Documentation and Analysis of a Geographic Information System Application for Combining Data Layers, Using Nonpoint-Source Pollution as an Example

In cooperation with the Indiana Department of Environmental Management

Open-File Report 00–324
Documentation and Analysis of a Geographic Information System Application for Combining Data Layers, Using Nonpoint-Source Pollution as an Example

By James L. Kiesler, Jr.

In cooperation with the Indiana Department of Environmental Management

Open-File Report 00–324

Indianapolis, Indiana
2002
The use of firm, trade, or brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Government.
CONTENTS

Abstract .. 1
Introduction ... 2
Documentation of the Application .. 2
 Application Installation .. 3
 Starting the Application ... 3
 Selection of Data Layers ... 7
 Defining the Watershed of Interest ... 13
 Select Watershed of Interest ... 14
 Split or Cut a Watershed ... 18
 Weight Factors .. 20
 Creating New Scenarios .. 21
 Using Existing Scenarios ... 22
 Screen Watershed .. 23
 Assign Rank Values ... 24
 Combining Themes ... 25
 Create Themes .. 27
 Print Maps .. 31
Sensitivity Analysis .. 33
 Application Accuracy .. 33
 Spatial Resolution ... 35
 Number of Classes—Spatial Variability ... 38
 Classification Type .. 40
 Grids .. 41
The Nonpoint-Source Pollution Example ... 43
 Methodology .. 43
 Primary Sources of Nonpoint-Source Pollution ... 44
 Population Centers ... 44
 Agriculture .. 44
 Erosion ... 45
 Additional Areas of Concern Regarding Nonpoint-Source Pollution .. 45
Summary .. 45
Selected References .. 46
Appendix 1. Listing of the Code ... 48
 EV.AddTheme ... 48
 EV.CreateTheme .. 49
 EV.Evaluate .. 53
 EV.EvAssignRanks ... 61
 EV.EvConv2Grid ... 64
 EV.EvGetMaxExtent ... 66
 EV.Evhash ... 67
 EV.EvMaxRankValue .. 68
 EV.Export .. 69
 EV.GetEnvVar ... 71
 EV.GetWeightFactors .. 73
 EV.MapMaker .. 74
 EV.OpeningViewShutDownApply ... 79
 EV.OpeningViewShutDownUpdate .. 80
 EV.RedrawView .. 81
 EV.RemoveRankField .. 82
 EV.Startup ... 83
 EV.ViewGet ... 85
 EV.WeightFactors .. 87
 EV.WFAssignFactor ... 93
 EV.WFCheckThemes .. 95
Appendix 2. Listing of Data Layers and Metadata about Each Layer

County.shp .. 125
In_hu8.shp .. 125
In_hu11.shp .. 125
In_hu14.shp .. 126
Acres_corn.shp ... 126
Acres_soy.shp .. 126
Acres_wheat.shp .. 126
Acres_planted.shp ... 127
Crop_per_n.shp .. 128
Crop_per_p.shp .. 128
Crop_per_k.shp .. 129
Animal_was_n.shp .. 129
Animal_was_p.shp .. 130
Animal_was_k.shp .. 130
Animal_was_mnut.shp .. 131
Horses.shp .. 131
Cattle.shp .. 132
Cattle_dairy.shp .. 132
Cattle_n dairy.shp ... 133
Poultry.shp .. 133
Sheep.shp .. 134
Swine.shp .. 134
Population.shp ... 135
Population_cng.shp ... 136
Emp_ag_serv_forest.shp .. 137
Emp_construction.shp .. 138
Emp_farm.shp .. 139
Emp_nonfarm.shp ... 140
Emp_proprietors.shp .. 141
Emp_farm_proprietors.shp .. 142
Emp_nonfarm_proprietor.shp ... 143
Emp_government.shp ... 144
Emp_federal.shp .. 145
Emp_state_local.shp .. 146
Emp_state.shp ... 147
Emp_local.shp .. 148
Emp_military.shp .. 149
CONTENTS—Continued

Emp_finance.shp... 150
Emp_manufacture.shp.. 151
Emp_mining.shp... 152
Emp_private.shp.. 153
Emp_retail.shp... 154
Emp_service.shp... 155
Emp_transportation.shp.. 156
Emp_wholesale.shp.. 157
Emp_wage_salary.shp.. 158
Emp_full_parttm.shp.. 159
Wu_withdrawals.shp.. 159
Wu_withdrawals_cat.shp... 160
Wu_with_sw.shp... 160
Wu_with_gw.shp... 161
Wu_consump_use.shp.. 161
Wu_public_supply.shp.. 162
Wu_domestic.shp.. 163
Wu_commercial.shp.. 163
Wu_industrial.shp... 164
Wu_mining.shp... 164
Wu_thermoelectric.shp... 165
Wu_ff_thermoelectric.shp.. 166
Wu_hydroelectric.shp.. 167
Wu_irrigation.shp... 167
Wu_livestock.shp.. 168
Wu_wwtp.shp... 168
Cerlis.shp... 169
ww.shp.. 169

FIGURES
1-58. Screenprint showing :
1. ArcView application window showing the ArcView Project window.. 4
2. ArcView's application window showing the "Opening View" for the Watershed Screening Tool......... 4
3. ArcView’s application window showing an empty view named “View1”... 5
4. ArcView’s “View” pull-down menu... 6
5. ArcView’s “View Properties” window ... 6
6. ArcView’s “Add Theme” button located on the ArcView button bar.. 7
7. ArcView’s “Add Theme” window.. 7
8. ArcView’s application window showing seven themes listed in the Views’ “Screening One” table of contents.. 8
9. ArcView’s “Legend Editor” showing the “Legend Type” drop-down menu....................................... 9
10. ArcView’s “Legend Editor” “Classification Field” drop-down menu for the theme “Population.shp”.. 10
11. ArcView’s “Legend Editor” “Normalize by” drop-down menu for the theme “Population.shp”........ 10
12. ArcView’s “Legend Editor” “Classification” window... 11
13. ArcView’s “Legend Editor” for the theme “Population.shp” with 10 classes.................................. 11
14. “Fill” and “Color Palettes” used to modify a theme’s legend... 12
15. ArcView’s “Legend Editor” for the theme “Population.shp” with 10 classes and patterns to help differentiate classes... 12
16. ArcView’s application window showing a view’s table of contents with “Graduated Color” legends and a “Graduated Color” data layer.. 13
17. Watershed of Interest, Split Watershed, and Cut Watershed tool buttons.. 14
FIGURES—Continued
CONTENTS—Continued

18. Watershed Screen Tools’ “Save Watershed of Interest” window .. 14
19. ArcView’s application window showing the 8-digit hydrologic units from which the user can select a watershed of interest .. 15
20. “Is this your watershed of interest?” window showing the selected watershed and the available options 15
21. ArcView’s application window showing the 11-digit hydrologic units within the selected 8-digit hydrologic unit .. 16
22. ArcView’s application window showing the 14-digit hydrologic units within the selected 11-digit hydrologic unit .. 17
23. ArcView’s application window showing a 14-digit hydrologic unit and 1:100,000 stream theme 17
24. Window asking if one of the existing watersheds of interest should be used 18
25. Watershed of Interest’s “Select a watershed of interest” window .. 18
26. ArcView’s application window showing a 14-digit hydrologic unit that has been split into two watersheds ... 19
27. ArcView’s application window showing a 14-digit hydrologic unit that has been split and cut into three watersheds ... 19
28. The “Assign Weight Factor” button .. 20
29. The “Weight Factor” function’s “Select themes to include in the scenario” window listing active themes .. 20
30. The “Weight Factor” function’s “Select the file to contain the scenario file and description” 21
31. The “Weight Factor” function’s “New File?” window .. 21
32. The “Weight Factor” function’s “Weighting Factors” window ... 22
33. The “Weight Factor” function’s “Enter file name” window for naming the scenario file 22
34. The “Weight Factor” function’s “Enter scenario” window for entering the description of the scenario file ... 22
35. The “Weight Factor” function’s “Select Scenario” window .. 23
36. The “Weight Factor” function’s “Enter file name” window used when weight factors have been modified ... 23
37. The “Assign Watersheds” button .. 24
38. The “Evaluate Watershed” function’s “Selecting watershed of interest” window used to select the watershed of interest being screened .. 24
39. The “Evaluate Watershed” function’s “Enter cell size” window ... 25
40. ArcView’s application window showing the limits of gridded data .. 25
41. The “Evaluate Watershed” function’s “Select statistic used to combine grids” window allows for the selection of the entry to be used when combining grids ... 26
42. The “Evaluate Watershed” function’s “Determining watershed screening factor” window for selecting the entry used to summarize the combined grid .. 26
43. ArcView’s application window showing an entire screened watershed .. 27
44. ArcView’s application window showing a screened watershed, with the watershed of interest as the focal point ... 27
45. The “Evaluate Watershed” function’s “Create Theme” button ... 28
46. The “Choose Theme” window for selecting the base theme to which a data file will be joined 28
47. “Creating a theme” window for selecting the type of county identifier to be used when joining a data table to the county coverage ... 29
48. The “Create Theme” function’s “Add Table” window used to select the data file that will be joined to a base theme ... 29
49. The “Create Theme” function’s “Select the field in the data table that contains the identifier to be used to join the data table to the base theme” ... 30
50. The “Create Theme” function’s window for naming the newly created theme 30
51. ArcView’s application window showing a newly created theme ... 31
52. The “Print Map” button .. 31
53. Screen allowing the user to enter a title for the map .. 32
54. Window showing a map ready for printing .. 32
CONTENTS—Continued
FIGURES—Continued

55. The “Print” option in ArcView’s application “File” pull-down menu .. 33
56. The accuracy of the application to duplicate the spatial variation of a test theme 34
57. The effect of the class definitions on the combined theme .. 34
58. The potential effect of large features being used to screen a small watershed .. 35
59-62. Maps showing:
 59. The results of using 14- and 11-digit hydrologic data and county data to screen 8-digit hydrologic data ... 37
 60. Results of generating 11-digit hydrologic units by using 14-digit-hydrologic-unit and county test themes that use varying numbers of classes .. 39
 61. Results showing different spatial variations caused by different classification types 40
 62. The results of using various statistics to summarize the grid points in an area .. 42

TABLES
1. Field definitions used when creating new themes ... 28
2. The rank and class number for the 8-digit hydrologic unit and the application-generated theme that differ .. 34
Documentation and Analysis of a Geographic Information System Application for Combining Data Layers, Using Nonpoint-Source Pollution as an Example

By James L. Kiesler, Jr.

ABSTRACT

A geographical information system application has been developed that allows scientists to combine multiple data layers into a single data layer. This application provides an effective tool for identifying areas where the potential effect of the combination of data layers may be greater than any single data layer. Such a tool is useful in studying an activity that cannot be measured directly. Scientists wanting to identify areas where an activity may have the greatest effect can identify factors that directly or indirectly reflect the effect of the activity being studied. When combined, these factors would identify areas where the potential for the activity to have an effect are greatest.

The data layers used to develop the single data layer determine the activity addressed by the application—the application was developed to identify areas where the potential for nonpoint-source pollution to affect areas of Indiana is greater relative to other areas in Indiana. To evaluate the potential in other states or areas, data layers for those states or areas would be used. To address a different activity, even activities not related to water resources, data layers that directly or indirectly reflect the effects of the activity being studied would be used in the application.

The application was developed using Environmental System Research Institute’s ArcView geographical information system and the ArcView extension, Spatial Analyst. To use the application, the user selects data layers related to the activity being studied, describes the variability of a data element between geographic areas on each data layer, assigns a relative importance factor to each data layer, and focuses the output by identifying a watershed of interest. The application then assigns a rank value to the features within each data layer on the basis of the spatial variation of the data layer. The data layers are converted to grids. The values of the grid cells are the product of the rank values and the importance factors. The cells for each data layer are combined to form a single grid. The combination is summarized to describe the spatial variation for the watershed of interest. The combined data layer does not show the actual potential effect of the selected factors but rather the relative difference in the potential effect among areas when all data layers are considered.

An analysis of the application indicates that the selected data layers to be combined should be at the greatest spatial resolution possible; however, all data layers do not have to be at the same spatial resolution. The spatial variation of the data layers should be adequately defined. The size of each grid cell should be small enough to maintain the spatial definition of smaller features within the data layers. The most accurate results are shown to occur when the values for the grid cells representing the individual data layers are summed and the mean of the summed grid-cell values is used to describe the watershed of interest.
INTRODUCTION

The analysis of spatial data has progressed significantly with the growth of geographic information systems (GIS). In many ways, however, the technique of analysis has remained virtually the same, especially for users who have difficulty with computers. Scientists overlay data layers (that is, maps of information), mentally combining the multiple data layers and analyzing the results. This technique works well when the scientist is analyzing small areas or when the analysis includes only a few data layers. This technique also allows the scientist to use scientific judgment when combining the data layers; however, the scientist can assimilate only so much information before something is likely to be missed. A GIS application was developed to automate the combining of data layers.

The use of this GIS application is limited to the information contained in the selected data layers. As an example, fishery managers can use the application to help identify potential areas for stocking. Potentially, data layers showing the location of lakes, camping facilities, motels, boat rentals, fish populations, most recent restocking, and the number of visitors to the area are selected. Combining these layers and examining the differences among areas could identify areas where the benefit of restocking is likely greater in comparison to other areas. An analysis of the change in these layers over time could identify areas where the potential need for restocking is increasing relative to other areas of the state. As another example, local planners can evaluate the potential effects of urban expansion by combining data layers related to land use, sewer and water lines, soils suited to the use of septic tanks, and transportation corridors.

The application developed by the U.S. Geological Survey (USGS), in cooperation with the Indiana Department of Environmental Management (IDEM), is described in this report. The application uses rank values and grids of existing data layers to develop a single data layer representing the combination of many data layers, thereby freeing scientists to focus on evaluating why one area differs from another. The report serves three purposes. First, it documents the use of the application. Second, it evaluates the results of the application and how various user selections can affect the output. Finally, the report describes the work performed by the IDEM’s Prioritization of Water Bodies Subcommittee, Nonpoint Source Management Plan Task Force, as an example of the techniques used in the application.

DOCUMENTATION OF THE APPLICATION

This GIS application allows users to select any number of data layers, called “themes” in ArcView, describe the spatial variation of the data represented by each theme; and then create a new theme that represents the combination of the selected themes. The application is written in Environmental Systems Research Institute’s (ESRI) ArcView™ “Avenue” script language. An object-oriented language, “Avenue” allows the programmer to customize the graphical user interface to ArcView by modifying how the ArcView application window looks and responds to a user’s input by removing selected functions or by adding functions. Although the application takes advantage of ArcView’s functionality, this report does not attempt to discuss the full range of ArcView’s functionality. Rather, this report presents the ArcView functions needed to execute the application and the functionality added by that application. Use of this application requires some understanding of ArcView.

The first step in developing the application was to create a database. This database consists of updated versions of the data layers developed by the IDEM’s Prioritization of Water Bodies Subcommittee. The Subcommittee had created ArcInfo coverages for each data layer. The USGS converted the coverages to ArcView themes. A theme is stored in a shapefile format. The shapefile format consists of several data files with the following naming extensions:

1ArcView GIS GUI is the intellectual property of ESRI and is used herein with permission. ArcView is a registered trademark and the ArcView magnifying glass logo is a trademark of ESRI.
- .dbf—a dBase file containing the attribute information,
- .shp—the file containing the feature geometry,
- .shx—the file containing an index of the feature geometry,
- .sbn and .sbx—files containing a spatial index of feature geometry.

The information contained in a theme’s attribute file determines whether a theme represents one or more data layers. Themes are displayed in the ArcView document type “View.” A file that documents the source and resolution of the data, the map projection, the map units, and the distance units is included with each theme. The name of this documentation file follows the naming structure—theme name underscore “README.txt” (for example pop_README.txt).

Application Installation

The application requires access to ESRI’s ArcView and the ArcView extension “Spatial Analyst.” The project file “ws_scn.apr” should be copied to the user’s work area. The directory “wss_themes” should be copied to disk space to which the user has access. Three system environment variables must be established: “EV_HOME” identifies the user’s work area and “EV_DATA” identifies the directory containing the themes from “wss_themes.” “EV_TEMP” is a temporary area where the results of intermediate calculations are temporarily stored. If the system variable “TEMP” or “TMP” has been initialized, “EV_TEMP” should be set to the same area. If neither system variable has been initialized, set “EV_TEMP” to the directory of choice.

Starting the Application

To initiate this application, the user must have access to ArcView and the ArcView extension, “Spatial Analyst.” The application is stored as an ArcView project. To start the application, the user either issues the command “ws_scn.apr” or starts ArcView and then locates and executes the project “ws_scn.apr.” Issuing the command “ws_scn.apr” will start ArcView and the application.

When ArcView is executed, the ArcView application window is displayed (Figure 1). This window will look just as it did when the project was last saved. The ArcView application window consists of a main viewing area where individual documents are displayed and the Project window. The Project window (“ws_scn.apr,” Figure 1) shows the various document types (Views, Tables, Charts, Layouts, and Scripts) and the document names for the selected document type. Figure 1 has the View’s document type selected and shows the names of three views, “Full View,” “Opening View,” and “Screening One.” The appearance of the ArcView application window depends on the type of document that is active in the application window. A document is active when the title bar at the top of the window is blue. Figure 1 shows the ArcView application window when the Project window is active, and Figure 2 shows the window when a view is active. Figure 2 shows the title bar is blue, indicating the “Opening View” document is active. The title bar is the area at the top of the window containing “Opening View.” The title bar for the Project window (ws_scn.apr) is gray, indicating the window is not active.
The ArcView application window shown in Figure 1 and Figure 2 contains the title bar, menu bar, button bar, and tool bar. The title bar is the blue bar containing the phrase “ArcView GIS 3.2.” The content of the three other bars change with the type of document that is active. Figure 1 shows the menu, button, and tool bars when the Project window is active. Figure 2 shows the menu, button, and tool bars when a View window is active.

