <709 359
WPSAILSIC 2.8 29 38 -0.9 314 4.8
WPSAIS3C 229 24.6 31.2 -6.6 -27.0 34.8
WPSAL54C 6.9 7.1 8.4 -1.2 -17.2 6.4
WPSA156C 26.7 29.1 36.0 -6.8 <235 36.1
WPSAIS8C 23 24 35 -1.1 -43.6 56
WPSA163C 29.7 320 374 -54 -16.8 28.3
average 19.0 -271.5 274
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Figure 6: Graphical view of the data presented in Table 4, showing the comparability of the ICP and XRD
data sets over the measured stratigraphic sections. Gaps are inserted in the graph to separate the middle
waste from the upper and lower ore producing bodies.
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Table 4: Comparison of ICP data (Herring and others 1999) and calculated chemistry based on mineral
compositions from Rietveld analysis. ICP data are normalized to include the elements that are calculated
using the XRD data. The average difference shows whether the XRD data overstate ("-" values) or
understate ("+" values) the ICP data. A weighted error is calculated by multiplying the error's absolute
value by a weighting factor (measured / measured average). This value shows the comparability of the two
data sets.

K
Sample # Measured % Normmalized %  Calculated % Difference % Error ~ Weighted %
(ICP) (ICP) (XRD) (Normalized - (Difference / error
Calculated) Normmalized)
WPSA002C 24 2.1 1.1 1.7 60.9 104.7
WPSA006C 03 04 0.1 0.2 65.8 14.7
WPSA008C 1.0 1.1 1.1 0.0 37 26
WPSAO01SC 0.7 0.7 0.5 03 349 15.7
WPSA022C . 2.7 29 2.7 0.3 8.7 15.8
WPSA024C 1.0 1.0 0.7 0.3 333 21.0
WPSA026C 22 24 2.8 -0.4 -15.4 23.2
WPSA030C 0.8 0.9 0.7 0.2 22.0 12.1
WPSA03s5C 1.5 1.5 0.9 0.6 40.4 388
WPSA040C 1.1 1.2 1.1 0.1 6.8 50
WPSA050C 24 28 25 0.3 10.7 18.6
WPSA057C 21 23 0.6 1.7 728 106.2
WPSA060C 2.1 2.8 23 0.5 17.7 313
WPSA062C 0.7 23 37 -14 -59.2 85.3
WPSA063C 1.5 1.9 14 0.6 29.5 35.8
WPSA070C 1.8 2.1 1.1 1.1 49.9 66.3
WPSA072C 1.6 1.8 1.3 0.5 29.1 327
WPSA080C 1.9 24 19 05 YWo19.7 29.7
WPSA085C 26 3.1 23 0.8 ) 24.8 473
WPSA087C 24 28 2.7 0.1 4.0 6.9
WPSA096C* 0.5 0.6 0.3 0.3 50.8 18.0
WPSA100C* 1.3 1.5 24 -0.9 -59.1 55.3
WPSA123C* 1.7 20 13 0.6 325 39.7
WPSA124C* 1.7 1.8 0.6 1.2 644 729
WPSA127C* 14 1.6 20 -04 -21.7 222
WPSA129C 1.2 1.3 29 -1.6 -122.8 99.7
WPSA131C 1.7 1.8 2.0 -0.2 -10.8 125
WPSA133C* 1.1 1.2 24 -1.2 -93.0 720
WPSA134C* 0.5 0.6 04 0.2 33.7 11.9
WPSA138C* 1.7 2.1 19 0.2 9.9 13.0
WPSA144C 20 22 20 0.2 10.7 14.8
WPSA147C 0.8 0.8 22 -1.4 -163.6 86.3
WPSALSIC 0.2 0.2 04 -0.3 -151.9 159
WPSA153C 1.1 1.2 14 -0.2 -204 14.7
WPSA154C 04 04 0.2 0.2 56.5 14.6
WPSA156C 13 14 2.5 -1.1 -77.7 69.3
WPSAI158C 0.2 0.2 0.8 -0.6 -353.1 38.9
WPSA163C 1.5 1.6 23 -0.7 -43.9 429
average 1.6 -10.5 37.6
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Figure 6: Graphical view of the data presented in Table 4, showing the comparability of the ICP and XRD
data sets over the measured stratigraphic sections. Gaps are inserted in the graph to separate the middle
waste from the upper and lower ore producing bodies.
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Table 4: Comparison of ICP data (Herring and others 1999) and calculated chemistry based on mineral
compositions from Rietveld analysis. ICP data are normalized to include the elements that are calculated
using the XRD data. The average difference shows whether the XRD data overstate ("-" values) or
understate ("+" values) the ICP data. A weighted error is calculated by multiplying the error’s absolute
value by a weighting factor (measured / measured average). This value shows the comparability of the two
data sets.