![Figure 1. ArcView application window showing the ArcView Project window.](image1)

![Figure 2. ArcView's application window showing the "Opening View" for the Watershed Screening Tool.](image2)
The menu bar is immediately below the title bar and almost always starts with the word “File.” Each entry accesses a pull-down menu whose entries are used to access ArcView’s functions. The “Screen Watershed” menu entry is used to access the functions to combine data layers.

The button bar, immediately below the menu bar, gives access to the more common functions accessed through the menu bar. The “pencil” button, fifth from the right in Figure 2, and the next three buttons access the functions used to screen a watershed. These functions are (1) “create a theme” (the pencil button), (2) “weight factors” (the one button), (3) “screen watersheds” (the blue spider button), and (4) “make a map” (the M button).

The tool bar is immediately below the button bar. The “WS,” “SW,” and “CW” tools were added as part of this application. The “WS” tool is used to select the watershed of interest. The “SW” button is used to split a watershed, and the “CW” button is used to cut a piece from an existing watershed. The remaining menus, buttons, and tools are standard for ArcView with the “Spatial Analyst” extension.

When the application is started, the ArcView application window is displayed (Figure 2). This window contains the View named “Opening View.” By clicking within this window, “Watershed Screening Tool” starts and looks as it did when this application was last closed. The user can open a view or create a new view by using ArcView’s “New” or “Open” buttons on the Project window (“ws_scn.apr” in Figure 3).

![Figure 3. ArcView's application window showing an empty view named "View1."](image)

The ArcView application window, shown in Figure 3, shows the Project window “ws_scn.apr” and the empty view window “View1.” “View1” is the result of clicking on the “New” button in the Project window. ArcView automatically names new Views as “View #,” where # is a sequential number, beginning with “1.” The user can open existing views by pointing and double clicking on the View name listed in the Project window or by pointing and clicking on the View name and then pointing and clicking on the “Open” button.
The “View Properties” menu, accessed through the “View” pull-down menu (Figure 4), is used to change the View name and other View properties. Other View properties that should be set for the “Watershed Screening Tool” to function properly are the map and distance units associated with the themes contained in the view (Figure 5). Themes in the data base accompanying the application have map units of meters and distance units of miles. The “View Properties” screen contains a “Projection...” button; although this functionality allows a projection from degrees of latitude and longitude (geographic map projection) to another map projection system, the function does not allow any reprojection from a nongeographic map projection to another projection.

Figure 4. ArcView’s “View” pull-down menu.

Figure 5. ArcView’s “View Properties” window.
Selection of Data Layers

One of the most critical steps in using this application is the selection of data layers to include in the analysis. The objective of the watershed screening will dictate which data layers are selected. ArcView’s “Add Theme” function is used to select the data layers. The “Add Theme” function is accessed using the plus/diamond button (Figure 6) located on the ArcView button bar or the “View” pull-down menu (Figure 4). The “Add Theme” function opens a window (Figure 7) showing the available themes. The first time the “Add Theme” function is executed, “Add Theme” will display the themes in the database accompanying the application. These themes will be in the directory that has been specified with the system environment variable “EV_DATA.” Themes in other directories can be accessed using the functions available in the “Add Theme” window. Subsequent executions of the “Add Theme” function will result in the themes contained in the last directory accessed to be displayed.

Pointing and clicking on the theme name selects the theme. Multiple themes can be selected by pointing and clicking on the first theme and, then, holding down the shift key, and pointing and clicking on additional themes. Selected themes will be highlighted. The selected themes are added to the view’s table of contents by pointing and clicking the “OK” button. The view’s table of contents, which lists the themes contained in the View, is on the left-hand side of the View window (“Screening One,” Figure 8).

![Figure 6. ArcView’s “Add Theme” button located on the ArcView button bar.](image)

![Figure 7. ArcView's "Add Theme" window.](image)
Figure 8. ArcView’s application window showing seven themes listed in the Views’ “Screening One” table of contents.

ArcView adds themes to the table of contents but does not make the theme visible in the View window. A theme is made visible by pointing and clicking on the box (toggle button) to the left of the theme name in the view’s table of contents (Figure 8). The toggle button then will have a “check mark” to indicate the theme is displayed. Themes are added to the top of the view’s table of contents. Thus, the theme at the top of the list in the “Add Themes” window (Figure 7) will be at the bottom of the view’s table of contents. Themes at the top of the list overlay themes lower in the list. Figure 8 shows two themes are displayed, but only one is visible to the user. Clicking on the theme and dragging it to the desired location in the view’s table of contents can change the drawing order of themes. Themes are added to the view by default using a legend type of “Single Symbol,” which assigns one color to all features of a theme.

The user must describe the spatial variation of each theme. The spatial variation is described by converting the theme legend from “Single Symbol” to “Graduated Color,” using ArcView’s “Legend Editor.” The “Legend Editor” (Figure 9) is accessed by double clicking on the theme name in the view’s table of contents.
The “Legend Type” is selected from the “Legend Type” drop-down menu (Figure 9). The “Graduated Color” legend is recommended for this application. The “Graduated Color” option will use the data element specified in the “Classification Field” (Figure 10) and will automatically display the theme using five graduated colors. A data element from the theme’s attribute table can be selected to normalize the data (“Normalize by,” Figure 11). Normalization is the process of making data values equivalent between features in the theme. To adjust for the size of a county, the county population can be divided by the area of the county. Thus, when a county with greater area is compared to a county with less area, the area of the county is irrelevant. Clicking on the “Classify...” button (Figure 11) allows the partitioning of the selected data element to be further modified. The “Classification” window (Figure 12) offers several methods for defining the class values: equal area, equal interval, natural breaks, quartile, and standard deviation (“Type”). The number of classes the data are partitioned into (“Number of classes,” Figure 12) and the number of decimal places to which the class values are rounded (“Round values at,” Figure 12) also can be changed. The class values can be entered manually in the “Legend Editor” (Figure 13).
Figure 10. ArcView’s “Legend Editor” “Classification Field” drop-down menu for the theme “Population.shp.”

Figure 11. ArcView’s “Legend Editor” “Normalize by” drop-down menu for the theme “Population.shp.”
Figure 12. ArcView’s “Legend Editor” “Classification” window.

Figure 13. ArcView’s “Legend Editor” for the theme “Population.shp” with 10 classes.

Figure 13 shows the “Legend Editor” for the theme “Population.shp” with 10 classes. The population in a county was normalized using the acres in the county. The number of classes and the number of decimal points should be varied to ensure the spatial variation of the data represented by the legend is accurate. Examination of Figure 13 shows the color variation between classes is not distinctive. By double clicking on the “Symbol” entry for a specific class, “Fill” and “Color Palettes” (Figure 14) can be used to modify a pattern to some classes to make those classes more distinctive. Different color ramps also can be specified by using the drop-down “Color Ramp” menu. Figure 15 shows the theme’s legend after the patterns have been added, and Figure 16 shows the ArcView application window after the legend entry has been modified. This process should be followed for all themes that will be included in the watershed screening.
Figure 14. “Fill” and “Color Palettes” used to modify a theme’s legend.

Figure 15. ArcView’s “Legend Editor” for the theme “Population.shp” with 10 classes and patterns to help differentiate classes.
Figure 16. ArcView’s application window showing a view’s table of contents with “Graduated Color” legends and a “Graduated Color” data layer.

Figure 16 shows the results of applying the “Graduated Color” legend type and the resulting representation of the data layer. ArcView lists the legend entries with the smallest number first. The legend entries must be reversed if the effect of the theme is greater when the magnitude of the number is smaller (dissolved oxygen, as an example). The sort ascending/descending buttons (triangles) at the bottom of the “Legend Editor” (Figure 15) are used to reverse the order. This reversal is important because the application assigns rank values on the basis of the legend entries, with a rank value of “1” assigned to the first entry. The “Legend Tool” can be used to revise the description of the spatial variation at any time during the screening.

This technique assumes that the themes used in the analysis contain only polygons. Themes that represent data as lines or points must be modified to polygons. ArcView and “Spatial Analyst” offer methods for converting point and line data to polygons. The assignment of buffers along lines or neighborhoods around points (just two of the methods available for converting lines and points to polygons) is best left to those who know the resolution of the data layer. This application, therefore, will not address the use of line and point data.

Defining the Watershed of Interest

A watershed of primary interest must be identified. The watershed of interest has two functions. First, the watershed of interest is used as the focal point for displaying the results of the watershed screening. Second, when the watershed of interest is an 11-digit hydrologic unit or smaller, the watershed of interest is used to restrict the information processed to the 8-digit hydrologic unit containing the watershed of interest. The “Watershed of Interest” function is accessed through the “WS” button (Figure 17) on the “tool bar.” The “tool bar” is the last row of icons at the top of the ArcView application window (Figure 16).
Select Watershed of Interest

Clicking on the “WS” tool causes the “Save Watershed of Interest” window to open (Figure 18). This window is used to create a new watershed of interest theme or to select an existing watershed of interest theme. When the “WS” tool is activated, the application uses the themes contained in the active view. Themes whose attribute tables contain a data field with “WOI” in the name are listed in the “Save Watershed of Interest” window. A default name for a new watershed of interest also is shown as “File Name.” This name consists of the character string “WOI” followed by a number and “.shp.” The number is automatically incremented as new watershed of interest themes are created with the default name. To use the default name, click on the “OK” button. To use an existing watershed of interest theme, select the theme and click the “OK” button. To assign a different name, enter that name in place of the default name and click the “OK” button.

After clicking the “OK” button in the “Save Watershed of Interest” window, the 8-digit hydrologic units for the State of Indiana are displayed (Figure 19). Pointing and clicking within the bounds of the 8-digit hydrologic unit that is the primary watershed of interest or that contains a smaller watershed that is the primary watershed of interest will result in the “Is this your watershed of interest?” window being opened (Figure 20). This window shows the hydrologic unit code and name of the selected basin. The window also describes three options. “Yes,” the selected watershed is the watershed of interest and the selection process stops. The user is free to execute any other function or select the “WS” tool again. “Cancel,” the application waits for another 8-digit hydrologic unit to be selected. “No,” the 8-digit hydrologic unit contains a smaller watershed that is the watershed of interest. When “No” is clicked, the 11-digit hydrologic units contained in the 8-digit hydrologic unit are displayed (Figure 21).
Figure 19. ArcView's application window showing the 8-digit hydrologic units from which the user can select a watershed of interest.

Figure 20. "Is this your watershed of interest?" window showing the selected watershed and the available options.
The options available when the 11-digit hydrologic units are displayed are the same as when the 8-digit hydrologic units were displayed. Clicking on the 11-digit hydrologic unit that is or that contains the watershed of interest causes the “Is this your watershed of interest?” window to be displayed (Figure 20). Clicking the “No” button, however, will result in the 14-digit hydrologic units contained in that 11-digit hydrologic unit to be displayed (Figure 22). Pointing and clicking on the 14-digit hydrologic unit that is the watershed of interest or that contains the watershed of interest again results in the “Is this your watershed of interest?” window being displayed (Figure 20). When a 14-digit hydrologic unit is selected and “No” is clicked, the 1:100,000 stream theme is made visible (Figure 23). After the watershed of interest has been identified, any of the application’s or ArcView’s functions can be executed.
Figure 22. ArcView's application window showing the 14-digit hydrologic units within the selected 11-digit hydrologic unit.

Figure 23. ArcView's application window showing a 14-digit hydrologic unit and 1:100,000 stream theme.
Split or Cut a Watershed

The split or cut watershed function, tools “SW” and “CW” from the tool bar (Figure 17), can be applied to the watershed of interest at any level (8-digit, 11-digit, 14-digit hydrologic units) or to a previously split or cut watershed. When either tool is activated, a list of watershed-of-interest themes is shown to verify the proper theme is in the view (Figure 24). When “Yes” is selected, the themes are displayed in the “Select a watershed of interest” window (Figure 25). The theme that contains the watershed to be split or cut is selected using this window.

Figure 24. Window asking if one of the existing watersheds of interest should be used.

Figure 25. Watershed of Interest’s “Select a watershed of interest” window.

The “SW” tool (Figure 17) is used to split a watershed into two sections. A watershed or part of a watershed is split into two areas along a line (Figure 26) that is defined by the user. The split is accomplished by specifying the dividing line using the mouse. The first and last points should be outside the watershed being split. Double clicking on the last point ends the line definition. The “WS” tool (Figure 17) must be used to identify the portion of the split watershed that will be the watershed of interest.

An interior part of a watershed can be identified as a separate watershed by cutting the desired section from the watershed using the “CW” tool (Figure 17). Pointing and clicking along a line that defines the interior part identifies the part of the watershed to be cut out of the watershed. Double clicking on the last point will close the polygon. Figure 27 shows a watershed that has been cut. The “WS” tool (Figure 17) must be used to identify the cut watershed that will be the watershed of interest.
Figure 26. ArcView's application window showing a 14-digit hydrologic unit that has been split into two watersheds.

Figure 27. ArcView's application window showing a 14-digit hydrologic unit that has been split and cut into three watersheds.
Weight Factors

The relative importance of one theme in relation to others can be defined by using the “Weight Factor” function. The “Weight Factor” function is accessed using the “1” button (Figure 28) on ArcView’s application window button bar. When the “Weight Factor” function is activated, a list of “active” themes is displayed in the “Select themes to include in the scenario” window (Figure 29). The “active” themes will be selected from the “active” view. A View is active when the title bar is blue (the blue bar with “Screening one” in Figure 27). A theme is active when the legend entry in the view’s table of contents is raised (“Woi1.shp” in Figure 27). Pointing and clicking on a theme’s legend entry in the view’s table of contents makes the theme active or will deactivate any active themes in the view. A double click will activate the “Legend Editor.” To activate multiple themes, point and click on the first theme and then, while holding down the shift key, point and click on the additional themes.

Each group of themes and weight factors used as input to a watershed screening is considered a “scenario.” The “Weight Factor” function creates a scenario file that maintains the list of themes and weight factors and another file that maintains a list of scenario files and descriptions. The “Weight Factor” function allows a record of themes and weight factors to be maintained by the application and the reuse of a scenario.

Figure 28. The “Assign Weight Factor” button.

Figure 29. The “Weight Factor” function’s “Select themes to include in the scenario” window listing active themes.
Creating New Scenarios

The “Weight Factor” function progresses along two paths. Either a new scenario is created using the active themes in a view or an existing scenario file is used or modified. To create a new scenario, the “OK” button is activated in the “Select themes to include in the scenario.” window (Figure 29). Pointing and clicking on the “OK” button tells the function that all themes listed in the window are the themes to include in this scenario and activates the “Select the file to contain the scenario file.” window (Figure 30). To stop the “Weight Factor” function or to create a new file for maintaining scenario files, point and click on the “Cancel” button in the “Select the file to contain the scenario file.” window. This cancellation results in activating the “New File?” window (Figure 31). Pointing and clicking on “Yes” will cause a new file to be created and “No” will cause the “Weight Factor” function to end.

![Figure 30. The “Weight Factor” function’s “Select the file to contain the scenario file.”](image1)

![Figure 31. The “Weight Factor” function’s “New File?” window.](image2)

Whether an existing file is selected or a new file for maintaining the scenario files is created, the active themes and text entry used for entering the weight factors are shown in the “Weighting Factors” window (Figure 32). Pointing and clicking on “Cancel” will stop the “Weight Factor” function. Pointing and clicking on “OK” results in windows asking for the scenario file name (Figure 33) and description (Figure 34). The themes and weight factors are saved in the scenario file. The file name should not include blanks, and the file name and description are limited to 150 characters each.
Using Existing Scenarios

To use or modify an existing scenario, point and click on the “Cancel” button in the “Select themes to include in the scenario” window (Figure 29). “Cancel” will open the “Select the file to contain the scenario file and description” window (Figure 30). The behavior of this window is similar to that when creating a new scenario file except that after selecting a file and pointing and clicking on the “OK” button, the “Weight Factor” function opens the “Select Scenario” window (Figure 35), and the scenario files contained in this file are displayed. Pointing and clicking on “Cancel” (Figure 35) will end the “Weight Factor” function. After a scenario file is selected, the themes and their weight factors are displayed in the “Weighting Factors” window (Figure 32). The behavior of this window is similar to its use in “Creating new scenarios.” The weight factors can be saved in the same file or saved to a new file using the “Enter file name” window (Figure 36). Pointing and clicking on “Cancel” causes the “Weight Factor” function to save the themes and weight factors in the same file. A revised file name and the “OK” button result in saving the themes and weight factors in a new file.
Screen Watershed

The combining of the themes occurs in the “Screen Watershed” function accessed through the “Screen Watershed” pull-down menu or the “blue spider web” button (Figure 37) on the button bar. When the function is activated, the “Select the file to contain the scenario file and description” window is opened (Figure 30). After a file has been selected, the “Select Scenario” window (Figure 35) is opened and the desired scenario is selected. The themes and weight factors for that scenario are displayed in the “Weighting Factors” window (Figure 32). The weight factors can be modified at this time, but no record of these changes is maintained. To maintain a record of the themes and weight factors, the “Weight Factor” function should be used to change the weight factors. “Screen Watershed” verifies that the themes contained in the scenario file exist in the View. The themes do not have to be active.
After the scenario file has been selected and the weight factors accepted, the watershed being screened is selected using the “Selecting watershed of interest.” window (Figure 38). The contents of Figure 38 are any themes whose attribute table contains a data field whose name contains “WOI.” The watershed of interest can be selected from the themes shown in Figure 38.