Al

Sample # Measured % Normalized %  Calculated % Difference % Error Weighted %

(ICP) (ICP) (XRD) (Normalized - (Difference / error

Calculated) Normmalized)

WPSA002C 54 6.1 34 26 435 58.8
WPSA006C 0.8 0.8 0.5 03 40.8 15
WPSAQQ8C 24 25 23 0.2 9.7 55
WPSAO015C 14 1.5 1.5 0.1 35 1.2
WPSA022C 6.1 6.6 55 1.1 16.7 244
WPSA024C 1.7 18 2.7 -0.9 -48.3 19.6
WPSA026C 4.5 50 4.3 0.6 123 13.5
WPSA030C 14 1.5 1.3 03 16.8 57
WPSA035C 3.5 37 24 1.3 343 279
WPSA040C 22 24 29 0.5 -20.8 11.1
WPSA050C 5.5 6.4 6.7 -03 55 7.8
WPSA057C 5.0 5.7 3.5 22 38.3 48.1
WPSA060C 55 7.3 1.5 -0.2 24 39
WPSA062C 2.8 913 79 14 14.8 30.6
WPSA063C 4.5 58 49 0.9 15.7 20.2
WPSA070C 5.1 6.0 5.7 0.3 57 1.7
WPSA072C 5.0 5.7 5.5 0.1 2.1 2.6
WPSA080C 4.8 6.2 6.3 0.1 -1.0 1.3
WPSAO085C 6.4 1.6 7.4 0.2 2.2 37
WPSA087C 7.8 9.0 10.8 -1.7 -19.2 38.6
WPSA096C* 1.5 1.6 1.5 0.2 10.6 39
WPSA100C* 39 44 52 -0.8 -18.3 18.1
WPSA123C* 4.4 5.0 4.6 04 8.8 98
WPSA124C* 6.5 7.0 3.0 4.0 57.0 88.9
WPSAI127C* 38 4.3 53 -1.0 =235 ) 222
WPSAI129C 32 34 27 0.7 20.5 15.6
WPSAI131C 59 6.5 6.4 0.1 14 2.1
WPSA133C* 29 32 4.6 -14 -44.8 319
WPSA134C* 1.4 15 0.8 0.7 46.6 15.8
WPSAI138C* 42 5.1 5.3 -0.2 4.0 4.5
WPSAI44C . 7.0 1.8 7.1 0.7 95 16.5
WPSA147C 22 24 2.3 0.0 04 0.2
WPSAILSIC 0.6 0.6 0.9 -0.2 -39.3 55
WPSAI153C 39 4.2 33 0.8 20.0 18.5
WPSALS4C 14 1.4 0.5 09 66.1 205
WPSA156C 53 5.7 4.6 1.2 20.2 25.8
WPSAI158C 0.6 0.6 1.7 -1.1 -185.0 239
WPSA163C 4.7 5.1 49 0.1 2.6 30
average 45 2.8 17.5
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Figure 6: Graphical view of the data presented in Table 4, showing the comparability of the ICP and XRD
data sets over the measured stratigraphic sections. Gaps are inserted in the graph to separate the middle
waste from the upper and lower ore producing bodies.
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Table 4: Comparison of ICP data (Herring and others 1999) and calculated chemistry based on mineral
compositions from Rietveld analysis. ICP data are normalized to include the elements that are calculated
using the XRD data. The average difference shows whether the XRD data overstate (“-" values) or
understate (“+" values) the ICP data. A weighted error is calculated by multiplying the error's absolute
value by a weighting factor (measured / measured average). This value shows the comparability of the two
data sets.

Na

Sample # Measured % Normalized %  Calculated % Difference % Error Weighted %

(ICP) (ICP) (XRD) (Normalized - (Difference / error

Calculated) Normalized)

WPSA002C 0.1 0.1 0.0 0.1 96.7 20.1
WPSA006C 03 0.1 0.1 0.0 ’ -25.4 47
WPSA008C 0.2 0.2 0.2 0.0 21.0 6.7
WPSAO15C 0.2 0.1 0.1 0.0 179 4.1
WPSA022C 0.7 1.9 1.0 09 48.3 154.8
WPSA024C 0.2 0.2 0.5 -0.2 -100.4 389
WPSA026C 0.3 0.6 0.2 0.5 69.7 754
WPSAQ030C 0.2 0.1 0.1 0.0 327 16
WPSA035C 0.1 0.2 0.1 0.1 36.0 11.1
WPSAQ040C 0.2 0.2 0.1 0.2 66.8 26.1
WPSA050C 0.3 0.8 0.1 0.7 83.5 108.7
WPSA057C 0.3 0.7 04 0.2 33.1 36.1
WPSA060C 0.1 0.4 0.0 03 90.4 55.6
WPSA062C 0.0 0.1 0.1 0.0 41.6 64
WPSA063C 0.1 0.2 0.1 0.2 743 289
WPSA070C 0.2 04 0.0 0.3 89.9 573
WPSA072C 0.6 1.0 0.8 0.3 24.5 41.7
WPSA080C 0.6 1.5 0.6 09 Y% 510 142.1
WPSA085C 0.3 0.9 02 07 ' ss 1155
WPSA087C 0.1 03 0.0 0.2 86.9 36.3
WPSAQ96C* 03 0.2 0.1 0.1 67.1 18.4
WPSA100C* 0.3 04 0.0 04 914 66.2
WPSA123C* 0.5 0.9 03 0.5 60.3 88.6
WPSA124C* 0.7 1.2 1.0 0.2 16.4 32.2
WPSA127C* 0.5 0.8 0.8 ' 0.0 22 29
WPSAI129C 0.4 0.5 0.1 0.5 89.5 79.5
WPSAI3IC 1.0 1.9 23 -0.5 -25.0 71.7
WPSA133C* 0.5 0.6 1.1 -0.6 -93.2 923
WPSA134C* 0.3 0.2 0.2 0.0 -36 1.1
WPSA138C* 04 0.8 0.8 0.1 6.1 8.5
WPSA144C 0.7 1.5 24 -09 -59.9 148.3
WPSAI147C 0.2 0.1 0.1 0.0 38 0.8
WPSAISIC 0.1 0.0 02 -0.2 -1004.2 33.7
WPSA153C 0.5 0.5 0.5 0.1 11.5 10.2
WPSA154C 0.2 0.1 0.2 -0.2 -249.5 25.8
WPSA156C 0.5 0.6 0.5 0.1 19.8 213
WPSA|158C 0.1 0.0 0.1 -0.1 -306.3 10.8
WPSAL63C 0.5 0.7 0.7 0.0 -1.0 1.3
average 0.6 -12.0 447
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Figure 6: Graphical view of the data presented in Table 4, showing the comparability of the ICP and XRD
data sets over the measured stratigraphic sections. Gaps are inserted in the graph to separate the middie
waste from the upper and lower ore producing bodies.
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Table 4: Comparison of ICP data (Herring and others 1999) and calculated chemistry based on mineral
compositions from Rietveld analysis. ICP data are normalized to include the elements that are calculated
using the XRD data. The average difference shows whether the XRD data overstate ("-" values) or
understate ("+" values) the ICP data. A weighted error is calculated by multiplying the error's absolute
value by a weighting factor (measured / measured average). This value shows the comparability of the two

data sets.

Mg

Sample # Mecasured % Normalized %  Calculated % Difference % Error Weighted %

(Icp) (ICP) (XRD) (Normalized - (Difference / error
Calculated) Normalized)

WPSA002C 0.4 0.4 0.0 04 99.6 208.5
WPSA006C 0.1 0.1 0.1 0.1 50.7 29.3
WPSA008C 0.1 0.2 0.0 0.1 7n3 53.9
WPSAQ15C 0.1 0.1 0.0 0.1 69.2 47.8
WPSA022C 0.1 0.1 0.0 0.1 9s5.1 66.2
WPSA024C 0.1 0.1 0.0 0.1 76.4 44.6
WPSA026C 0.1 0.1 0.0 0.1 99.5 713
WPSAO030C 0.1 0.1 0.0 0.1 74.8 52,0
WPSAO035C 0.2 0.2 0.0 0.2 815 822
WPSA040C 0.2 0.2 0.0 0.1 82.6 67.2
WPSA050C 0.2 03 0.0 0.3 99.5 126.8
WPSAO057C 0.2 0.2 0.0 0.2 86.7 88.8
WPSA060C 0.3 0.5 0.0 04 97.6 220.1
WPSA062C 0.4 1.2 0.0 12 98.5 601.1
WPSA063C 0.3 0.3 0.0 0.3 93.5 149.3
WPSA070C 0.3 0.3 0.0 03 96.2 154.1
WPSAQ72C 0.1 0.1 0.0 0.1 91.0 56.8
WPSAQ80C 0.1 0.2 0.0 0.2 96.5 80.8
WPSA085C 0.3 03 0.0 0.3 100.0 1539
WPSA087C 0.2 0.2 0.0 0.2 95.6 105.5
WPSAQ96C* 0.1 0.1 0.0 0.1 79.2 353
WPSA100C* 0.2 0.3 0.0 03 95.6 125.7
WPSA123C* 0.2 0.2 0.0 0.2 92.3 105.7
WPSA124C* 0.1 0.1 0.0 0.1 100.0 65.1
WPSAI127C* 0.1 0.2 0.0 0.2 97.6 714
WPSA129C 0.1 0.1 0.0 0.1 98.9 482
WPSAI31IC 0.1 0.1 0.0 0.1 100.0 27.8
WPSA133C* 0.1 0.1 0.0 0.1 91.0 59.9
WPSA134C* 0.1 0.1 0.0 0.1 56.0 26.9
WPSAL38C* 03 0.3 0.0 03 95.6 155.1
WPSAL144C 0.4 04 0.0 0.4 98.7 199.8
WPSA147C 0.2 0.2 0.0 0.2 81.4 101.2
WPSAILSIC 0.1 0.1 0.1 0.0 7.3 34
WPSA153C 0.2 0.2 0.0 0.2 93.2 105.0
WPSA154C 0.1 0.1 0.0 0.1 70.3 43.6
WPSA156C 0.2 0.3 0.0 0.3 98.0 128.1
WPSA158C 0.1 0.1 0.0 0.1 66.2 309
WPSA163C 0.3 0.3 0.0 0.3 99.3 166.2
average 0.2 86.2 1044
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Figure 6: Graphical view of the data presented in Table 4, showing the comparability of the ICP and XRD
data sets over the measured stratigraphic sections. Gaps are inserted in the graph to separate the middle
waste from the upper and lower ore producing bodies.
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Table 4: Comparison of ICP data (Herring and others 1999) and calculated chemistry based on mineral
compositions from Rietveld analysis. ICP data are normalized to include the elements that are calculated
using the XRD data. The average difference shows whether the XRD data overstate ("-" values) or
understate ("+" values) the ICP data. A weighted error is calculated by multiplying the error's absolute
value by a weighting factor (measured / measured average). This value shows the comparability of the two
data sets.