Assign Rank Values

Next, “Screen Watershed” assigns a rank value to the features (counties, watersheds) that make up each theme contained in the scenario file. Ranks are assigned on the basis of the number of classes in a theme’s legend. The maximum rank value is the maximum number of classes describing the spatial variation of any theme in the scenario. In Figure 16, the maximum rank value is “10.” Features with values in the class at the top of the legend entry, Class Index 0, are assigned a rank value of “1”; features in the next class, Class Index 1, a rank value of “2”; and so on. The increment between rank values will change for themes with fewer classes. Rank values are assigned using the formula

\[1 + (\text{Class Index} \times \left(\frac{\text{Maximum number of classes} - 1}{\text{number of classes in theme}} \right)) \]

After rank values have been assigned, each theme is converted to a grid. The size of the grid cell is defined using the “Enter cell size” window (Figure 39). The grid-cell-size units are in the map units defined in the “View Properties” window (Figure 5), which are in meters. The default is 500 map units. The cell size
selected should be small enough to maintain the spatial definition of smaller features within the themes used in this scenario. The product of the rank value and the weight factor defines the value of each grid cell.

Figure 39. The “Evaluate Watershed” function’s “Enter cell size” window.

When the watershed of interest is smaller than an 8-digit hydrologic unit, the “Screen Watershed” does not convert the complete theme to a grid. In this case, “Screen Watershed” converts only those features that are part of the 8-digit hydrologic unit that contains the watershed of interest. Figure 40 shows such a case. The counties that the 8-digit hydrologic unit overlay contain data values. The remainder of the grid contains a “no data” indicator although data exist for those areas.

Figure 40. ArcView’s application window showing the limits of gridded data.

Combining Themes

After each theme has been converted to a grid, a method for combining the grids is selected using the “Select statistic used to combine grids.” window (Figure 41). Using any entry shown in Figure 41 is justified, but the “Sum” entry is suggested for use in the “Screen Watershed” function.
The combined grid is summarized to populate the watershed of interest theme. The entry used to summarize the combined grid is selected using the “Determining watershed screening factor” window (Figure 42). The watershed of interest selected in the “Selecting watershed of interest” window (Figure 38) is used to define the aerial extent of each summarization. As with the “Select statistic used to combine grids” window, using any entry in Figure 42 is justified. The “Mean” entry, however, is best used when the cell size is small when compared to the size of the features being summarized. The “Sum” entry is best used when a few cells have a disproportionate affect on the mean. When the “Sum” entry is used, the “Legend Editor” should be used to normalize the sum using the area of the features in the combined theme. When the cell size is large, however, the mean could be affected by parts of the input themes that are outside the output feature. In this case, the “Sum” entry, which has been normalized by the size of the output feature, should be considered. Figure 43 shows the results of the “Screen Watershed” function.
Create Themes

New themes based on county or 8-, 11-, or 14-digit hydrologic units can be created using the “Create Themes” function. The “Create Themes” function is accessed using the pencil button (Figure 1) in the ArcView application window or through the “Screen Watershed” pull-down menu (Figure 43). The “Create Themes” window (Figure 46) opens when the “Create Themes” function is started. This window is used to identify which base theme is to be used when creating the new theme. If the county base is selected, the type of identifier used to uniquely identify each county is selected using the “Creating a theme” window (Figure 47). The definitions of the data fields used to create a new theme are shown in Table 1.
Table 1. Field definitions used when creating new themes
[FIPS; Federal Information Processing Standard]

<table>
<thead>
<tr>
<th>Base theme</th>
<th>Identifier field description</th>
<th>Identifier field name</th>
<th>Identifier field definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>County</td>
<td>FIPS State and County Code</td>
<td>Stcntr</td>
<td>Character 5</td>
</tr>
<tr>
<td>County</td>
<td>FIPS County Code</td>
<td>FIPS_Cnty</td>
<td>Number 3.0</td>
</tr>
<tr>
<td>County</td>
<td>State Specific County Code</td>
<td>IN_Cnty</td>
<td>Number 2.0</td>
</tr>
<tr>
<td>8-digit hydrologic units</td>
<td>8-digit hydrologic-unit code</td>
<td>Huc_8</td>
<td>Character 8</td>
</tr>
<tr>
<td>11-digit hydrologic units</td>
<td>11-digit hydrologic-unit code</td>
<td>Huc_11</td>
<td>Character 11</td>
</tr>
<tr>
<td>14-digit hydrologic units</td>
<td>14-digit hydrologic-unit code</td>
<td>Huc_14</td>
<td>Character 14</td>
</tr>
</tbody>
</table>

Figure 45. The “Evaluate Watershed” function’s “Create Theme” button.

Figure 46. The “Create Themes” window for selecting the base theme to which a data file will be joined.
Figure 47. “Creating a theme” window for selecting the type of county identifier to be used when joining a data table to the county coverage.

The data table used to create the new theme must contain a minimum of two columns: an identifier column and a data column. The identifier column must contain the appropriate identifiers in a format suitable for the selected base theme. The column name does not have to be the same as the field name given in Table 1, but the definition must be the same. The table format can be dBase, INFO, or text delimited. The data file is selected using the “Add Table” window (Figure 48). The data column that contains the identifier data is selected using the window shown in Figure 49.

Figure 48. The “Create Theme” function’s “Add Table” window used to select the data file that will be joined to a base theme.
The “Create Theme” function creates a default name for the new theme. The default name follows the structure “wse_jo#.shp” where # is a number, beginning with “1”, assigned by the application to uniquely identify the theme. A different name can be entered using the window shown in Figure 50. This window opens once the joining of the data file and the base theme’s attribute table is complete. An example of a newly created theme is shown in Figure 51.
Print Maps

This function uses ArcView’s “Layout” option to create a hard copy of themes visible in the active view. The information to be shown on the map is made visible in the active view, and the “M” button (Figure 52) on ArcView’s application button bar is activated. What is visible in the view will be shown on the map. The “Map” function opens a window that asks for a two-line title that will be printed on the map (Figure 53). The “Map” function generates a map that is focused on the watershed of interest but also contains a smaller reference map (Figure 54). When the map contains all the desired information, the print option from the “File” pull-down menu (Figure 55) is activated to print the hard copy.

Figure 51. ArcView’s application window showing a newly created theme.

Figure 52. The “Print Map” button.
Figure 53. Screen allowing the user to enter a title for the map.

Figure 54. Window showing a map ready for printing.
SENSITIVITY ANALYSIS

This section of the report examines the ability of the application to accurately duplicate the spatial variability of a theme, the effect spatial resolution of a theme could have on the combined theme, and several of the application’s input options and how the selections made could affect the combined theme. The input options examined are the number and magnitude of classes used to define the spatial variability of the input themes, the grid-cell size used to convert themes to grids, and the statistic used to convert a grid to a watershed.

Because no data sets were readily available for 14-, 11-, and 8-digit hydrologic units and counties, a test data set was developed. The test data set was developed by assigning a random number to each 14-digit hydrologic unit in Indiana. The value assigned to an 11-digit hydrologic unit was the median of the random numbers for each 14-digit hydrologic unit within the 11-digit hydrologic unit. The median of the random numbers assigned to the 14-digit hydrologic units within an 8-digit hydrologic unit was assigned to that 8-digit hydrologic unit. The median of the random numbers assigned to any 14-digit hydrologic unit that lies partially or completely within a county was assigned to the county. Each data set was used to create the test themes used to evaluate the application.

Application Accuracy

Figure 56 demonstrates the application can duplicate the spatial variability of a test theme. Figure 56 shows the 8-digit-hydrologic-unit test theme divided into 15 classes overlaying the application’s output with 15 classes. The output was generated using the 8-digit-hydrologic-unit test theme divided into 15 classes, a weight factor of “1” was assigned to the test theme, the sum was selected to combine grids (this is irrelevant because only one theme was included in the analysis), and the mean of the grid cell values was used to summarize the grid and populate the 8-digit-hydrologic-unit output theme. The class definitions were entered by hand to represent the full range of rank values. The overlay indicates the spatial distribution of the theme produced by the application is identical to the original data set.
Figure 56. The accuracy of the application to duplicate the spatial variation of a test theme.

Figure 57. The effect of the class definitions on the combined theme.

Figure 57 shows the effect that class definitions can have on the combined theme. Figure 57 shows the same output as Figure 56, except ArcView generated the class definitions to four decimal places using the “natural break” function. In Figure 57, six of the 8-digit hydrologic units did not match the class assignments of the original test theme. Examination of Figure 57 and Table 2 shows the mean grid values for these six 8-digit hydrologic units that differ are the same as the rank values assigned to the hydrologic units in the test theme. This indicates the application is creating an accurate representation of the original data set’s spatial variability. Examination of the class values indicates that the automated division using natural breaks with 15 classes to four decimal places and the method ArcView uses to assign features to classes caused the classes of these six 8-digit hydrologic units to be shifted.

Table 2. The rank and class number for the 8-digit hydrologic unit and the application-generated theme that differ

<table>
<thead>
<tr>
<th>Hydrologic unit</th>
<th>Original data set</th>
<th>Generated theme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Value</td>
<td>Rank</td>
</tr>
<tr>
<td>A</td>
<td>47.23</td>
<td>6</td>
</tr>
<tr>
<td>B</td>
<td>47.371</td>
<td>6</td>
</tr>
<tr>
<td>C</td>
<td>47.150</td>
<td>6</td>
</tr>
<tr>
<td>D</td>
<td>45.570</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>46.384</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>47.235</td>
<td>6</td>
</tr>
</tbody>
</table>
Spatial Resolution

One key to understanding the combined data layer is how the size of the features that make up the input theme compares to the size of the output features (that is, the features in the watershed of interest theme). When the input features are larger than the output features, the smaller output features will have the same values within the input feature; the only variations will occur where the output features intersect the boundaries of the input features. When the output features are larger than the input features, is the value of an output feature affected by one input feature more than the others?

In a study looking at the economic value of urban forest in Louisiana, Mitchell (1996) compares parish-wide surveys with site-specific surveys. He found that the site-specific surveys resulted in a 510-percent increase in the value assigned to the urban forest within his area of study. Generally speaking, the finer the resolution of the input data, the smaller the output watershed can be and the more likely the results will be accurate.

Figure 58 shows how the spatial resolution of an input-data set could affect the results of this application. The 11-digit hydrologic units shown in the figure were generated using the county test theme. The rank values assigned to each county are shown in the figure. The maximum statistic was used to convert the grid-cell values to a watershed. Examination of Figure 58 shows how one county can affect a watershed that spans several counties. The most southern dark-colored watershed lies within three counties with rank values of 13, 13, and 14. Most of the watershed spans two counties whose ranks are 13, but the county with the 14 controls the results.

Figure 59 also demonstrates the potential effect of using data of lesser spatial resolution. The left-most figures show the 8-digit-hydrologic-unit theme generated using the 14-digit-hydrologic-unit test theme. The upper theme shows those watersheds in the upper 20 percent of the classes, and the lower theme shows those watersheds in the upper 33 percent of the classes. The results using the 14-digit-hydrologic-unit test theme are
The middle themes (Figure 59) show the 8-digit hydrologic units generated using the 11-digit-hydrologic-unit test theme. Analysis of these themes shows that two additional watersheds are placed in the upper 20 percent of the classes. The lower middle theme shows that the results using the 11-digit hydrologic units has two fewer hydrologic units in the upper 33 percent but, in general, the identified hydrologic units are similar to the 14-digit hydrologic units.

The themes generated by the application using the county data (right-most themes in Figure 59) show that the watersheds identified in the upper 20 percent of the classes differ significantly from those watersheds identified when the 14-digit-hydrologic-unit test theme was used. The watersheds identified in the upper 33 percent of the classes, however, are similar to those watersheds identified when the 14-digit hydrologic units are used but are not as similar as when the 11-digit hydrologic units were used.
8-digit-hydrologic-unit rankings, using 14-digit hydrologic unit

8-digit-hydrologic-unit rankings, using 11-digit hydrologic units whose values were the median of the 14-digit hydrologic units within each 11-digit hydrologic unit

8-digit-hydrologic-unit rankings, using counties whose values were the median of the 14-digit hydrologic units completely or partially in the county

8-digit-hydrologic-unit rankings, using 14-digit hydrologic unit

8-digit-hydrologic-unit rankings, using 11-digit hydrologic units whose values were the median of the 14-digit hydrologic units within each 11-digit hydrologic unit

8-digit-hydrologic-unit rankings, using counties whose values were the median of the 14-digit hydrologic units completely or partially in the county

Figure 59. The results of using 14- and 11-digit hydrologic data and county data to screen 8-digit hydrologic data.
Number of Classes—Spatial Variability

The number of classes into which the theme is divided describes the spatial variability of a theme. Too many classes cause the application to take a longer completion time. Too few classes cause the spatial variability to be defined inadequately. Because rank values are assigned to a feature on the basis of the class to which that feature is assigned, inaccuracy in the spatial variability will cause inaccuracy to the combined theme. Figure 60 shows the results of screening 11-digit hydrologic units using the 14-digit-hydrologic-unit and county test themes.

The 14-digit-hydrologic-unit test theme was divided into 64, 32, 16, 10, and 5 classes and used to generate the 11-digit hydrologic units seen in the left-hand column of Figure 60. Examination of the left-hand column shows the results differ when the input data were divided into 5 and 10 classes but are the same for 16, 32, and 64 classes. The 14-digit-hydrologic-unit test theme has 2,426 features. To obtain reliable results, between 10 and 16 classes are needed to describe the spatial variability of the 14-digit-hydrologic-unit test.

The county test theme was divided into 5, 10, 15, 20, and 25 classes and used to generate the 11-digit hydrologic units seen in the right-hand column of Figure 60. Examination of the right-hand column shows the results are the same for 10, 15, 32, and 64 classes. The county test theme has 92 features. To obtain reliable results, between 5 and 10 classes are needed to describe the spatial variability of the county test.

Defining the spatial variation of an input theme does not have a rule of thumb. Some understanding of the spatial variability of the input themes must be known and care must be taken to verify that the spatial variability shown in the view is representative of the data.
14-Digit hydrologic units

<table>
<thead>
<tr>
<th>5 Classes</th>
<th>5 Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Classes</td>
<td>10 Classes</td>
</tr>
<tr>
<td>16 Classes</td>
<td>15 Classes</td>
</tr>
<tr>
<td>32 Classes</td>
<td>20 Classes</td>
</tr>
<tr>
<td>64 Classes</td>
<td>25 Classes</td>
</tr>
</tbody>
</table>

Figure 60. Results of generating 11-digit hydrologic units by using 14-digit-hydrologic-unit and county test themes that use varying numbers of classes.
Classification Type

The type of classification selected to define the spatial variation of a theme will also affect which classification class an individual feature in a theme will be placed. Figure 61 shows how the members of a class change when the classification type is changed. The “Standard Deviation” entry shows features with a negative standard deviation in blue. The source data must be examined to determine which classification type best describes the spatial variation of the data set. The “Natural Breaks” classification type was used throughout this report and example.

Figure 61. Results showing different spatial variations caused by different classification types.
Grids

Grid-cell size can affect the results—too large a cell size and the spatial resolution of the input themes will be lost. If the cell size is too small, excess computer resources are required to generate the results. The grid-cell size selected should be adequate to maintain the spatial resolution of important, smaller features within the input themes. Tests indicate 50-meter grid size is adequate to maintain the spatial resolution of the 14-digit hydrologic units. The statistic used to combine the grids also will affect the results. This statistic tells the application how to combine the products of the rank values and weight factors that are the individual grid-cell values. Although other statistics are available, using the sum statistic to combine grids is strongly recommended.

The statistical method used to summarize the individual grid cells within a feature is another input that can affect the theme generated by the application. Figure 62 shows the results for the output theme present in Figure 56 for six statistics that can be used to summarize grid cells and the sum statistic normalized by the acres in the hydrologic unit. The results of the Min, Max, Mean, Sum, and Sum normalized by the acres in the hydrologic unit are shown overlain by the 8-digit-hydrologic-unit test theme. Each option gives a different result. When the number of grid cells is large (small cell size), the mean gives the best representation of the original data. At other times, however, the user should consider using the sum of the grid points normalized by the area of the features. An understanding of the data sets and their spatial resolution and variability is important when selecting the statistic to summarize the combined grid or to analyze the application results.
Figure 62. The results of using various statistics to summarize the grid points in an area.
THE NONPOINT-SOURCE POLLUTION EXAMPLE

The U.S. Environmental Protection Agency (USEPA) requires each state to maintain and routinely update a nonpoint-source pollution management plan. Each plan contains a list of water bodies affected by nonpoint-source pollution. Projects receiving USEPA nonpoint-source pollution grant monies are required to have the project site located at a water body on that list. IDEM’s Nonpoint-Source Pollution Section, now the Watershed Management Section, created a task force of volunteers from Federal, State, and local governments and from the private sector to assist in revising Indiana’s Nonpoint-Source Pollution Management Plan. In addition to a list of Indiana water bodies affected by nonpoint-source pollution, the task force wanted the list prioritized by the effects of nonpoint-source pollution on those water bodies. This prioritization would allow IDEM to identify water bodies in Indiana where the benefits of implementing a pollution management plan are likely to be greater in comparison to other areas. The task force formed the Prioritization of Water Bodies Subcommittee to produce this prioritized list of Indiana water bodies affected by nonpoint-source pollution.