Co, :
Sample # Measured % Normalized %  Calculated % Difference % Error Weighted %
(ICP) (Icp) (XRD) (Normalized - (Difference / error
Calculated) Normalized)
WPSA002C 0.1 0.1 0.0 0.1 86.1 292
WPSA006C 04 04 03 0.1 25.6 537
WPSAQ08C 0.2 0.2 0.2 0.0 -93 10.1
WPSAO015C 0.3 03 0.2 0.0 15.1 209
WPSA022C 0.1 0.1 0.0 0.0 49.7 18.6
WPSA024C 0.2 03 0.2 0.1 397 50.7
WPSA026C 0.1 0.1 0.0 0.1 953 420
WPSA030C 03 0.3 0.2 0.1 326 47.0
WPSA035C 0.2 0.2 0.2 0.0 -1.7 1.7
WPSA040C 0.2 0.2 0.2 0.1 313 35.7
WPSA050C 0.1 0.1 0.0 0.1 92.7 429
WPSA057C 0.1 0.1 0.1 0.0 9.2 6.3
WPSA060C 0.1 0.1 0.1 0.0 348 16.2
WPSA062C 0.0 0.1 0.1 0.0 -47.1 16.0
WPSA063C 0.1 0.2 0.1 0.0 249 19.1
WPSA070C 0.1 0.1 0.1 0.0 36.3 19.4
WPSA072C 0.1 0.1 0.1 0.0 11.0 37
WPSA080C 00 0.1 0.0 0.0 Noo362 93
WPSA085C 0.0 0.0 0.0 0.0 1000 5.9
WPSA087C 0.1 0.1 0.1 0.0 25.1 8.7
WPSA096C* 0.2 0.2 0.1 0.1 479 48.0
WPSA100C* 0.1 0.1 0.1 0.1 48.2 30.3
WPSA123C* 0.1 0.1 0.0 00 459 15.8
WPSA124C* 0.0 0.0 0.0 0.0 100.0 16.3
WPSA127C* 0.1 0.1 0.0 0.0 61.3 174
WPSA129C 0.1 0.1 0.0 0.1 94.5 51.2
WPSA131C 0.0 0.0 0.0 0.0 100.0 11.1
WPSA133C* 0.1 0.1 0.1 0.1 536 38.2
WPSA134C* 0.2 0.2 02 0.0 48 59
WPSA138C+ 0.1 0.1 0.1 0.0 34.3 20.6
WPSAI44C 0.0 0.0. 0.0 0.0 375 8.4
WPSAI47C 0.3 03 03 0.1 17.1 259
WPSAISIC 04 04 0.5 -0.1 -17.6 35.2
WPSA153C 0.1 0.1 0.1 0.0 289 17.1
WPSA154C 0.3 03 0.2 0.1 3318 525
WPSAI156C 0.1 0.1 0.0 0.0 61.3 234
WPSA158C 0.4 04 0.2 0.2 55.2 108.6
WPSA163C 0.0 0.0 0.0 0.0 714 15.4
average i 0.2 40.7 26.3

56



210 Joddn

ASEM JIPPIN

210 1m0

Figure 6: Graphical view of the data presented in Table 4, showing the comparability of the ICP and XRD
data sets over the measured stratigraphic sections. Gaps are inserted in the graph to separate the middle
waste from the upper and lower ore producing bodies.
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Table 4: Comparison of ICP data (Herring and others 1999) and calculated chemistry based on mineral
compositions from Rietveld analysis. ICP data are normalized to include the elements that are calculated
using the XRD data. The average difference shows whether the XRD data overstate ("-" values) or
understate ("+" values) the ICP data. A weighted error is calculated by multiplying the error's absolute
value by a weighting factor (measured / measured average). This value shows the comparability of the two
data sets.

Ca
Sample # Measured % Normalized %  Calculated % Difference % Error Weighted %
(ICp) (ICP) (XRD) (Normalized - (Difference / error
Calculated) Normalized)
WPSB003C 7.0 1.7 78 -0.1 -1.1 0.4
WPSB008C 32.1 344 36.6 -23 -6.6 105
WPSBO018C* 336 35.8 379 -2.1 -59 9.9
WPSB025C* 26.2 270 19.2 78 288 36.1
WPSB026C 29.7 31.7 30.7 1.0 32 4.8
WPSB027C 18.9 19.4 204 -1.0 -5.3 4.8
WPSB033C 314 334 339 -0.5 -1.6 25
WPSB038C 172 18.0 19.0 -0.9 -5.2 44
WPSB047C 237 27.1 245 26 9.5 119
WPSB059C 222 26.2 259 04 1.5 1.8
WPSB065C 19.5 203 184 19 9.3 8.8
WPSB070C 12.1 16.0 16.3 -04 -23 1.7
WPSB080C 6.2 7.8 6.1 1.8 224 8.2
WPSB084C 159 18.4 153 3.1 16.7 143
WPSB087C* 159 215 18.0 35 16.5 16.5
WPSB091C* 204 26.3 238 24 9.3 i14
WPSB095C 1.7 9.1 6.7 25 27.1 115
WPSB097C 274 31.2 306 0.6 '}.‘ 1.8 2.6
WPSB100C 82 9.9 8.9 1.0 9.8 4.5
WPSB107C 31 34 24 1.0 29.0 4.6
WPSB117C 104 14.2 10.9 33 234 155
WPSB131C 28.3 36.5 329 36 9.8 16.6
WPSB133C 34.2 364 34.1 24 6.5 10.9
WPSB134C 11.6 12.7 82 45 357 21.1
WPSB136C 330 343 36.4 222 -6.3 10.0
WPSB137C** 2.7 29 0.0 29 100.0 13.7
WPSB139C 370 385 38.6 -0.1 -0.2 0.3
WPSB145C 22 24 1.9 0.5 20.5 23
average 215 124 9.3

* * Samples with a poor match between Rietveld calculated feldspars and XRD measured feldspars.