The Prioritization of Water Bodies Subcommittee evaluated the assigned task and developed a qualitative technique for evaluating the potential for nonpoint-source pollution to affect a watershed. The qualitative technique involved analyzing data layers for which the differences among areas (the spatial variation), when combined, likely would reflect the spatial variation in the potential for nonpoint-source pollution to affect those watersheds. Each water body in a watershed was assigned the estimated potential for the watershed in which the water body was located. The Subcommittee then developed a process to allow an annual update to the estimated potential for nonpoint-source pollution to affect individual water bodies on the basis of an analysis of actual water-quality data.

Methodology

Several issues required resolution before the Subcommittee could apply this qualitative technique. The individual data layers showed information on a county or 8-digit-hydrologic-unit watershed basis. Because IDEM was interested in representing its findings based on watersheds, a process for converting data layers representing counties to data layers representing 8-digit hydrologic units was needed. This conversion was done, using an area-weighted average. That is, for each county in an 8-digit hydrologic unit, the data value for the county was multiplied by the area of the county within the 8-digit hydrologic unit and then divided by the area of the 8-digit hydrologic unit. The data value for the 8-digit hydrologic unit was the sum of the area-weighted county values within that 8-digit hydrologic unit.

Because each data layer had different units of measure, a method to standardize the units was needed. Rank values were used to give each data layer a unitless component that could be used to combine the data layers. The rank values were determined using the following process for each data layer. The data value for each geographical area, county, or watershed was normalized using the size of the area and the 95th, 66th, 50th, 33rd, and 5th percentiles were calculated using the normalized data values. Each geographical area in the data layer where the normalized value was equal to or greater than the 95th percentile was assigned a rank value of 6. A rank value of 5 was assigned to areas where the normalized value was greater than or equal to the 66th percentile but less than the 95th percentile. This assignment of rank values continued until areas where the normalized value was less than the 5th percentile were assigned a rank value of 1.

The data layers selected to represent indicators of nonpoint-source pollution were combined to create a single data layer that could be used to prioritize the list of Indiana’s water bodies. The rank values for each county in the State were aggregated to create a new, but temporary, data layer. The aggregated county data layer was converted to the 8-digit-hydrologic-unit watersheds using an area-weighted average. The final data layer showed an estimate of the relative potential for nonpoint-source pollution to affect the watersheds of Indiana but did not show the actual potential for nonpoint-source pollution. The technique’s real value to scientists and water managers is the relative difference among watersheds which, when analyzed, can be used to identify areas of potential concern.
Primary Sources of Nonpoint-Source Pollution

The Prioritization of Water Bodies Subcommittee of the Nonpoint-Source Pollution Management Plan Task Force decided the primary sources of nonpoint-source pollution in Indiana were related to population centers, agriculture, and erosion.

Population Centers

The Subcommittee thought runoff from increased impervious areas and increased usage of fertilizers and pesticides to maintain lawns, septic systems, and combined-sewer overflows were the primary sources for nonpoint-source pollution from population centers. To represent the potential effect of a population center on a watershed, population estimates for 1995 and the change in population between 1990 and 1995 were examined. The Subcommittee decided that population density alone did not give an accurate picture of the potential for nonpoint-source pollution to affect a county because, commonly, people live in one county and work in another. To account for this factor, a representation for the number of individuals employed in a county during 1993 was computed in each of the following categories:

- Agriculture
- Construction
- Financial
- Manufacturing
- Mining
- Nonclassified Businesses
- Retail
- Service Industry
- Transportation
- Wholesale
- Total Employed in County

The Subcommittee used the population density for 1995 and the representation of the number of individuals employed in a county to represent the potential effect of nonpoint-source pollution from population centers.

Agriculture

The potential for nonpoint-source pollution from agriculture was thought to come from two areas, row-crop production and livestock operations. The principal potential from row-crop production is related to applying fertilizers and pesticides, and the potential from livestock operations is related to animal waste and pasturing. To represent the potential effect from row-crop production, the Subcommittee examined the acres and percent of a county planted in the following crops during 1995:

- Corn
- Wheat
- Soybeans
- Corn, soybeans, and wheat

Corn, wheat, and soybeans are the principal row crops in Indiana. After evaluating the various data layers, the Subcommittee decided that the percent of the county planted in corn, wheat, and soybeans best represents the potential effect of nonpoint-source pollution from row-crop production.

To qualify the potential for nonpoint-source pollution from livestock operations, the following data layers for 1992 were examined.

Head of:

- Sheep
- Horses
- Swine
- Poultry
- Cattle
- Dairy cattle
- Non-dairy cattle

Factors estimating the quantity of water consumed by different types of livestock (Arvin, 1993) were used to calculate an estimate of the gallons of water consumed per day by swine, poultry, dairy cattle, and non-dairy cattle.
The following nutrients generated by animal waste also were examined. Pounds of:

- Nitrogen
- Phosphorus
- Potassium
- Nitrogen, phosphorus, and potassium

The percentages of a crop’s need for the following nutrients, met by animal waste produced in a county, also were examined.

- Nitrogen
- Phosphorus
- Potassium

After examining the factors related to livestock operations, the potential benefits gained from application of manure as a fertilizer had to be considered. The Subcommittee decided that the pounds of nitrogen, phosphorus, and potassium generated by animal waste per acre of corn, soybeans, and wheat best reflected the potential for nonpoint-source pollution from livestock operations. Several assumptions were made. As the quantity of nutrients per planted acre decreases, the potential for excess nutrients decreases and the potential for nonpoint-source pollution decreases. The Subcommittee assumed that all animal waste was spread on fields and that the quantity of fertilizer was not affected. (This animal waste does not account for the application of manure transported to an area from other parts of the State.)

Erosion

The effects of erosion in Indiana were thought to be of such magnitude that erosion should be considered separately. Erosion was thought to be generated by two primary activities: urban growth and agriculture. No estimate has been made of erosion caused by urban growth in Indiana. The population change between 1990 and 1995 was thought to reflect the potential for erosion from urban growth. The assumption is that as population increases, the construction of homes, roads, businesses, and shopping centers increases the potential for erosion.

Because no-till practices are increasing in Indiana, the previously discussed data layers associated with row-crop production most likely do not adequately represent the potential for erosion from agriculture. Estimates for soil loss from agricultural areas throughout Indiana were used to qualify the potential for erosion from agricultural practices.

Additional Areas of Concern Regarding Nonpoint-Source Pollution

In addition to the potential effects of the previously discussed factors, withdrawals from surface- and ground-water sources were included to identify areas where the effect of nonpoint-source pollution could have a more serious effect. These areas are where the direct effect on human populations will most likely occur. Estimates of the surface water, ground water, and total water used for public supply for 1995 were reviewed, as was the percent of the population served by public and domestic supplies. The number of surface- and ground-water suppliers was identified.

Many suppliers of ground water in Indiana are small noncommunity suppliers who, in general, do not have access to the same testing and monitoring resources as larger community suppliers. The Subcommittee considers these small, noncommunity surface- and ground-water suppliers to be more vulnerable; therefore, these data were the most appropriate for the analysis.

SUMMARY

The U.S. Geological Survey (USGS) developed a geographical information system application to combine data layers showing natural resources, physical characteristics, and cultural features into a single data layer. The application was developed in cooperation with Indiana Department of Environmental Management (IDEM). Scientists and water managers can use the combined data layer to identify areas where the potential
cumulative effect of the data layers combined is relatively greater in one area when compared to other areas within the study area. The application can be used in many areas by changing the spatial focus of the data layers; the application can address other issues by changing the focus of the data layers included in the analysis.

The application developed using Environmental System Research Institute’s ArcView with the Spatial Analyst extension:

• allows the selection of a watershed of interest,
• allows the selection of the number of classes to define the spatial variability of the themes,
• allows the assignment of weight factors to signify the relative importance of one theme compared to another,
• allows the selection of the grid-cell size used to convert themes to grids,
• converts the themes to a grid whose cell values are the product of the rank values and weight factors, and
• allows the selection of the statistics used to combine the grids and to summarize the grids into watersheds.

The application is based upon the work of IDEM’s Prioritization of Water Bodies Subcommittee, Nonpoint-Source Management Plan Task Force.

SELECTED REFERENCES

APPENDIXES
APPENDIX 1. LISTING OF THE CODE

EV.AddTheme

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:29:46 2000

'This script causes "Add Theme" to look in the
'database accompanying this application the first
time. "Add Theme" is executed after each start of the
'application.

'**
'
'ev_data -- Variable holding the full pathname to the
 data base that accompanies the application.
'_timesin -- Global variable used to count the number
 of times "Add Theme" has been accessed
 during this execution of the
 application.
'
'**

'First time "add theme" has been activated for this
'execution of the project. Look in the ev_data
'directory for the themes. Increment the global
'variable _timesin.

if (_timesin = 0) then
 ev_data = System.GetEnvVar("EV_DATA")
 ev_data.asFilename.SetCWD
 _timesin = _timesin + 1
end

'Working directory set, now run ESRI's View.Add.

av.Run("View.Add","")
EV.CreateTheme

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:29:58 2000

'This script is used to create a new theme using a base theme and a data file.

**

'asrcnm -- Variable containing the source name, full pathname, to the base theme.
'EV_DATA -- System environment variable holding the full pathname to the data base that accompanies the application.
'ev_data -- Variable holding the full pathname to the base theme that accompanies the application.
'EV_HOME -- System environment variable holding the full pathname to the user area where files are saved.
'ev_home -- Variable holding the full pathname to the user area where files are saved.
'EV_TEMP -- System environment variable holding the full pathname to the temporary work area.
'ev_temp -- Variable holding the full pathname to the temporary work area.
'evctBaBase -- The base theme, created using asrcnm.
'evctBaCodeField -- Field in the base theme attribute table on which the table join will occur.
'evctBaCodeSel -- Field type used during a county join.
'evctBaList -- List containing the types of base theme that can be used to create a new theme.
'evctBaSel -- Type of base theme selected by the user.
'evctBaTheme -- Name of the base theme shapefile.
'evctCntyFields -- List containing the allowable field types on which a county join can occur.
'evevenvDic -- Dictionary containing the system environment variables, returned from "EV.GetEnvVar."
'evctFile -- Individual file from the list "evctFiles," used to loop through all files in "evctFiles."
'evctFileName -- Name of the join table, entered by the user.
'evctFiles -- Files, selected by the user, that will be joined to the base theme.
'evctFileVTab -- VTab created using a user defined data file contained in evctFiles.

'evctFrField -- Field in the user defined data file that will be used to join the data file to the base theme.
'evctFrFields -- Fields contained in the user's data file.
'evctjoinFTab -- Copy of the joined table used to make the joined theme.
'evctJoinTheme -- Theme made using "evctjoinFTab."
'evctLabels -- List of file types that can be used during a join.
'evctPatterns -- List of patterns used to find the files that can be used during a join.
'evctToField -- Field in the base theme on which the join will occur.
'evctTmpName -- Temporary name of the joined table, created by the application.
'evctView -- Active view, the view in which the new theme will be visible.
'evctVTab -- The base theme's FTab.
'frFieldPrec -- Precision of field in the data table that will be used during the join.
'frFieldType -- Type of field in the data table that will be used during the join.
'frFieldWidth -- Width of the field in the data table that will be used during the join.
'toFieldPrec -- Precision of the field in the base theme that will be used during the join.
'toFieldType -- Type of field in the base theme that will be used during the join.
'toFieldWidth -- Width of the field in the base theme that will be used during the join.

**

'Get the system environment variables and the view with which to work.

**

'Get the system environment variables.

evenvDic = av.Run("EV.GetEnvVar","")
ev_data = evenvDic.Get("EV_DATA")
ev_home = evenvDic.Get("EV_HOME")
ev_temp = evenvDic.Get("EV_TEMP")

'Get the view with which to work.

evctView = av.Run("EV.ViewGet","")
Find and make the base theme.

Get the type of base theme that will be used to create a new theme.

evctBaList = {"County",
 "8-digit Hydrologic Units",
 "11-digit Hydrologic Units",
 "14-digit Hydrologic Units"}

evctBaSel = MsgBox.ListAsString(evctBaList,
 "Please Select the base area theme you wish to use.
 Select type of base theme.")

if (evctBaSel = NIL) then
 MsgBox.Error("You can only create a new theme with county or watershed data.
 Selecting type of base theme.")
 return NIL
end

On the basis of the type of base theme selected, identify the name of the base theme and the name of the data field on which the table join will occur.

if (evctBaSel.Contains("14-digit")) then
 evctBaTheme = "in_hu14.shp"
 evctBaCodeField = "Huc_14"
elseif (evctBaSel.Contains("11-digit")) then
 evctBaTheme = "in_hu11.shp"
 evctBaCodeField = "Huc_11"
elseif (evctBaSel.Contains("8-digit")) then
 evctBaTheme = "in_hu8.shp"
 evctBaCodeField = "Huc_8"
else
 evctBaTheme = "county_utm.shp"
 evctCntyFields = {"FIPS State and County Code",
 "FIPS County Code",
 "State of Indiana Codes"}
 evctBaCodeSel = MsgBox.ListAsString(evctCntyFields,
 "Please select the type of county identifier you will use to join your data table.
 Selecting join field.")

 if (evctBaCodeSel = NIL) then
 MsgBox.Error("You must identify the field to use during the table join.
 Selecting join field.")
 return NIL
 end
end

The user selected "county" as the type of base theme. Get the proper field type, State/County FIPS, County FIPS, and Indiana County numbers to use during the table join.

if (evctBaCodeSel.Contains("State and County")) then
 evctBaCodeField = "Statecty"
elseif (evctBaCodeSel.Contains("FIPS County")) then
 evctBaCodeField = "FIPS_Cnty"
else
 evctBaCodeField = "IN_Cnty"
end

Get the base theme.

asrcnm = SrcName.Make(ev_data + "/" + evctBaTheme)

evctBaBase = Theme.Make(asrcnm)

The user selected "county" as the type of base theme. Get the base theme.

Set the current working directory to the user's home directory, show the user the available files, and let the user select a file.

50
evctFiles = FileDialog.ReturnFiles
evctPatterns, evctLabels, "Add Table", 0)

'If the user did not select a file, take no action
'and return to the calling function.

if (evctFiles.Count = 0) then
 MsgBox.Error("You must identify the file which " +
 "contains the data to be joined " +
 "the base area." , "Creating themes")
 return NIL
end

'***
'Join the base theme's attribute table and the
data file, and make the new theme visible in the
'active view.
'***

'Get the FTab for the base theme and the
'field used during the join.

evctVTab = evctBaBase.GetFTab
evctToField = evctVTab.FindField(evctBaCodeField)

'For each file selected by the user, join the
'file to the base theme.

for each evctFile in evctFiles

'Make the VTab of the file.

evctFileVTab = VTab.Make(evctFile, FALSE, FALSE)

'Check for errors.

if (evctFileVTab.HasError) then
 if (evctFile.HasLockError) then
 MsgBox.Error("Unable to acquire Read Lock for file " +
 evctFile.GetBaseName, "")
 else
 MsgBox.Error("The file '" +
 evctFile.GetBaseName +
 "' is not valid.", "")
 end
else
 'Get the name of the fields in the data file and
 'have the user select the field to use in the
 'join

 evctFrFields = evctFileVTab.GetFields
 evctFrField = MsgBox.ListasString(evctFrFields,
 "Please select the field in your " +
 "data table that corresponds to " +
 evctBaCodeField + " for " +
 evctFile.asString, "Create Theme")

 'User canceled the operation, get the next file.
 if (evctFrField = NIL) then
 MsgBox.Error("You keyed cancel. " +
 "Processing of the file " +
 evctFile.asString + " will stop.",
 "Creating Themes")
 continue
 end

 'Check the to and from fields to make sure those fields
 'have identical formats.

 toFieldType = evctToField.GetType
 frFieldType = evctFrField.GetType
 if (NOT (toFieldType = frFieldType)) then
 MsgBox.Error("The field types of the " +
 "fields to be used in the join " +
 "differ. They must be the same. ",
 "Create Themes")
 return NIL
 end

 'Check the type.

 toFieldWidth = evctToField.GetWidth
 frFieldWidth = evctFrField.GetWidth
if (NOT (toFieldWidth = frFieldWidth)) then
 MsgBox.Error("The widths of the fields " +
 "to be used in the join differ. " +
 "They must be the same. ",
 "Create Themes")
 return NIL
end

'Check the precision.

toFieldPrec = evctToField.GetPrecision
frFieldPrec = evctFrField.GetPrecision
if (NOT (toFieldPrec = frFieldPrec)) then
 MsgBox.Error("The precision of the fields " +
 "to be used in the join differ. " +
 "They must be the same. ",
 "Create Themes")
 return NIL
end

'Join the base theme attribute table and the 'data file.

evctVTab.Join(evctToField,evctFileVTab,
 evctFrField)
end

'Let the user give the new theme a name.

evctTmpName = av.GetProject.MakeFileName
 ("wse_join","shp")
evctFileName = FileDialog.Put(evctTmpName,
 "wse_j*.shp","Save " +
 evctFile.asString +
 " as Theme")

'Export the joined table to the new file.

evctjoinFTab = evctVTab.Export(evctFileName
 ,shape,FALSE)

'Make the joined table a theme and add it to the 'view.

evctJoinTheme = FTheme.Make(evctjoinFTab)
evctView.AddTheme(evctJoinTheme)
evctJoinTheme.SetVisible(TRUE)
evctJoinTheme.SetActive(TRUE)

'Remove the joins from the base theme table 'and get the next file.

evctVTab.UnjoinAll
end
This script combines the themes contained in a scenario file into a single theme. The themes must be in the active view's table of content.

`EV.Evaluate`

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:30:16 2000

'This script combines the themes contained in a scenario file into a single theme. The themes must be in the active view's table of content.

'aGridList -- List containing the grids to be combined.
'aStat -- The statistic chosen by the user to combine the grids.
'aStatList -- List containing the statistics that can be used to merge the grids.
'aTheme -- The theme being worked on. Used to loop through "evevActiveThemes."
'aThemeName -- Name of the theme being converted to a grid.
'aThemeWFDic -- Dictionary containing the themes and weight factors.
'choice_list -- List of statistics that can be used to summarized "theRstGrid."
'EV_DATA -- System environment variable holding the full pathname to the data base that accompanies the application.
'ev_data -- Variable holding the full pathname to the data base that accompanies the application.
'EV_HOME -- System environment variable holding the full pathname to the user area where files are saved.
'ev_home -- Variable holding the full pathname to the user area where files are saved.
'EV_TEMP -- System environment variable holding the full pathname to the temporary work area.
'ev_temp -- Variable holding the full pathname to the temporary work area.
'evevActiveThemes -- A list of themes to be combined.
'evevAllThemes -- All themes in the view table of content.
'evevenvDic -- Dictionary containing the system environment variables, returned from "EV.GetEnvVar."
'evevFactor -- Statistic used to make the watershed of interest visible.
'evevField -- Field name containing "Rank_Value."
'evevFields -- Temporary list containing the fields contained in the grid "theRstGrid" and the watershed of interest.
'evevFN -- Temporary file used to summarize "theRstGrid."
'evevFrField -- Field on which the summarization was done, used to join the summarized table to the watershed of interest.
'evevFTab -- A temporary FTab, containing ranks, of the theme being converted to a grid and the FTab of the watershed of interest.
'evevGrid -- Grid of the theme being processed.
'evevGridDic -- Dictionary containing the grids of the themes included in the scenario being evaluated.
'evevGthm -- "theRstGrid" converted to a grid theme.
'evevHash -- A has used to identify the watershed of interest.
'evevLegend -- Legend associated with "evevRTheme."
'evevMaxExt -- Maximum extent of the active view.
'evevMaxRank -- Maximum rank value, the maximum number of classes used to define the spatial variability of the themes in "evevActiveThemes."
'evevMFTheme -- The theme created using the table created when the watershed of interest and the summarization tables were joined.
'evevPrj -- Map projection of the active view.
'evevRTheme -- The theme created when "evevMFTheme" is converted to a shapefile.
'evevStatus -- Status of the just converted grid.
'evevSumField -- Field name in the watershed of interest that will be the basis for summarizing the grid.
'evevSumVTab -- VTab containing the summarization of "theRstGrid" using the watershed of interest.
'evevToFied -- Field containing the value that will be used when the grid is summarized. Also, the field used to join the summarized table to the watershed of interest.
'evevView -- Active view, the view in which the themes being combined exists, and the merged theme will be visible.
'evwoiTheme -- Watershed of interest theme selected by the user from "evwoiThemes."
'evwoiThemes -- List of themes that could be a watershed of interest theme.
'findTheme -- True if the theme is in the view, false if the theme is not in the view.
'passDic -- Dictionary used to pass information to the scripts called in this script.
'theCellSize -- Cell size as entered by the user after the cell has been checked for validity.
'theFirstGrid -- The first grid in the grid list. All other grids in the list will be combined with this grid using the enumeration "theStat."
theRstGrid -- The combined grid.
theScenarios -- Name of the file that contains a list of files and descriptions. These files contain the list of themes and weight factor that make up a scenario.
theStat -- Enumeration of "aStat."
tmpAns -- Temporary variable used in loops
tmpBitMap -- Bit map containing the features in the watershed of interest to be used in the summarization.
tmpCellSize -- Cell size as entered by the user.
tmpDic -- Temporary dictionary containing the contents of the dictionary returned from a script.
tmpExtent -- Extent of the theme being converted to a grid.
tmpfactor -- User selection from "choice_list" that will be used to make the watershed of interest theme visible.
tmpVal -- Temporary value used to identify the huc level of the watershed of interest.

'Get the system environment variables and the view with which to work.

evevenvDic = av.Run("EV.GetEnvVar",""")
ev_data = evevenvDic.Get("EV_DATA")
ev_home = evevenvDic.Get("EV_HOME")
ev_temp = evevenvDic.Get("TEMP")
ev_cwd = FileName.GetCWD
ev_pwd = av.GetProject.GetWorkDir
ev_home.asFileName.SetCWD
av.GetProject.SetWorkDir(ev_home.asFileName)

'Get the active view that contains the themes to be evaluated.

evevView = av.Run("EV.ViewGet","Evaluate")

'Get the scenario file that contains the themes to be combined and their weight factors.

'Get the file that contains the names of the files that contain the lists of themes and weight factors that will be used in this screening.

theScenarios = av.Run("EV.WFGetScenarios","Select")

if (theScenarios = NIL) then
 MsgBox.Error ("No list of scenarios was selected.",
 "Getting list of scenarios.")
 return NIL
end

'Get the list of themes and the weight factors 'selected by the user. If there are none, return to 'the calling script.

passDic = Dictionary.Make(2)
passDic.Set("Scenario",theScenarios)
passDic.Set("View",evevView)
tmpDic = av.Run("EV.WFGetTheme",passDic)
if (tmpDic.Count <= 0) then
 MsgBox.Error("Did not return any themes and " + "weight factors.","Retrieving " + "weight factors.")
 return NIL
end

'Get the dictionary that has the theme as the key 'and the weight factor as the value.

aThemeWFDic = tmpDic.Get("WFDIC")
if (((aThemeWFDic = NIL) or (aThemeWFDic.Count <= 0)))
 then
 MsgBox.Error("Did not return any themes and " + "weight factors.","Getting " + "weight factors.")
 return NIL
end

'Show the themes and weight factors to the user 'and allow the user to change the weight factors. 'Changing the weight factors is done in the script "EV.WFAssignFactor."

tmpDic =
av.Run("EV.WFAssignFactor",aThemeWFDic)
if ((tmpDic = NIL) or (tmpDic.Count <= 0)) then
 MsgBox.Error("Did not return any themes and " + "weight factors.","Retrieving " + "weight factors.")
end

return NIL
end

aThemeWFDic = tmpDic

'**

'Verify that the themes to be combined are in the 'active view.
'
'**

'Get the list of themes from the scenario file.

evevActiveThemes = aThemeWFDic.ReturnKeys

'make sure the theme is in the view.

for each aTheme in evevActiveThemes
 findTheme = evevView.FindTheme(aTheme.asString)
 if (findTheme = NIL) then
 MsgBox.Error ("Could not find theme " + aTheme.asString + " in the " + "View " + evevView.asString + ", Please add the theme to " + "the view and try again.", "Checking Themes and Weight " + "Factors.")
 return NIL
end
end

'**

'Establish the parameters that will control the 'combining of themes during this execution.
'Make a dictionary to pass this information to 'various scripts, which establish other parameters or 'convert the themes to grids.
'
'**

passDic.SetSize(6)
passDic.Set("View",evevView)
passDic.Set("ThWf",aThemeWFDic)

give the maximum rank value.
evevMaxRank = av.Run("EV.EvMaxRankValue", passDic)
if (evevMaxRank = NIL) then
 MsgBox.Error("Unable to determine the " ++ "maximum rank value.", "Finding maximum rank value.")
return NIL
end

passDic.Set("MR",evevMaxRank)

'Get the watershed of interest theme that 'is used to represent the combined theme.
'First find all themes that contain the column WOI.

evwoiThemes = {}
evwoiThemes = av.Run("EV.WOIGetWOI", evevView.GetThemes)

'There is at least one watershed of interest 'theme, that is the FTab contains a column with a 'field name of "WOI." Ask the user to select which 'theme to use.

evwoiTheme = NIL
if (evwoiThemes.Count = 1) then
evwoiTheme = evwoiThemes.Get(0)
evwoiView = av.Run("EV.WOIGetView", evevView.GetThemes)
elseif (evwoiThemes.Count > 1) then
evwoiTheme = MsgBox.List(evwoiThemes, "Which of the following " + "watershed of interest themes do " + "wish to use. Click Cancel to " + "end this execution.", "Selecting watershed of interest.")
end

'There are no watershed of interest themes. 'Exit the script.
if (evwoiTheme = NIL) then
 evevTheme = MsgBox.Error("There are no " + "watershed of interest themes," + "or you did not choose one." +
"Click Cancel to " +
"start over.",
"No watershed of interest.")
return NIL
end
passDic.Set("WT",evwoiTheme)

'Get the maximum extent of all active themes.
'This extent will be used to make the grids.

evevMaxExt = av.Run("EV.EvGetMaxExtent",passDic)
passDic.Set("ME",evevMaxExt)

'Ask the user to enter a cell size to be used when
'the theme is converted to a grid.

tmpAns = TRUE
while (tmpAns)
tmpCellSize = MsgBox.Input("Please enter the " +
"cell size to be used " +
"when converting the theme " +
"to a grid.",
"Enter cell size.","500")
if (tmpCellSize = NIL) then
MsgBox.Error("A cell size must be entered.",
"Entering cell size.")
return NIL
end
if (tmpCellSize.IsNumber) then
theCellSize = tmpCellSize.asNumber
tmpAns = FALSE
end
end
passDic.Set("CS",theCellSize)

'***

'Convert the themes to grids.
'***

'Create a dictionary, the key is the theme and the
'value is the grid for that theme.

evevGridDic = NIL
evevGridDic =
Dictionary.Make(evevActiveThemes.Count)

'Clear any selections previously made for this
'watershed of interest.

for each aThemeName in evevActiveThemes
 aTheme = evevView.FindTheme(aThemeName)
tmpExtent = aTheme.ReturnExtent
evevView.GetDisplay.SetExtent(evevMaxExt.
Scale(1.1))
 aTheme.SelectByTheme(evwoiTheme, #FTAB_RELTYPE_INTERSECTS,
0,
#VTAB_SELTYPE_NEW)
 aTheme.ClearSelection
end

evevGrid = NIL
evevGrid = av.Run("EV.EvConv2Grid",passDic)

'aTheme.ClearSelection
Verify the Grid was created properly. If it was, add it to the grid dictionary.

if (evevGrid.HasError) then
 MsgBox.Error(evevTheme.asString +
 "could not be converted " +
 "to a grid","Grid conversion error.")
 return NIL
end

evevStatus = Grid.GetVerify
Grid.SetVerify(#GRID_VERIFY_OFF)
Grid.SetVerify(evevStatus)
evevGridDic.Set(aTheme,evevGrid)
eveView.GetDisplay.SetExtent(tmpExtent.Scale(1.1))

' Remove the Rank Column from the table.

av.Run("EV.RemoveRankField",aTheme)

' Get the next theme.

end

'***

'Combine the grids.

'***

'Choose which statistic to use to combine the grids.

aStatList = {
 "Majority - Value occurring most often within " +
 "the cells.",
 "Maximum - Maximum value for the cells.",
 "Mean - Mean value for the cells.",
 "Median - Median value for the cells.",
 "Minimum - Minimum value for the cells.",
 "Minority - Value occurring least often " +
 "within the cells.",
 "Range - Range in values occurring within the " +
 "cells.",
 "Standard Deviation - Standard Deviation of " +
 "the cell values.",
 "Sum - Sum of the cell values.",
 "Variety - Number of unique occurrences within " +
 "the cells." }

aStat = MsgBox.ListasString(aStatList,
 "Select the statistic to use when " +
 "combining the grids.","Select " +
 "statistic used to combine grids.")

if (aStat = NIL) then
 MsgBox.Error ("You must choose a statistic for " +
 "the application to use when " +
 "combining grids.","Merge grids " +
 "statistic error.")
 return NIL
end

'tConvert the user's selection to an enumeration.

if (aStat.Left(8) = "Majority") then
 theStat = "#GRID_STATYPE_MAJORITY"
elseif (aStat.Left(7) = "Maximum") then
 theStat = "#GRID_STATYPE_MAX"
elseif (aStat.Left(4) = "Mean") then
 theStat = "#GRID_STATYPE_MEAN"
elseif (aStat.Left(6) = "Median") then
 theStat = "#GRID_STATYPE_MEDIAN"
elseif (aStat.Left(7) = "Minimum") then
 theStat = "#GRID_STATYPE_MIN"
elseif (aStat.Left(8) = "Minority") then
 theStat = "#GRID_STATYPE_MINORITY"
elseif (aStat.Left(5) = "Range") then
 theStat = "#GRID_STATYPE_RANGE"
elseif (aStat.Left(8) = "Standard") then
 theStat = "#GRID_STATYPE_STD"
elseif (aStat.Left(3) = "Sum") then
 theStat = "#GRID_STATYPE_SUM"
elseif (aStat.Left(7) = "Variety") then
 theStat = "#GRID_STATYPE_VARIETY"
else
 theStat = "#GRID_STATYPE_MAX"
end

'Create a list of grids to be combined. Get the first grid in the list and combine the other grids with the first grid using the enumeration.
aGridList = {}
for each aTheme in (evevGridDic.ReturnKeys)
aGridList.Add(evevGridDic.Get(aTheme))
end
theFirstGrid = aGridList.Get(aGridList.Count - 1)
aGridList.Remove(aGridList.Count - 1)
theRstGrid = theFirstGrid.
 LocalStats(theStat.asEnum,aGridList)
'verify that the combined grid was created properly.
if (theRstGrid.HasError) then
 MsgBox.Error(evevTheme.asString +
 "could not be converted " +
 "to a grid","Conversion Error")
 return NIL
end
evevStatus = Grid.GetVerify
Grid.SetVerify(#GRID_VERIFY_OFF)
Grid.Setverify(evevStatus)

if (theRstGrid.GetVTab <> NIL) then
 evevVTab = theRstGrid.GetVTab
 evevFields = evevVTab.GetFields
 evevField = evevVTab.FindField("Rank_Value")
 if (evevField.IsTypeNumber) then
 evevToField = evevVTab.FindField("Value")
 else
 MsgBox.Error("The field Rank_Value is not " +
 "a number field.","Rank value error.")
 return NIL
 end
end

'allow the user to choose which statistic will be
'used to display the theme after the combined grid
'has been summarized.
choice_list = { "Count - Number of cells within " +
 "the area being summarized.",
 "Minimum - Minimum cell value " +
 "within the area being summarized.",
 "Maximum - Maximum cell value " +
 "within the area being summarized.",
 "Range - Range of cell values " +
 "within the area being summarized.",
 "Mean - Mean cell value for the " +
 "area being summarized.",
 "Standard Deviation - Standard " +

"Deviation of the cell values " +
"within the area being summarized.",
"Sum - Sum of the cell values " +
"within the area being summarized." }

tmpfactor = MsgBox.ListasString(choice_list,
"Select the item with which to " +
"summarize the watersheds.",
"Determining watershed screening " +
"factor.")
if (tmpfactor.Left(3) = "Min") then
evevFactor = "Min"
elseif (tmpfactor.Left(3) = "Max") then
evevFactor = "Max"
elseif (tmpfactor.Left(5) = "Range") then
evevFactor = "Range"
elseif (tmpfactor.Left(4) = "Mean") then
evevFactor = "Mean"
elseif (tmpfactor.Left(8) = "Standard") then
evevFactor = "Std"
else

evevFactor = "Max"
endif
if (tmpfactor.Left(4) = "Sum ") then
evevFactor = "Sum"
else

evevFactor = "Max"
endif

'Get the remaining parameters needed to summarize
'the combined grid.

evevPrj = evevView.GetProjection
evevFN = av.GetProject.GetWorkDir.MakeTmp
("zstat","dbf")
tmpBitMap = BitMap.Make(evevFTab.GetNumRecords)
tmpBitMap.ClearAll
evevFTab.SetSelection(tmpBitMap)
evevSumVTab = theRstGrid.ZonalStatsTable
(evevFTab,evevPrj,evevSumField,FALSE,
evevFN)

'verify the summary table was properly created and
'that it contains the fields needed to join the
'summary table to the attribute table for the
'watershed of interest.

if (evevSumVTab.HasError) then
 MsgBox.Error("Cannot summarize the combined grid",
 "Summarizing the combined grid.")
 return NIL
endif
if (evevSumVTab.FindField(evevSumField.asString) =
 NIL) then
 MsgBox.Error("Could not find " +
evevSumField.asString +
 " in table " +
evevSumVTab.GetName,
 "Summarizing the combined grid.")
else
 evevFrField = evevSumVTab.FindField
 (evevSumField.asString)
endif
if (evevFTab.FindField(evevSumField.asString) =
 NIL) then
 MsgBox.Error("Could not find " +
evevSumField.asString +
 " in table " +
evwoiTheme.GetName.asString,
 "Summarizing the combined grid.")
else
 evevToField = evevFTab.FindField
 (evevSumField.asString)
endif

'Join the summary table to the FTab of the watershed
'of interest.

evevFTab.Join(evevToField,evevSumVTab,
evevFrField)
av.PurgeObjects

'***
'Export the theme and make the exported theme visible
'with 15 classes. Cleanup.

evevMFTheme = Ftheme.Make(evevFTab)
passex = Dictionary.Make(2)
passex.Set("Theme",evevMFTheme)
passex.Set("View",evevView)

evevRTheme = av.Run("EV.Export",passex)
av.PurgeObjects
evevLegend = evevRTheme.GetLegend
evevLegend.SetLegendType(#LEGEND_TYPE_COLOR)
evevLegend.Natural(evevRTheme,evevFactor,15)
evevRTheme.SetLegend(evevLegend)
'Add the hash to identify the watershed of interest.
evevHash = av.Run("EV.EvHash", evevRTheme)
if (NOT (evevHash = NIL)) then
 evevView.AddTheme(evevHash)
 evevHash.SetVisible(TRUE)
end

'Zoom to the combined and hash themes.
aRect = Rect.MakeEmpty
aRect = aRect.UnionWith(evevRTheme.ReturnExtent)
aRect = aRect.UnionWith(evevHash.ReturnExtent)
if (aRect.IsEmpty) then
 MsgBox.Info("Rectangle is empty.","")
 return NIL
elseif (aRect.ReturnSize = (0@0)) then
 evevView.GetDisplay.PanTo(aRect.ReturnOrigin)
else
 evevView.GetDisplay.SetExtent(aRect.Scale(1.1))
end

'Redraw the view.
av.Run("EV.RedrawView", evevView)
ev_cwd.SetCWD
av.GetProject.SetWorkDir(ev_pwd)
evwoiTheme.GetFTab.Unjoinall
EV.EvAssignRanks

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:30:30 2000

'Script is passed a theme and the maximum number
'of classifications. The Script looks at the
'theme legend. If the legend is a graduated color
'the script assigns a value to each feature in
'the theme-based class to which the feature is
'assigned.