58



210 12ddn

ASEM SIPPIN

310 13m0

Figure 6: Graphical view of the data presented in Table 4, showing the comparability of the ICP and XRD
data sets over the measured stratigraphic sections. Gaps are inserted in the graph to separate the middle
waste from the upper and lower ore producing bodies.
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Table 4: Comparison of ICP data (Herring and others 1999) and calculated chemistry based on mineral
compositions from Rietveld analysis. ICP data are normalized to include the elements that are calculated
using the XRD data. The average difference shows whether the XRD data overstate ("-" values) or
understate ("+" values) the ICP data. A weighted error is calculated by multiplying the error’s absolute
value by a weighting factor (measured / measured average). This value shows the comparability of the two
data sets.

P
Sample # Measured % Normalized %  Calculated % Difference % Error Weighted %
(ICP) (ICP) (XRD) (Normalized - (Difference / error
Calculated) Normalized)
WPSB003C 0.2 0.2 0.1 0.0 15.2 0.3
WPSB008C 14.5 15.5 16.2 0.7 -4.5 8.3
WPSBO18C* 15.1 16.1 16.7 -0.6 -3.5 6.7
WPSB025C* 6.3 6.5 2.1 4.4 68.3 529
WPSB026C 133 14.2 13.0 1.2 8.6 14.6
WPSB027C 2.1 2.1 1.7 04 19.7 5.0
WPSB033C 14.5 15.4 15.4 0.0 0.2 04
WPSB038C 0.9 0.9 08 0.1 13.9 1.5
WPSB047C 10.1 11.6 10.2 1.4 11.8 16.3
WPSB059C 8.1 9.6 9.2 04 37 43
WPSB065C 0.4 0.4 0.2 02 423 19
WPSB070C 5.0 6.6 6.9 -0.3 44 35
WPSB080OC 3.0 38 2.7 1.1 28.8 13.2
WPSB084C 6.6 16 6.2 1.5 19.3 175
WPSB087C* 1.6 10.2 8.0 23 223 27.2
WPSB09IC* 98 12.6 10.7 1.9 15.2 229
WPSB095C 27 33 19 1.3 409 15.8
WPSB097C 12.6 143 13.9 04 N3 5.3
WPSB100C 38 45 4.0 0.5 " 120 6.4
WPSB107C 14 1.6 1.1 0.5 30.7 5.8
WPSB117C 4.0 55 4.1 14 25.1 16.5
WPSBI31C 12.7 16.4 145 1.8 11.2 218
WPSB133C 15.2 16.2 15.0 1.2 7.3 14.0
WPSB134C 5.2 5.7 3.7 2.1 359 24.5
WPSB136C 15.1 15.7 16.2 -0.6 -36 6.7
WPSB137C** 1.3 1.4 0.0 1.4 100.0 16.5
WPSB139C 16.4 17.1 16.9 0.2 1.1 22
WPSB145C 1.0 1.1 0.9 0.2 18.3 2.3
average 8.4 19.2 119
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Figure 6: Graphical view of the data presented in Table 4, showing the comparability of the ICP and XRD
data sets over the measured stratigraphic sections. Gaps are inserted in the graph to separate the middle
waste from the upper and lower ore producing bodies.
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Table 4: Comparison of ICP data (Herring and others 1999) and calculated chemistry based on mineral
compositions from Rietveld analysis. ICP data are normalized to include the elements that are calculated
using the XRD data. The average difference shows whether the XRD data overstate ("-" values) or
understate ("+" values) the ICP data. A weighted error is calculated by multiplying the error's absolute
value by a weighting factor (measured / measured average). This value shows the comparability of the two
data sets.

Si
Sample # Measured % Normalized %  Calculated % Difference % Error Weighted %
(ICP) (ICP) (XRD) (Normalized - (Difference / error
Calculated) Normalized)

WPSB003C 224 245 212 -2.8 -114 18.4
WPSBO0SC 2.8 3.0 4.5 -1.5 -49.3 9.7
WPSBO018C* 3.0 32 3.2 0.0 0.1 0.0
WPSB025C* 53 54 7.8 -2.3 -42.4 15.2
WPSB026C 58 6.2 9.8 -3.6 -58.3 23.8
WPSB027C 6.8 6.9 49 2.1 299 13.6
WPSB033C 5.0 53 6.7 -1.4 <255 8.9
WPSB038C 8.2 8.6 6.8 1.8 214 12.1
WPSB047C 9.4 10.7 14.6 -3.8 -35.8 252 .
WPSBO05SC 9.1 10.7 9.8 1.0 9.1 6.4
WPSB065C 719 8.2 7.8 0.4 4.6 25
WPSB070C 15.9 21.0 21.8 -0.9 4.2 5.8
WPSB080C 236 298 - 31.8 -2.0 -6.7 13.1
WPSB084C 14.6 16.9 21.7 4.8 -28.6 31.8
WPSBQ87C* 13.1 177 20.1 -2.3 -132 154
WPSB091C* 10.6 13.7 15.2 -15 -11.0 9.9
WPSB095C 230 274 30.6 232 -11.6 21.0
WPSB097C .13 83 10.1 -1.8 <222 12.1
WPSB100C 24.0 289 328 -39 -13.7 26.0
WPSB107C 26.1 28.6 359 -74 -25.7 484
WPSBI17C 18.9 25.8 26.7 09 <35 6.0
WPSBI131C 4.1 52 6.6 -13 -25.6 8.8
WPSB133C 54 5.8 6.3 -0.6 95 3.6
WPSB134C 24.0 26.3 316 -53 -20.3 35.0
WPSBI136C 4.5 47 4.7 0.0 03 0.1
WPSB137C** 319 34.8 37.8 -29 -8.5 19.4
WPSB139C 1.9 2.0 25 -0.5 <242 32
WPSB145C 31.1 349 38.4 32 9.3 213
average 15.2 -14.1 14.9
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Figure 6: Graphical view of the data presented in Table 4, showing the comparability of the ICP and XRD
data sets over the measured stratigraphic sections. Gaps are inserted in the graph to separate the middle
waste from the upper and lower ore producing bodies.
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Table 4: Comparison of ICP data (Herring and others 1999) and calculated chemistry based on mineral
compositions from Rietveld analysis. ICP data are normalized to include the elements that are calculated
using the XRD data. The average difference shows whether the XRD data overstate ("-" values) or
understate ("+" values) the ICP data. A weighted error is calculated by multiplying the error's absolute
value by a weighting factor (measured / measured average). This value shows the comparability of the two
data sets.

K
Sample # Measured % Normalized %  Calculated % Difference % Error Weighted %
(ICP) (ICP) (XRD) (Normalized - (Difference / error
Calculated) Normalized)
WPSB003C 14 1.6 1.3 0.3 17.0 243
WPSB00SC 03 03 0.3 0.0 -8.2 20
WPSBO18C* 0.3 03 0.3 0.0 -8.2 22
WPSB025C* 0.3 0.3 -0.9 -0.7 -253.9 61.8
WPSB026C 0.6 0.6 0.6 0.0 4.5 26
WPSB027C 1.3 13 0.9 0.4 319 375
WPSB033C 0.5 0.6 0.6 0.1 -11.2 5.7
WPSB038C 0.8 0.9 0.3 0.6 67.0 53.0
WPSB047C 0.9 1.0 0.7 0.3 26.4 23.6
WPSB059C 1.0 1.2 0.6 0.6 53.6 58.8
WPSB065C 05 0.5 03 03 50.6 24.5
WPSB070C 1.7 23 1.0 ) 13 57.6 120.2
WPSB080C 20 25 16 0.9 375 85.3
WPSB084C 1.4 1.6 13 03 18.0 26.4
WPSBO87C* 1.3 1.7 1.7 0.1 1.6 5.1
WPSB091C* 0.9 12 1.3 -0.1 -1.0 7.6
WPSB095C 1.6 1.9 1.5 04 19.9 349
WPSB097C 0.5 0.5 0.6 0.0 -1.0 35
WPSB100C 12 1.5 1.1 04 29.2 39.6
WPSB107C 15 1.6 1S5 0.1 4.9 1.3
WPSBI117C 1.7 23 1.5 0.8 35.9 74.0
WPSBI13I1C 04 0.5 1.2 -0.7 -157.1 64.5
WPSB133C 04 0.4 0.6 -0.2 -529 20.0
WPSB134C 1.3 1.4 1.8 -04 -28.0 36.0
WPSBI136C 0.2 0.2 0.4 -0.1 -51.0 11.1
WPSB137C** 14 1.5 1.0 0.4 299 40.3
WPSB139C 0.1 0.1 0.3 -0.1 -99.4 12.2
WPSB145C 1.5 1.7 2.6 -0.8 -48.7 76.5
average 1.1 -8.8 343
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Figure 6: Graphical view of the data presented in Table 4, showing the comparability of the ICP and XRD
data sets over the measured stratigraphic sections. Gaps are inserted in the graph to separate the middle
waste from the upper and lower ore producing bodies.
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Table 4: Comparison of ICP data (Herring and others 1999) and calculated chemistry based on mineral
compositions from Rietveld analysis. ICP data are normalized to include the elements that are calculated
using the XRD data. The average difference shows whether the XRD data overstate ("-" values) or
understate ("+" values) the ICP data. A weighted error is calculated by multiplying the error's absolute
value by a weighting factor (measured / measured average). This value shows the comparability of the two

data sets.

Al
Sample # Measured % Normalized %  Calculated % Difference % Error Weighted %
(ICP) (ICP) (XRD) (Normalized - (Difference / error
Calculated) Normalized)
WPSB003C 37 4.0 25 15 36.9 476
WPSB008C 0.5 0.6 0.7 -0.1 -18.8 34
WPSBO18C* 0.6 0.6 0.6 0.1 11.1 23
WPSB025C* 0.7 0.8 1.8 -1.0 -136.1 335
WPSB026C 1.2 1.3 1.1 0.2 17.2 7.3
WPSB027C 2.6 26 15 11 42.0 35.6
WPSB033C 1.0 11 1.1 -0.1 <12 24
WPSB038C 1.7 1.7 0.7 1.1 61.0 343
WPSB047C 1.7 2.0 2.0 0.0 -1.7 1.1
WPSB059C 23 217 23 0.5 16.5 14.6
WPSB065C 1.7 1.8 1.6 0.2 9.4 54
WPSB070C 4.4 57 5.1 0.7 114 21.2
WPSB080C 5.1 6.5 6.2 03 4.6 9.6
WPSB084C 36 4.1 517 -1.5 <373 49.7
WPSB087C* 35 4.7 48 -0.1 -1.6 25
WPSB091C* 23 3.0 38 -0.8 -27.4 26.2
WPSB095C 4.3 5.1 5.2 -0.1 -1.6 27
WPSB097C 14 15 1.6 0.1 Moos2 26
WPSB100C 35 4.2 29 13 314 42.1
WPSB107C 4.9 53 6.2 -0.8 -154 26.4
WPSBL17C 4.3 58 4.9 1.0 16.6 31.2
WPSB131C 1.0 1.2 24 -1.2 -94.2 376
WPSB133C 1.2 13 1.6 -0.3 -23.9 9.8
WPSB134C 4.2 4.6 4.5 0.1 3.0 4.5
WPSB136C 08 (1R 038 0.1 6.4 1.7
WPSB137C** 6.1 6.7 6.5 0.1 1.9 4.0
WPSBI139C 0.4 0.4 0.6 -0.1 -25.0 36
WPSB145C 41 52 417 05 10.0 16.9
average 3.1 4.1 17.1
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Figure 6: Graphical view of the data presented in Table 4, showing the comparability of the ICP and XRD
data sets over the measured stratigraphic sections. Gaps are inserted in the graph to separate the middle
waste from the upper and lower ore producing bodies.
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Table 4: Comparison of ICP data (Herring and others 1999) and calculated chemistry based on mineral
compositions from Rietveld analysis. ICP data are normalized to include the elements that are calculated
using the XRD data. The average difference shows whether the XRD data overstate ("-" values) or
understate ("+" values) the ICP data. A weighted error is calculated by multiplying the error's absolute
value by a weighting factor (measured / measured average). This value shows the comparability of the two
data sets.