'aTheme -- A theme used to loop through
' "evevarWFDic" to get the weight factor
' for the theme passed to this script.
evevarAttTable -- Attribute table for the theme
 to which ranks are being assigned.
evevarAttTableFields -- Fields in "evevarAttTable."
evevarClassField -- Name of the field used, by the
 legend, to classify the theme.
evevarField -- The rank value field, float 7 digits
 with three decimals.
evevarIndex -- Counter used to loop through each
 feature in the theme and assign a rank
 to that feature.
evevarIsOK -- True or False, "evevarAttTable" can
 be edited.
evevarMaxRank -- Maximum rank value for this
 scenario. Passed from the calling
 script.
evevarNormField -- Name of the field used, by the
 legend, to normalize the data.
evevarRank -- Rank value for the feature in the
 theme identified by "evevarIndex."
evevarTheme -- Theme passed from the calling
 script. Ranks assigned to this theme.
evevarWFDic -- Dictionary containing the themes
 and weight factors for this scenario.
 Passed from the calling script.
'theClassField -- Data element used to classify
 the theme.
'theClassIndex -- The class number to which the
 feature identified by "evevarIndex" belongs.
'theClassValue -- Value of the class for feature
 "evevarIndex" in the theme.
'theNormField -- Data field used to normalize the
 data.
'theRankField -- Data field to which the rank is
 assigned.

'Get the information passed to this script.

evevarTheme = SELF.Get("TM")
evevarMaxRank = SELF.Get("MR")
evevarWFDic = SELF.GET("ThWf")
evevarWF = NIL
for each aTheme in evevarWFDic.ReturnKeys
 if (evevarTheme.asString = aTheme.asString) then
 evevarWF = evevarWFDic.Get(aTheme)
 break
 end
if (evevarWF = NIL) then
 MsgBox.Error("No weight factor was assigned to " +
 evevarTheme.asString + ",",
 "Assign rank value error.")
 return NIL
end

'Get the classification and normalization fields
'used in the legend. These fields will be needed to
assign the rank values.

evevarClassField = evevarTheme.GetLegend
 .GetFieldName.Get(0)
if (evevarTheme.GetLegend.GetNormType.asString =
"LEGEND_NORMTYPE_FIELD") then
 evevarNormField = evevarTheme.GetLegend
 .GetNormFieldName
else
 evevarNormField = NIL
end

'Get the list of fields that the legend is
'using to classify the theme. If the number
'of fields found is less than or more than
'one, stop assigning ranks.

if (evevarTheme.GetLegend.GetFieldNames.Count < 1)
 then
 MsgBox.Error("There is no classification field" +
 "identified in the Legend.",
 "Assign rank value error.")
end
if (evevarTheme.GetLegend.GetFieldNames.Count > 1)
 then
 MsgBox.Error("There are multiple " +
 "classification fields identified " +
 "in the legend. There can be only " +
 "one.","Assign rank value error.")
end

'***
'* Modify the attribute table to contain a
' rank value field and assign the ranks.
'***

'Identify the table and make it editable.
evevarAttTable = evevarTheme.GetFTab
evevarAttTable.SetEditable (TRUE)

'Get the names of the fields in the tables.
evevarAttTableFields = evevarAttTable.GetFields

'Verify that the table is editable.
evevarIsOK = evevarAttTable.IsEditable
if (evevarIsOK.Not) then
 MsgBox.Error("Cannot edit the table " +
 ++evevarAttTable,"Assign rank value error.")
return NIL
end

'Determine if the field "rank value" exists in the
table. If not, add the field.
evevarField = evevarAttTable.FindField
("Rank_Value")
if (evevarField = NIL) then
evevarRankField = Field.Make("Rank_Value",
#FIELD_FLOAT,7,3)
else
evevarAttTable.AddFields({evevarRankField})
end

'Make sure there are records in the table.

if (evevarAttTable.GetNumRecords = 0) then
 MsgBox.Error("There are no records to update.",
 "Assign rank value error.")
return NIL
end

'Get the field names equivalent to the string names.

theClassField = evevarAttTable.FindField (evevarClassField)
if (NOT (evevarNormField = NIL)) then
theNormField = evevarAttTable.FindField (evevarNormField)
end
theRankField = evevarAttTable.FindField ("Rank_Value")

'For each record in the table assign a rank
'on the basis of the legend.

for each evevarIndex in 0 ..
(evevarAttTable.GetNumRecords - 1)
 theClassValue = evevarAttTable
 .ReturnValueNumber
 (theClassField,evevarIndex)
 if (NOT (evevarNormField = NIL)) then
theNormValue = evevarAttTable
 .ReturnValueNumber
 (theNormField,evevarIndex)
theClassIndex = evevarTheme.GetLegend.GetIndex
 ({theValue, theClassValue})
else
theClassIndex = evevarTheme.GetLegend.GetIndex
 ({theClassValue})
end
if (evevarTheme.GetLegend.GetNumClasses = 1) then
evevarRank = evevarMaxRank
else
evevarRank = 1 + (theClassIndex *
((evevarMaxRank - 1)/
(evevarTheme.GetLegend
.GetNumClasses - 1)))
end

evevarRank = evevarRank * evevarWF

evevarAttTable.SetValueNumber
(theRankField,evevarIndex,evevarRank)
end

'Stop editing the table and return the attribute 'table with the ranks.
evevarAttTable.SetEditable (FALSE)
return evevarAttTable
EV.Conv2Grid

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:30:42 2000

'Script to convert a theme to a grid.

'***
' evevcgCellSize -- Grid cell size. Passed from the
' calling script.
' evevcgField -- Loop variable, used with
' "evevcgListFields" to check the FTab and
' the field used to populate the grid.
' evevcgFTab -- FTab of the theme to be converted.
' evevcgGrid -- The grid of the theme passed to this
' script.
' evevcgListFields -- Field in the FTab being
' converted. Used to make sure the table
' has a field that can be converted.
' evevcgPrj -- Map projection of the theme being
' converted.
' evevcgRect -- Maximum extent to which the
' the conversion will occur. Passed
' from the calling script.
' evevcgStatus -- Status of the converted grid.
' evevcgTheme -- Theme being converted. Passed from
' the calling script.

'***

' Get the information passed from the calling
' script.

'***

' Get the extent, FTab, theme, and cell size for
'this group of themes.

evevcgRect = SELF.Get("ME")
evevcgFTab = SELF.Get("FT")
evevcgTheme = SELF.GET("TM")
evevcgCellSize = SELF.GET("CS")
evevcgView = SELF.GET("View")

'***

' Check the FTab passed to make sure a numeric
'field exists that can be used to populate the
'grid.

evevcgListFields = {}
for each evevcgField in evevcgFTab.GetFields
 if (evevcgField.IsVisible and
 (evevcgField.IsTypeNumber or
 evevcgField.IsTypeString)) then
 evevcgListFields.Add(evevcgField)
 end
end
if (evevcgListFields.Count = 0) then
 MsgBox.Error(evevcgTheme.GetName + " does " +
 "not contain a field to " +
 "populate the grid.",
 "Conversion to grid error.")
 return NIL
end

'***

' Get the other information needed to convert
'the theme to a grid and generate the grid.

'***

'Get the map projection and the rank value field.

evevcgPrj = evevcgView.GetProjection
evevcgField = evevcgFTab.FindField("Rank_Value")

'Make the grid.

evevcgGrid = Grid.MakeFromFTab
 (evevcgFTab,evevcgPrj,evevcgField,
 {evevcgCellSize, evevcgRect})
if (evevcgGrid.HasError) then
 MsgBox.Error (evevcgTheme.GetName ++
 "could not be converted to " +
 "a grid.","Grid conversion error.")
 return NIL
end
evevcgStatus = Grid.GetVerify
Grid.SetVerify(#GRID_VERIFY_OFF)
Grid.SetVerify(evevcgStatus)

'Check the grid and return it to the calling script.

if (evevcgGrid.GetVTab <> NIL) then
 evevcgVTab = evevcgGrid.GetVTab
 evevcgGthm = GTheme.Make(evevcgGrid)
 if (evevcgField.IsTypeNumber) then
 evevcgGthm.SetVerify(evevcgVTab.Convert("NUMBER").GetVerify())
 end
end
evevcgToField = evevcgVTab.FindField("Value")
else
evevcgToField = evevcgVTab.FindField("S_Value")
evevcgLegend = evevcgGthm.GetLegend
evevcgLegend.Unique(evevcgGthm,"S_Value")
evevcgGthm.UpdateLegend
end

if (evevcgFTab.IsBase and
 evevcgFTab.IsBeingEditedWithRecovery.Not)
then
 evevcgVTab.Join(evevcgToField,evevcgFTab,
 evevcgField)
end
end
return evevcgGrid
'Get the information passed from the calling script.

evevgmeRecDic = Self
evevgmeWOITheme = evevgmeRecDic.Get("WT")

'Set and return the extent.

evevgmeRect = NIL
evevgmeRect = evevgmeWOITheme.ReturnExtent
if (evevgmeRect.IsEmpty) then
 MsgBox.Error ("The watershed of interest does " +
 "not have any area."
 "Watershed of interest extent " +
 "error.")
 return NIL
elseif (evevgmeRect.ReturnSize = (0@0)) then
 MsgBox.Error ("The watershed of interest does " +
 "not have any area."
 "Watershed of interest extent " +
 "error."
)
 return NIL
end
return evevgmeRect
EV.Evhash

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:31:06 2000

'This script makes a copy of the theme that was
'passed and uses a legend file that hashes any
'polygons that have the WOI column set to 99.

**

EV_DATA -- Path to the accompanying data base.
ev_data -- Contains the path to the data base
 that accompanies the script.
EV_HOME -- Path to the user's home directory.
ev_home -- Contains the path to the user's
 working area.
EV_TEMP -- Temporary work space.
ev_temp -- Temporary work space.
evLegend -- The hashed legend.
evLegendFile -- File containing the hashed legend.
evevenvDic -- Dictionary containing the system
 environment variables.
tmpAns -- Logical variable.
evTheme -- Theme that was passed from the calling
 script.

**

Get the system environment variables.
**

evevenvDic = av.Run("EV.GetEnvVar",""")
ev_data = evevenvDic.Get("EV_DATA")
ev_home = evevenvDic.Get("EV_HOME")
ev_temp = evevenvDic.Get("TEMP")

**

Make the legend and get the hash file.
**

evLegend = Legend.Make(#SYMBOL_FILL)
evLegendFile = (ev_data + "/evhash.avl").asFileName
tmpAns = evLegend.Load(evLegendFile,
 #LEGEND_LOADTYPE_ALL)
if (NOT (tmpAns)) then
 MsgBox.Error("Could not load the legend file " +
 "needed to highlight the " +
 "watershed of interest after the " +
 "themes have been combined.",
 "Hashing watershed of interest " +
 "error.")
 return NIL
end

**

Copy the theme and use the hashed legend to
display the copy. SELF is the theme passed from
the calling script.

**

evTheme = SELF.Clone
 evThemeSetName("WOI-" + evTheme.GetName)
evTheme.SetLegend(evLegend)

'Return the hash theme.

return evTheme
'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:31:14 2000

'Script finds the maximum rank value by looking at
'the legend entries.

'aThemeName -- Loop variable, used to loop through
' "evevmrvThemeList."
'evevmrvDic -- Dictionary containing the information
' passed by the calling script.
'evevmrvNumClass -- Number of classes in a theme.
'evevmrvRecDic -- Dictionary containing themes and
' weight factors for this scenario.
'evevmrvTheme -- Theme from "evevmrvView" whose
' legend is being examined.
'evevmrvThemeList -- List of themes in the
' scenario.
'evevmrvView -- Active view, passed from the calling
' script.

Get the information passed from the calling
'script.

evevmrvDic = SELF
evevmrvView = evevmrvDic.Get("View")
evevmrvRecDic = evevmrvDic.Get("ThWf")
evevmrvThemeList = evevmrvRecDic.ReturnKeys

'Find the maximum number of classes any theme
'in the list passed from the calling script is
'divided into.

'Initiate the number of classifications.

evevmrvNumClass = NIL

'Look at each theme passed from the calling script.

for each aThemeName in evevmrvThemeList

'Get the theme.

evevmrvTheme = evevmrvView.FindTheme(aTheme-
' Name)

'Check the Legend to make sure it is type
"Graduated Color."

if (NOT(evevmrvTheme.GetLegend.GetLegendType.
 asString = "LEGEND_TYPE_COLOR")) then
 MsgBox.Error (evevmrvTheme.asString ++
 "does not have a Graduated Color Legend Type",
 "Assigning maximum rank value.")
 return NIL
end

'Get the number of classifications in the theme.
'If the number of classifications in this theme
'is greater than "evevmrvNumClass" set
"evevmrvNumClass" to the number of classifications
'in this theme.

if (evevmrvNumClass = NIL) then
 evevmrvNumClass = evevmrvTheme.GetLegend.
 GetNumClasses
elseif (evevmrvNumClass <
 evevmrvTheme.GetLegend.GetNumClasses) then
 evevmrvNumClass = evevmrvTheme.
 GetLegend.GetNumClasses
end
end

Return the maximum number of classes.

return evevmrvNumClass
EV.Export

' Modified from ESRI ArcView View.Export script
' Modified by James (Jay) L. Kiesler, Jr.
' Modified on Wed Apr 26 15:31:41 2000

'**
' evexAttribVis -- True/False is the attribute field visible.
' evexField -- Loop variable, used to loop through the fields in "evexTbl" to find if a field other than shape is visible.
' evexFN -- File name used to save the exported theme.
' evexFTab -- Exported FTab.
' evexFTheme -- Exported Theme.
' evexPrj -- Map projection of the view.
' evexShapeVis -- Is the shape field visible?
' evexShpfld -- Shape field in the "evexTheme."' evexTbl -- FTab of the theme "evexTheme."' evexTheme -- Theme to be exported. Passed from the calling script.
' evexWasNotVisible -- Tells whether or not the shape file was visible.

'**
' Get the information passed from the calling script.
'**
evexDic = SELF
evexTheme = evexDic.Get("Theme")
evexView = evexDic.Get("View")
evexTbl = evexTheme.GetFTab
evexAttribVis = FALSE

' Get the system environment variables.

evctenvDic = av.Run("EV.GetEnvVar","")
ev_data = evctenvDic.Get("EV_DATA")
ev_home = evctenvDic.Get("EV_HOME")
ev_temp = evctenvDic.Get("TEMP")
ev_cwd = FileName.GetCWD
ev_pwd = av.GetProject.GetWorkDir
ev_home.asFileName.SetCWD

av.GetProject.SetWorkDir(ev_home.asFileName)

'**
' Make sure there is something to export.
'**

'Is there a visible field in the FTab?
for each evexField in evexTbl.GetFields
if ((evexField.IsVisible) and not (evexField.IsTypeShape)) then
 evexAttribVis = TRUE
 break
end
end

'Is the shape field visible?
evexShapeVis = evexTbl.FindField("Shape").IsVisible

'Nothing is visible. Stop.
if ((evexAttribVis and evexShapeVis).Not) then
 MsgBox.Error("Nothing from the theme is visible.", "Exporting theme error.")
 return NIL
end

'**
' Export the theme passed from the calling script.
'**
evexFN = av.GetProject.MakeFileName ("ws_eval", "shp")
if (evexFN = NIL) then
 MsgBox.Error ("Could not create file named " + evexFN.asString + " to store " + "the exported theme.", "Exporting theme error.")
return NIL
end

'Find the shape field and determine if it is visible.

evexShpfld = (evexTbl.FindField("Shape"))
if (evexShpfld.IsVisible.Not) then
evexWasNotVisible = TRUE
else
 evexWasNotVisible = FALSE
end

'Is the view projected?

evexPrj = evexView.GetProjection

'Change the WOI column name to "WSofInt."

evexTbl.SetEditable(TRUE)
evexTbl.StartEditingWithRecovery
newWOIField = Field.Make("WSofInt", #FIELD_SHORT, 2, 0)
fldList = { newWOIField }
oldWOIField = evexTbl.FindField("WOI")
evexTbl.AddFields(fldList)
numRec = evexTbl.GetNumRecords
for each recNum in 0 .. (numRec - 1)
 old_val = evexTbl.ReturnValue(oldWOIField, recNum)
 evexTbl.SetValue(newWOIField, recNum, old_val)
end
fldList = { oldWOIField }
evexTbl.RemoveFields(fldList)
evexTbl.StopEditingWithRecovery(FALSE)
evexTbl.SetEditable(FALSE)

if (evexPrj = NIL) then
 evexFTab = evexTbl.Export
 (evexF, Shape,
 evexTbl.GetSelection.Count > 0)
else
 evexFTab = evexTbl.ExportProjected
 (evexF, evexPrj,
 evexTbl.GetSelection.Count > 0)
end
if (evexFTab.HasError) then
 if (evexFTab.HasLockError) then
 MsgBox.Error("Unable to acquire Write " + evexFN.GetBaseName, "Exporting theme error.")
 else
 MsgBox.Error("Unable to create " + evexFN.GetBaseName, "Exporting theme error.")
 end
end

'***
' Clean up the view and return.
'***
if (evexWasNotVisible) then
 evexShpfld.SetVisible(FALSE)
end

'Build the spatial index, make the theme, add the theme to the view, and return the exported theme.

evexFTab.CreateIndex(evexShpfld)
evexFthm = FTheme.Make(evexFTab)
evexView.AddTheme(evexFthm)

'Change the WSofInt column name to "WOI."

evexTbl.SetEditable(TRUE)
evexTbl.StartEditingWithRecovery
newWOIField = Field.Make("WOI", #FIELD_SHORT, 2, 0)
fldList = { newWOIField }
oldWOIField = evexTbl.FindField("WSofInt")
evexTbl.AddFields(fldList)
numRec = evexTbl.GetNumRecords
for each recNum in 0 .. (numRec - 1)
 old_val = evexTbl.ReturnValue(oldWOIField, recNum)
 evexTbl.SetValue(newWOIField, recNum, old_val)
end
fldList = { oldWOIField }
evexTbl.RemoveFields(fldList)
evexTbl.StopEditingWithRecovery(TRUE)
evexTbl.SetEditable(FALSE)
ev_cwd.SetCWD
av.GetProject.SetWorkDir(ev_pwd)
return evexFthm
EV.GetEnvVar

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:31:55 2000

'Script to read the system environment variables and return a dictionary containing the variable values to the calling script. These variables are set by the system.

**

envDic -- Dictionary used to return environment variables to the calling script.
envvar -- System environment variable being retrieved.
envvarmsg -- Variable error message.
envvarmsw -- Error message for Microsoft.
envvarunix -- Error message for a Unix system.
envvargen -- Generic error message.
EV_DATA -- System environment variable containing the path to the accompanying data base.
ev_data -- Variable containing the path to the data base that accompanies the application.
EV_HOME -- System environment variables containing the path to the user's home directory.
ev_home -- Variable that contains the path to the user's working area.
EV_TEMP -- System environment variable containing the path to a temporary work space.
ev_temp -- Variable containing the path to the temporary work space.

**

'Make the dictionary used to return the system environment variables to the calling script and make the operating system specific portion of the error message.

envDic = Dictionary.Make(3)
envvarmsg = "Depending on the Microsoft " +
 "operating system environment " +
 "variables are set using the PATH " +
 "command or in the System " +
 "Properties menu."
envvarunix = "System environment variables are " +
 "set using the SETENV command."
envvargen = "See your computer specialist " +
 "if you need assistance."

**

'Get EV_DATA -- The path to the data base that accompanies this application.

**

'Get the environment variable.

ev_data = System.GetEnvVar("EV_DATA")

If the environment variable did not exist, print an error message and end the script.

if (ev_data = NIL) then
 envvar = "EV_DATA"
 envvarmsg = "The environment variable " + envvar +
 " has not been set. " + envvar +
 " is a system environment variable " +
 "and must contain a value before " +
 "this application will function " +
 "properly. "
 if (System.GetOS.asString = "SYSTEM_OS_MSW") then
 MsgBox.Error(envvarmsg + envvarmsw,
 "Get environment variables."
)
 elseif (System.GetOS.asString =
 "SYSTEM_OS_UNIX") then
 MsgBox.Error(envvarmsg + envvarunix,
 "Get environment variables."
)
 else
 MsgBox.Error(envvarmsg + envvargen,
 "Get environment variables."
)
 end
else
 exit
end

**

'Get EV_HOME -- The path to the user's work space.

**

'Get the environment variable.

ev_home = System.GetEnvVar("EV_HOME")
'If the environment variable did not exist, print 'an error message and end the project.

if (ev_home = NIL) then
 envvar = "EV_HOME"
 envvarmsg = "The environment variable " + envvar + " has not been set. " + envvar + " is a system environment variable " + "and must contain a value before " + "this application will function " + "properly."
if (System.GetOS.asString = "SYSTEM_OS_MSW")
 MsgBox.Error(envvarmsg + envvarmsw, "Get environment variables.")
elseif (System.GetOS.asString = "SYSTEM_OS_UNIX")
 MsgBox.Error(envvarmsg + envvarunix, "Get environment variables.")
else
 MsgBox.Error(envvarmsg + envvargen, "Get environment variables.")
end
end

'***

'Get TEMP or TMP -- The path to temporary 'work space.
'***

'Get the environment variable.

ev_temp = System.GetEnvVar("EV_TEMP")
if (ev_temp = NIL) then
 ev_temp = System.GetEnvVar("TMP")
 end
end

'***

'Populate the Dictionary and return to the 'calling script.
'***

envDic.Set("EV_DATA",ev_data)
envDic.Set("EV_HOME",ev_home)
envDic.Set("EV_TEMP",ev_temp)
return envDic
EV.GetWeightFactors

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:31:55 2000

'Script that allows the user to enter weight factors.

'getwfdic -- Dictionary used to pass arguments to this script.
'themeDesc -- List of theme names.
'wfVal -- Default or existing weight factors associated with the themes.
'wfactor -- List of weight factors entered by the user.

getwfdic = SELF
themeDesc = getwfdic.Get("Themes")
wfVal = getwfdic.Get("Weight")

'Show the user the themes and default weight factors. Allow the user to change the weight factors.

wfactor = MsgBox.MultiInput
("Enter the Weighting Factor for each theme",
"Weighting Factors", themeDesc.asList,
wfVal.asList)

return wfactor
'Based on code from "ArcView GIS/Avenue Developer's Guide" by Amir H. Razavi

'Created by James (Jay) L. Kiesler, Jr
'Created on Wed Apr 26 15:40:06 2000

'This script creates a map (ArcView) Layout
'of the active view.

EV.MapMaker

'anArrow -- The north arrow shown on the layout.
aPen -- Pen type used to draw lines.
aRect -- Size of the rectangle needed to view all
 visible themes.
'allTitles -- The two-line title for this layout.
'boxFill -- Fill used in the box used to identify
 the primary view in the locator map.
'EV_DATA -- System environment variable holding the
 full pathname to the data base that
 accompanies the application.
ev_data -- Variable holding the full pathname to
 the data base that accompanies the
 application.
'EV_HOME -- System environment variable holding the
 full pathname to the user area where
 files are saved.
ev_home -- Variable holding the full pathname to
 the user area where files are saved.
'EV_TEMP -- System environment variable holding the
 full pathname to the temporary work
 area.
ev_temp -- Variable holding the full pathname to
 the temporary work area.
evevenvDic -- Dictionary containing the system
 environment variables, returned from
 "EV.GetEnvVar."
'fullView -- Clone of the view seen in the layout
 being prepared.
'fullViewGL -- List of graphics included in "fullView."
'infoBox -- Box that contains the scale bar and
 north arrow.
'infoBoxGr -- Graphic that is the "infoBox."
'lBox -- Graphic box used to identify the primary
 view in the locator map.
lFrame -- View Frame that is the locator map.
lgFrame -- View Frame that is the legend.
lgRect -- Rectangle that defines where the legend
 is displayed.
'line1 -- Line that separates the scale bar and
 north arrow.
'line1Gr -- Graphic that is line 1.
lRect -- Rectangle that defines the locator map.
'oPt-- Origin point of the layout. Point from
 which all other points are defined.
'numClass -- Sum of the number of classes in each
 visible theme.
pTitle -- Graphic that is the first line of the
 title.
'marginRect -- Active area of the layout.
aGr -- Graphic that is the north arrow.
aRect -- Rectangle that defines the north arrow.
northArrowFile -- File containing the north arrow
 definitions.
northArrowODB -- Object data base of north arrows.
northArrowList -- List of north arrows.
sbRect -- Rectangle that defines the scale bar.
sbFrame -- The graphic that is the scale bar.
sFill -- Fill for the shadow box.
shadowGr -- Graphic that is the shadow box.
sRect -- Rectangle that defines the shadow box.
'subtitle -- Graphic that is the second line of the
 title.
'subtitleSymbol -- Style of the second title line.
'theDispWidth -- Width of the layout. Used to
 toggle between portrait and landscape.
'theDispHeight -- Height of the layout. Used to
 toggle between portrait and landscape.
'theDispPS -- Page size.
'theLayout -- The Arcview layout that will contain
 the image to be printed.
'theLayoutDisp -- Display for the layout.
'theLayoutGL -- List of graphic objects on the
 layout.
'thelegxPT -- Starting point for the legend.
'thenarwPT0 -- Starting point of the north arrow.
'thenarwPT1 -- Size of the north arrow.
'theprimVPT -- Starting point for the primary view
 frame.
'thescalPT0 -- Starting point of the scale bar.
'thescalPT1 -- Size of the scale bar.
'thescnPT0 -- Corner point of the box to contain
 the scale bar.
'thescnPT1 -- Corner point of the box to contain
 the scale bar.
'thescnPT2 -- Corner point of the box to contain
 the scale bar.
'thescnPT3 -- Corner point of the box to contain
 the scale bar.
'thesecVPT0 -- Starting point for the locator map.
'thesecVPT1 -- Size of the locator map.
'thesnPT0 -- Starting point of the line between
 the scale bar and north arrow.
'thesnPT1 -- Ending point of the line between
 the scale bar and north arrow.
'theThemes -- List of all visible themes in the
 view.
'theTitlePT0 -- Starting point for the first line

of the layout title.
'theTitlePT1 -- Starting point for the second line
' of the layout title.
'theView -- The active view.
'titleSymbol -- Style for the first line of the
'title.
'tmpMapDis -- Gets the size of the view frame.
'VisExt -- Extent of the view frame that is visible.
'VisExtW -- Width of the view frame.
'vFill -- Type of fill used in the main view graphic.
'vFrame -- View frame defined using "vRect."
'vFrameExtent -- Visual extent of the view.
'vRect -- Rectangle defining the main view area.
'vRectGr -- Main view graphic.
' ***
' ***
'
Get the system environment variables.
' ***
' Get the system environment variables.

 evenvDic = av.Run("EV.GetEnvVar","")
ev_data = evenvDic.Get("EV_DATA")
ev_home = evenvDic.Get("EV_HOME")
ev_temp = evenvDic.Get("TEMP")

 ' Get the active view, define the page type, and
 ' establish the starting points and size for
 ' the various components that make up the layout.
 ' ***
 'Get the active view.

theView = av.Run("EV.ViewGet","MapMaker")

'Create the layout

theLayout = Layout.Make
theLayout.SetName (theView.GetName++"Layout")
theLayoutDisp = theLayout.GetDisplay
theLayoutGL = theLayout.GetGraphics

'Set the layout page properties. If the
'select the page size. Use a
'landscape page, else use portrait. Use a
'0.50-inch margin.
theDispWidth = theView.GetDisplay.ReturnExtent.GetWidth
theDispHeight = theView.GetDisplay.ReturnExtent.GetHeight
if (theDispWidth > theDispHeight) then
 marginRect = Rect.MakeXY (0.5, 0.5, 10.5, 8.0)
 theDispPS = Point.Make(11.0,8.5)
 thetitlePT0 = Point.Make(1.0,7.0)
 thetitlePT1 = Point.Make(1.25,6.75)
 theprimVPT = Point.Make(7.5,4.0)
 thesecVPT0 = Point.Make(1.0,4.1)
 thesecVPT1 = Point.Make(3.0,2.5)
 thesecnaPT0 = Point.Make (4.5,4.3)
 thesecnaPT1 = Point.Make (4.5,6.3)
 thesecnaPT2 = Point.Make (6.5,6.3)
 thesecnaPT3 = Point.Make (6.5,4.3)
 thesecialPT0 = Point.Make (4.5,5.3)
 thesecialPT1 = Point.Make (6.5,5.3)
 thesecialPT2 = Point.Make (4.5,5.3)
 thesecialPT3 = Point.Make (6.5,5.3)
 thenarwPT0 = Point.Make (4.9,5.5)
 thenarwPT1 = Point.Make (1.0,0.8)
 thelegxPT = 7.8
else
 marginRect = Rect.MakeXY (0.5, 0.5, 8.0, 10.5)
 theDispPS = Point.Make(8.5,11)
 thetitlePT0 = Point.Make(1.0,9.5)
 thetitlePT1 = Point.Make(1.25,9.25)
 theprimVPT = Point.Make(5.0,6.0)
 thesecVPT0 = Point.Make(5.0,6.0)
 thesecnaPT0 = Point.Make (2.7,6.1)
 thesecnaPT1 = Point.Make (2.7,8.1)
 thesecnaPT2 = Point.Make (4.7,8.1)
 thesecnaPT3 = Point.Make (4.7,6.1)
 thesecialPT0 = Point.Make (2.7,7.1)
 thesecialPT1 = Point.Make (4.7,7.1)
 thesecialPT2 = Point.Make (2.7,5.63)
 thesecialPT3 = Point.Make (1.5,0.5)
 thenarwPT0 = Point.Make (4.9,5.5)
 thenarwPT1 = Point.Make (1.0,0.8)
 thelegxPT = 5.3
end
' Get the origin point.
' Get the titles and create their graphics.
' '***

The coordinates are based on the Display frame and not the PageDisplay. In order to use the coordinates of PageDisplay, the lower left X and Y coordinates for the PageDisplay is obtained. In the next code line this coordinate is stored in the oPt (origin point) object.

oPt = theLayoutDisp.ReturnMarginExtent.ReturnOrigin

'Get the title from the user and add their graphics to the layout. Use Times Roman font and sizes of 24 and 18.

titleSymbol = TextSymbol.Make
 titleSymbol.SetFont (Font.Make("Times New Roman","Normal"))
titleSymbol.SetSize (24) 'Size is in points.
subtitleSymbol = titleSymbol.Clone
subtitleSymbol.SetSize (18)
allTitles = MsgBox.MultiInput ("Please enter","",
 {"Title:","Subtitle:"},
 {"This is map of",theView.GetName})
if (allTitles.Count > 0) then
 pTitle = GraphicText.Make (allTitles.Get(0), oPt+theTitlePT0)
 pTitle.SetSymbols ({titleSymbol})
 pTitle.SetAngle (0)
 theLayoutGL.Add (pTitle)
 subtitle = GraphicText.Make (allTitles.Get(1), oPt+theTitlePT1)
 subtitle.SetSymbols ({subtitleSymbol})
 subtitle.SetAngle (0)
 theLayoutGL.Add (subtitle)
end

'***

' Get the primary view and add it to the layout.
'
' The primary-view frame shows the active view at its current extent, while the locator-view frame shows the active frame zoomed to its extent with a rectangle depicting the area of primary view.

vFill = RasterFill.Make
vFill.SetStyle (#RASTERFILL_STYLE_SOLID)
vFill.SetColor (Color.GetWhite)
vFill.SetOutlined (TRUE)
vFill.SetOLColor (Color.GetBlack)
Rect = Rect.Make (oPt+Point.Make (0.0,0.0), thePrimVPT)
RectGr = GraphicShape.Make (vRect)
theLayoutGL.Add (RectGr)
vFrame = ViewFrame.make (vRect)
vFrame.SetSymbol (vFill)
vFrame.SetView (theView,TRUE)
vFrame.SetScalePreserved (FALSE)
theLayoutGL.Add (vFrame)
tmpMapDis = vFrame.GetMapDisplay
VisExt = tmpMapDis.ReturnVisExtent
VisExtW = (VisExt.GetWidth) / 1609.3472

' Add a shadow box to the primary view.

sFill = vFill.Clone
sFill.SetColor (Color.GetBlack)
sRect = vFrame.GetBounds
shadowGr = GraphicShape.Make (sRect)
shadowGr.Offset (Point.Make(0.25,-0.25))
shadowGr.SetSymbol (sFill)
theLayoutGL.UnselectAll
shadowGr.SetSelected (TRUE)
theLayoutGL.Add (shadowGr)
theLayoutGL.MoveSelectedToBack
theLayoutGL.UnselectAll

'***

' Get the view and add the locator map and box to the layout.
'
'***

'Add the locator map at position 1" x 5.5# inches. The locator map is based on a cloned view that displays the
'view's full extent.

lRect = Rect.Make (oPt+thesecVPT0,thesecVPT1)
lFrame = ViewFrame.Make (lRect)
lFrame.SetSymbol (vFill)
fullView = theView.Clone
theThemes = fullView.GetVisibleThemes
aRect = Rect.MakeEmpty
numClass = 0
for each aTheme in theThemes
 aRect = aRect.UnionWith(aTheme.ReturnExtent)
 numClass = numClass + aTheme.GetLegend.
 GetNumClasses
end
if (aRect.isEmpty) then
 fullView.GetDisplay.SetExtent (fullView.ReturnExtent)
elseif (aRect.ReturnSize = (0@0)) then
 fullView.GetDisplay.PanTo(aRect.ReturnOrigin)
else
 fullView.GetDisplay.SetExtent(aRect.Scale(1.1))
end
fullView.SetName("Full View")
lFrame.SetView (fullView, TRUE)
lFrame.setScalePreserved (FALSE)
theLayoutGL.Add (lFrame)

' Get the scale bar and north arrow.
,' **

'Draw boxes to hold the scale bar and 'the north arrow.

aPen = BasicPen.Make
aPen.SetColor (Color.GetBlack)
infoBox = Polygon.Make ([{oPt+thescnaPT0,
oPt+thescnaPT1,oPt+thescnaPT2,
oPt+thescnaPT3}])
infoBoxGr = GraphicShape.make (infoBox)
infoBoxGr.SetSymbol (aPen)
theLayoutGL.AddBatch (infoBoxGr)