Na
Sample # Measured % Normalized %  Calculated % Difference % Error Weighted %
(ICP) (ICP) (XRD) (Normalized - (Difference / error
Calculated) Normalized)

WPSB003C 0.1 0.2 0.0 0.2 100.0 29.2
WPSB008C 04 0.1 0.2 -0.1 -57.1 85
WPSBO018C* 0.4 0.1 0.2 -0.1 -74.) 13.0
WPSB025C* 0.2 0.0 0.0 0.0 36.7 22
WPSB026C 0.4 0.2 0.2 0.0 8.2 26
WPSB027C 0.1 0.1 0.0 0.1 78.4 14.5
WPSB033C 0.2 0.1 0.1 0.1 47.2 8.4
WPSB038C 0.4 0.4 0.3 0.1 18.6 99
WPSB047C 0.3 0.3 03 0.0 3.1 13
WPSB059C 04 0.5 0.1 04 79.8 57.8
WPSB065C 0.6 0.3 04 -0.1 -29.0 139
WPSB070C 0.5 1.1 0.1 1.0 93.0 1433
WPSB080C 0.9 23 1.4 0.9 38.8 129.0
WPSB084C 0.5 0.7 0.6 0.1 143 15.2
WPSB087C* 0.4 0.6 0.3 0.4 549 50.3
WPSB091C* 0.4 0.5 0.2 0.3 58.9 40.3
WPSB095C 0.8 1.5 0.9 0.6 40.7 88.7
WPSB097C 04 0.2 0.2 0.0 49 1.3
WPSB100C 0.7 1.0 0.5 0.5 47.2 67.5
WPSB107C 14 23 1.5 08 33.6 108.2
WPSBL17C 0.7 1.5 0.8 0.7 45.8 99.2
WPSB131C 0.1 0.1 0.2 -0.1 -161.5 14.6
WPSB133C 0.2 0.1 0.2 -0.1 -161.5 15.9
WPSB134C 0.7 1.0 0.9 0.0 4.6 6.4
WPSB136C 0.2 0.0 02 -0.1 -311.7 17.0
WPSB1{37C** 2.0 30 39 0.9 -30.2 128.1
WPSB139C 0.1 0.0 0.2 -0.2 -1313.9 30.5
WPSB145C 0.7 I.1 0.7 0.4 349 56.9
average 0.7 -46.5 419
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Figure 6: Graphical view of the data presented in Table 4, showing the comparability of the ICP and XRD
data sets over the measured stratigraphic sections. Gaps are inserted in the graph to separate the middle
waste from the upper and lower ore producing bodies.
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Table 4: Comparison of ICP data (Herring and others 1999) and calculated chemistry based on mineral
compositions from Rietveld analysis. ICP data are normalized to include the elements that are calculated
using the XRD data. The average difference shows whether the XRD data overstate ("-" values) or
understate ("+" values) the ICP data. A weighted error is calculated by multiplying the error's absolute
value by a weighting factor (measured / measured average). This value shows the comparability of the two
data sets.

Mg
Sample # Measured % Normalized %  Calculated % Difference % Error Weighted %
(ICP) (ICP) (XRD) (Normalized - (Difference / error
Calculated) Normalized)
WPSB003C 3.6 4.0 44 -0.5 -12.1 282
WPSB008C 0.2 0.2 0.1 0.1 35.0 3.7
WPSB018C* 0.2 0.2 ) 0.1 0.1 47.6 4.5
WPSB025C* 6.3 6.5 89 -2.4 -37.1 140.8
WPSB026C 0.6 0.6 0.6 0.0 09 0.3
WPSB027C 8.0 8.2 10.0 -1.8 <214 103.6
WPSB033C 0.2 0.2 0.2 0.1 30.7 44
WPSB038C 8.8 9.2 10.4 -1.2 -13.2 na
WPSB047C 0.9 1.1 12 -0.1 -10.7 6.6
WPSBO059C 2.1 24 3.0 -0.5 =222 316
WPSB065C 8.5 89 9.4 -0.5 -5.9 30.9
WPSB070C 0.3 0.4 0.2 0.2 52.3 134
WPSB080C 0.2 0.2 0.0 0.2 90.2 10.7
WPSB084C 0.7 0.8 0.5 0.3 36.1 16.0
WPSB087C* 0.4 0.6 0.3 0.3 53.2 18.2
WPSB091C* 0.2 0.2 0.0 0.2 83.2 95
WPSB095C 1.0 1.2 1.1 0.1 4.6 32
WPSB097C 0.1 0.1 0.0 0.t 81.0 6.5
WPSB100C 0.2 0.2 0.0 0.2 91.6 9.7
WPSB107C 0.1 0.1 0.0 0.0 73.0 24
WPSBI17C 1.0 1.3 0.9 0.4 285 222
WPSBI13IC 0.2 0.2 0.1 0.1 68.9 8.4
WPSB133C 0.2 0.2 0.1 0.1 51.4 5.2
WPSB134C 0.3 03 0.0 0.3 97.2 16.9
WPSBI136C 0.1 0.1 0.1 0.0 45.0 2.7
WPSB137C** 03 0.3 0.0 0.3 100.0 16.0
WPSB139C 0.1 0.1 0.1 0.0 13.1 0.8
WPSB145C 0.3 04 0.0 04 99.8 224
average 17 379 21.8
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Figure 6: Graphical view of the data presented in Table 4, showing the comparability of the ICP and XRD
data sets over the measured stratigraphic sections. Gaps are inserted in the graph to separate the middle
waste from the upper and lower ore producing bodies.
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Table 4: Comparison of ICP data (Herring and others 1999) and calculated chemistry based on mineral
compositions from Rietveld analysis. ICP data are normalized to include the elements that are calculated
using the XRD data. The average difference shows whether the XRD data overstate ("-" values) or
understate ("+" values) the ICP data. A weighted error is calculated by multiplying the error's absolute
value by a weighting factor (measured / measured average). This value shows the comparability of the two
data sets.

CO,

Sample # Measured % Normalized %  Calculated % Difference % Error Weighted %

(ICP) (Icp) (XRD) (Normalized - (Difference / error

Calculated) Normalized)

WPSB003C 3.7 4.1 44 -0.4 9.3 21.0
WPSB008C 05 0.5 0.4 0.1 25.1 15
WPSBO18C* 0.5 0.5 0.5 0.0 8.1 22
WPSB025C* 6.6 6.8 88 -20 -28.6 108.5
WPSB026C 0.8 0.8 0.9 -0.1 -11.7 54
WPSB027C 8.4 8.6 9.9 -1.4 -15.8 753
WPSB033C 0.5 0.5 0.3 0.2 48.4 134
WPSB038C 9.1 9.5 10.3 -0.8 -84 447
WPSB047C 1.1 1.2 1.3 -0.1 -6.6 44
WPSB059C 23 2.7 32 -0.5 -19.2 28.8
WPSB065C 9.5 9.9 10.0 -0.2 -1.7 95
WPSB070C 03 04 0.5 0.0 9.2 23
WPSB080C 0.1 0.1 0.0 0.0 226 0.8
WPSB084C 09 1.0 08 0.3 255 147
WPSB087C* 0.3 0.4 0.3 0.0 15 1.5
WPSBO0S1C* 0.2 0.2 0.2 0.0 73 0.8
WPSB095C 0.9 1.1 13 -0.2 -16.2 10.1
WPSB097C 0.2 0.3 0.1 0.1 419 5.8
WPSB100C 0.1 0.1 0.1 0.0 14.4 0.8
WPSB107C 0.0 0.0 0.0 0.0 52.4 13
WPSB117C 0.9 1.2 1.0 0.2 15.7 10.6
WPSBI131C 03 0.4 0.3 0.1 20.7 51
WPSB133C 04 0.4 0.4 0.0 -1.2 0.3
WPSB134C 0.1 0.t 0.1 0.1 51.6 35
WPSB136C 0.4 0.4 0.3 0.1 16.2 34
WPSBI137C** 0.0 0.0 0.0 0.0 100.0 1.8
WPSB139C 0.4 04 0.5 -0.1 -16.5 38
WPSB145C 0.1 0.1 0.0 0.1 924 29
average 1.8 14.5 13.9
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Figure 6: Graphical view of the data presented in Table 4, showing the comparability of the ICP and XRD
data sets over the measured stratigraphic sections. Gaps are inserted in the graph to separate the middle

waste from the upper and lower ore producing bodies.
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Table 5: Errors for Herring and others (1999) ICP data, with the observed (obs) and standard (std) values
given (unpublished data, 1999).

Ca P Si K
value % value % value % value %
obs 1.03 0.07 31.2 2.81
-2.8 -22.2 -7.1 -5.7
std 1.06 0.09 33.6 2.98
obs 0.54 0.07 31.3 2.80
-6.9 -12.5 -6.6 4.
std 0.58 0.08 2 335 2.92 !
obs 34.3 15.3 2.3 0.11
4.3 4.8 4.2 -8.
std 32.9 14.6 24 0.12 8.3
Al Na Mg CoO,
value % value % value % value %
obs 5.74 1.42 0.51 0.11
-0.9 -7. -7. .
std 5.79 1.53 72 0.55 73 0.11 0.0
)
obs 6.11 1.12 0.46 " 0.02
-0.3 -5. -8. .
std 6.09 1.19 59 0.50 8.0 0.02 0.0
obs 0.71 0.37 0.21 0.92
6.0 -5.1 -10. .
std 0.67 0.39 0.19 105 0.91 L1
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