'Draw a line to separate the scale bar and the 'north arrow.

line1 = Line.Make (oPt+thesnalPT0,oPt+thesnalPT1)
line1Gr = GraphicShape.Make (line1)
line1Gr.SetSymbol (aPen)
theLayoutGL.AddBatch (line1Gr)

'Add scale bar.

sbRect = Rect.Make (oPt+thescalPT0,thescalPT1)
sbFrame = ScalebarFrame.Make (sbRect)
sbFrame.SetUnits (#UNITS_LINEAR_MILES)
sbFrame.SetStyle (#SCALEBARFRAME_STYLE_ALTFILLED)
sbFrame.SetViewFrame (vFrame)
if (VisExtW <= 10) then
 sbFrame.SetIntervals (1)
sbFrame.SetIntervals (1)
elseif ((VisExtW > 10) AND (VisExtW <= 20)) then
 sbFrame.SetIntervals (1)
sbFrame.SetIntervals (1)
elseif ((VisExtW > 20) AND (VisExtW <= 100)) then
 sbFrame.SetIntervals (1)
sbFrame.SetIntervals (1)
else
 sbFrame.SetIntervals (1)
 sbFrame.SetIntervals (1)
end
theLayoutGL.AddBatch (sbFrame)
Add north arrow.

\[
\text{naRect} = \text{Rect.Make}(\text{oPt}+\text{thenarwPT0},\text{thenarwPT1})
\]
\[
\text{naGr} = \text{NorthArrow.Make}(\text{naRect})
\]

Retrieve a predefined north arrow from
'the north.def file.

\[
\text{northArrowFile} = \text{FileName.Make}(\text{ev_data} + "/\text{north.def}")
\]
\[
\text{northArrowODB} = \text{ODB.Open}(\text{northArrowFile})
\]
\[
\text{if (NIL} = \text{northArrowODB}) \text{then}
\]
\[
\text{MsgBox.Error}
\]
\[
("\text{Unable to open north.def object data base}",
"\text{Making a map error.}"
)
\]
\[
\text{return NIL}
\]
\[
\text{end}
\]
\[
\text{northArrowList} = \text{northArrowODB.Get(0)}
\]
\[
\text{anArrow} = \text{northArrowList.Get(6)}
\]
\[
\text{if (anArrow} = \text{NIL}) \text{then}
\]
\[
\text{anArrow} = \text{northArrowList.Get(0)}
\]
\[
\text{end}
\]
\[
\text{naGr.SetArrow}(\text{anArrow})
\]

AddBatch is used to add many items to a graphic
'list. The graphics are added to the layout when the
'end batch command is issued.

\[
\text{theLayoutGL.AddBatch}(\text{naGr})
\]

End the AddBatch and put the graphics on the layout.

\[
\text{theLayoutGL.EndBatch}
\]

Make the layout visible.

\[
\text{theLayoutWin} = \text{theLayout.GetWin}
\]
\[
\text{theLayoutWin.Open}
\]
\[
\text{theLayoutDisp.ZoomToPage}
\]
EV.OpeningViewShutDownApply

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:40:20 2000

'This script closes the opening view, if the
'view is open, and removes the tool used to close
'the opening view. The script is executed as the
'ApplyEvent for a tool. The tool is activated in the
'start-up script EV.Startup.

'aDocGUI -- Loop variable to examine all GUIs in
' "evovsdDocGUI.
'aTool -- Loop variable to examine all tools in
' "evovsdTools.
'evovsdApplyScript -- Apply script for aTool.
'evovsdDocGUIs -- Document GUIs in the project.
'evovsdToolCut -- Tool to close the opening view.
'evovsdToolId -- ArcView's identity tool.
'evovsdTools -- Tools available on the View tool bar.
'evovsdViewWin -- Window that contains the view
' name "Opening View."

' Find the opening-view window. If it is open, close
' it.
',

evovsdViewWin = av.GetProject.FindDoc
('Opening View').GetWin
if (evovsdViewWin.IsOpen) then
 evovsdViewWin.Close
end

' Get a list of the GUIs in this project and save
'the View GUI.

 evovsdDocGUIs = av.GetProject.GetGUIs
for each aDocGUI in evovsdDocGUIs
 if (aDocGUI.asString = "View") then
 break
 end
end

' Get a list of tools and find the tool that closes
'the opening view.

 evovsdTools = aDocGUI.GetToolBar.GetControls
for each aTool in evovsdTools
 if (aTool.Is(Space)) then
 continue
 end
 evovsdApplyScript = aTool.GetApply
 if (evovsdApplyScript.contains
 ("EV.OpeningViewShut")) then
 evovsdToolCut = aTool
 end
 if (evovsdApplyScript.contains
 ("View.Identify")) then
 evovsdToolId = aTool
 end
end

'Disable the tool that closes the opening view and
'activate the identity tool.

 evovsdToolCut.SetEnabled(FALSE)
evovsdToolId.Select
aDocGUI.Activate
end

'Done with the view and other GUIs are not important.

 break
end
' Created by James (Jay) L. Kiesler, Jr.
' Created on Wed Apr 26 15:40:32 2000

' This script checks to see if "Opening View" is
' open. If "Opening View" is open, the script enables
' the tool needed to close that view. If the view is
' not open, the script disables the tool.

'***

' aDocGUI -- Loop variable to examine all GUls in
' "evovsdDocGUIs."
' aTool -- Loop variable to examine all tools in
' "evovsdTools."
' evovsdApplyScript -- Apply script for "aTool."
' evovsdDocGUIs -- Document GUls in the project.
' evovsdGUI -- The opening view GUI.
' evovsdToolCut -- Tool to close the opening view.
' evovsdToolID -- ArcView's identity tool.
' evovsdTools -- Tools available on the view tool bar.
' evovsdViewWin -- Window that contains the view
' name "Opening View."

'***

' Get a list of the GUls in this project and save
' the View GUI.

'***

evovsdDocGUls = av.GetProject.GetGUls
for each aDocGUI in evovsdDocGUls
if (aDocGUI.asString = "View") then
evovsdGUI = aDocGUI
break
end
end

'***

' Get a list of tools on the view GUI and find the
' tool used to close the "Opening View."
',
'**

evovsdTools = evovsdGUI.GetToolBar.GetControls
evovsdToolCut = NIL
for each aTool in evovsdTools
if (aTool.Is(Space)) then
continue
end
evovsdApplyScript = aTool.GetApply
if (evovsdApplyScript.contains
("EV.OpeningViewShut")) then
evovsdToolCut = aTool
break
end
end

'**

' Look at the tool.

if (evovsdViewWin.IsOpen) then
if (evovsdToolCut = NIL) then
evovsdViewWin.Close
else
evovsdToolCut.SetEnabled(TRUE)
end
else
evovsdToolCut.SetEnabled(FALSE)
end
EV.RedrawView

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:40:40 2000

'evrdvView -- View to be refreshed, passed from
' the calling script.
'evrdvViewDis -- Display of the view.

Get the view and its display. Redraw the display.
evrdvView = Self
evrdvViewDis = evrdvView.GetDisplay
evrdvView.Draw(evrdvViewDis)
return NIL
EV.RemoveRankField

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:40:20 2000

'This script removes the Rank column from the
'data tables after the themes have been converted
to a grid.

'
evrmTheme -- Theme passed from the calling script.
evrmFTab -- FTab of "evrmTheme."
evrmFields -- Fields in "evrmFTab."
evrmField -- The "Rank_Value" field.
evrmStatus -- Status of the change.
'

evrmTheme = SELF
evrmFTab = evrmTheme.GetFTab
evrmFields = evrmFTab.GetFields
evrmField = evrmFTab.FindField("Rank_Value")
if (evrmField = NIL) then
 return NIL
else
 evrmFTab.StartEditingWithRecovery
evrmFieldList = { evrmField }
evrmFTab.SetEditable(TRUE)
evrmFTab.RemoveFields(evrmFieldList)
evrmStatus =
 evrmFTab.StopEditingWithRecovery
 (TRUE)
evrmFTab.SetEditable(FALSE)
if (NOT (evrmStatus)) then
 MsgBox.Error("Could not delete the Rank " +
 "Value column",
 "Removing Rank Field")
end
end
EV.Startup

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:45:31 2000

'This is the start-up script for the IDEM and
'USGS ArcView Watershed Screening Tool.

'aDocGUI -- Loop variable used to loop through
 "evsuDocGUIs."
'EV_DATA -- System environment variable holding the
 full pathname to the data base that
 accompanies the application.
'ev_data -- Variable holding the full pathname to
 the data base that accompanies the
 application.
'EV_HOME -- System environment variable holding the
 full pathname to the user area where the
 files are saved.
'ev_home -- Variable holding the full pathname to
 the user area where the files are saved.
'EV_TEMP -- System environment variable holding the
 full pathname to the temporary work
 area.
'ev_temp -- Variable holding the full pathname to
 the temporary work area.
'evenvDic -- Dictionary containing the system
 environment variables, returned from
 "EV.GetEnvVar."
'evsuDocGUIs -- GUIs in this project.
'evsuGUI -- The view GUI.
'evsuProject -- Project name.
'evsuTool -- Tool for closing the "Opening View."
'evsuTools -- Tools on the view GUI.
'evsuView -- "Opening View" document.
'evsuViewWin -- Window showing the opening view.
_ev-timesin -- Used to count the number of times
 the "AddTheme" button is executed the
 first time the data base accompanying this
 application is used.

evenvDic = av.Run("EV.GetEnvVar","")
ev_home = evenvDic.Get("EV_HOME")
ev_data = evenvDic.Get("EV_DATA")
ev_temp = evenvDic.Get("EV_TEMP")
ev_home.asFileName.SetCWD
av.GetProject.SetWorkDir(ev_home.asFileName)_timesin = 0

' If "Opening View" is not open, open it.

evsuProject = av.GetProject
evsuView = evsuProject.FindDoc("Opening View")
evsuViewWin = evsuView.GetWin
if (evsuViewWin.IsOpen.Not) then
 evsuViewWin.Open
end

' Get the tools on the View tool bar and activate
'the tool for closing "Opening View."

'Get the GUIs in the project and save the view GUI.

evsuDocGUIs = av.GetProject.GetGUIs
for each aDocGUI in evsuDocGUIs
 if (aDocGUI.asString = "View") then
 evsuGUI = aDocGUI
 end
end

'Get the tools from the View tool bar, and find
'the tool that closes "Opening View."

evsuTools = evsuGUI.GetToolBar.GetControls
for each aTool in evsuTools
 if (aTool.Is(Space)) then
 continue
 end
 if (aTool.GetApply.contains
 ("EV.OpeningViewShutDown")) then
 evsuTool = aTool
 break
 end
end
end

'Enable and select the tool for closing "Opening View."

evsuTool.SetEnabled(TRUE)
evsuTool.Select
'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:45:40 2000

'Script to find the view with which the user wishes to work. Assumes if only one view is active, that is the view with which the user wishes to work.

actViews -- List of active views in the project.
aDoc -- A loop variable used to look at each
document in "evgvDocList."
evgvcalling -- Program calling this script.
evgvDocList -- List of documents in this project.
evgvViewDictionary -- Dictionary of views and
 whether the views are open, closed, or
 active.
theViews -- List of all views in the project.

Get the information passed to this script and a list
of documents associated with the project, initiate
a dictionary to hold the names of all views and
whether the views are open, active, or just there.

evgvcalling = SELF
evgvDocList = av.GetProject.GetDocs
evgvViewDictionary = Dictionary.Make
 (evgvDocList.Count)

' Look at each document, if it is a view and is not
' the "Opening View" then look at that view.
' Is it open, active, or what? If it is not a view,
' get the next document. Then create a list of
' views and a list of active views.

for each aDoc in evgvDocList

'Is this document a view and is it named "Opening View"?

if (aDoc.GetGUI = "View") then
 if (aDoc.asString = "Opening View") then
 continue
 else

 'If the view is active, add it to the dictionary 'as active.

 if (aDoc.IsActive) then
evgvViewDictionary.Add(aDoc,"active")
 end

 'If the view is open, add it to the dictionary 'as open.

 elseif (aDoc.GetWin.IsOpen) then
 evgvViewDictionary.Add(aDoc,"visible")
 end

 'If the view is not active or open, just add as 'closed.

 else
 evgvViewDictionary.Add(aDoc,"closed")
 end
end
end

'Create a list of views.

theViews = evgvViewDictionary.ReturnKeys

'Create a list of active views.

actViews = {}
for each aView in theViews
 if (evgvViewDictionary.Get(aView) = "active")
 then
 actViews.Add(aView)
 end
end
'Open a view.
' If there is only one active view, return that view.
' If more than one view is active, show the user the
' list and ask them to select one view with which to
' work.
' If no views are active, show the user a list of
' all views and ask them to select one view.
' If there are no views, then return NIL.
'
'**

'One active view, use that view.

if (actViews.Count = 1) then
 evgvView = actViews.Get(0)
endif

'If more than one active view, ask the user to select
'which view to use.

elseif (actViews.Count > 1) then
 evgvView = MsgBox.ListasString(actViews,
 "Select a view with which to work.",
 "Finding a view with which to work.")
endif

'No active views, show the list of all views and
'ask the user to select one.

elseif (theViews.Count > 0) then
 evgvView = MsgBox.ListasString(theViews,
 "Select a view with which to work.",
 "Finding a view with which to work.")
else
 MsgBox.Error("There are no views in this " +
 "project. Please create a view " +
 "before continuing.",
 "Getting view error.")
 evgvView = NIL
end

'Open and return the view.

if (NOT (evgvView = NIL)) then
 if (NOT (evgvView.GetWin.IsOpen)) then
 evgvView.GetWin.Open
 evgvView.GetWin.Activate
 end
endif

if (evgvView = NIL) then
 exit
endif
return evgvView
EV.WeightFactors

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:45:48 2000

'Script for assigning weight factors to themes.
'Each group of themes and weight factors can
'be saved as a scenario. A group of themes is
defined to be the active themes in the current
'view.

**
'aThemes -- Themes included in this scenario.
'aDesc -- Description for this scenario.
'aReturnDic -- Returned from the script that
 allows the user to select a scenario.
 This dictionary contains file name,
 themes and weight factors, and
 other information for the scenario
 selected by the user.
'aScenario -- The file that contains the lists of
 files containing the themes and weight
 factors that make up a single scenario.
'aTheme -- Loop variable used to loop through
 each theme.
'aThemeWFDic -- Dictionary containing the themes
 and weight factors.
'aVTab -- Table containing the theme and weight
 factors.
'defdesc -- Default description for the scenario
 file. Blank or read from the file
 containing the list of scenario files.
'defnm -- Default name for the file holding the
 themes and weight factors.
'ev_cwd -- Current working directory.
'EV_DATA -- System environment variable holding the
 full pathname to the data base that
 accompanies the application.
'ev_data -- Variable holding the full pathname to
 the data base that accompanies the
 application.
'EV_HOME -- System environment variable holding the
 full pathname to the user area where
 files are saved.
'ev_home -- Variable holding the full pathname to
 the user area where files are saved.
'EV_TEMP -- System environment variable holding the
 full pathname to the temporary work
 area.
'ev_temp -- Variable holding the full pathname to
 the temporary work area.
'evenvDic -- Dictionary containing the system
 environment variables, returned from
 "EV.GetEnvVar."
'ExpFld -- Field in the table that contains the
 explanation of the file holding the
 themes and weight factors.
'FileFld -- Field in the table that contains
 the name of the file holding the
 themes and weight factors.
'found -- False, the file containing the themes and
 weight factors was found. True, the
 file was not found.
'RecNum -- Record number in a table where
 information is to be written.
'rtnVal -- True, if the theme passed are polygons.
 Project works only on polygons.
'theFileNm -- File name of the scenario file. Used
 to save or reuse scenarios.
'themeFld -- Field in the table that contains the
 theme where "WFField" is the weight
 factor.
'theThemes -- Active themes in the view. This
 script assumes the user wants to
 assign a weight factor to each
 active theme and the active theme
 make up a scenario.
'thview -- View the user wishes to use.
'tmpAns -- Temporary variable for responding to a
 request.
'tmpAns1 -- Temporary variable for responding to a
 request.
'tmpAns2 -- Temporary variable for responding to a
 request.
'tmpFileNmDef -- Temporary file name definition
 used to save a new scenario.
'tmpmsg -- Message printed when saving the
 scenario. Content depends on the
 value of “wftype.”
'wfdic -- Dictionary containing new weight factors.
'WFField -- Field in the table that contains the
 weight factor where "themeFld" is the
 theme.
'wftype -- Old or new, tells the application if
 the scenario is a new or previously
 used scenario.

**

Get environment variables, active themes, and
other information needed.

**

'Get the system environment variables

evevenvDic = av.Run("EV.GetEnvVar",""")
ev_data = evevenvDic.Get("EV_DATA")
ev_home = evevenvDic.Get("EV_HOME")
ev_temp = evevenvDic.Get("EV_TEMP")
ev_cwd = FileName.GetCWD
ev_pwd = av.GetProject.GetWorkDir
evSceneDir = ev_data + "\Scenes"
evScenarioDir = evSceneDir + "\Scenarios"

tmpAns0 = NIL
if (theThemes.Count >= 1) then
 tmpAns0 = MsgBox.ListasString(theThemes,"OK - " +
"Use these themes to " +
"create a new scenario." +
nl + "Cancel - Use " +
"existing scenarios or " +
"halt execution.",
"Select themes to include " +
"in the scenario."")
end

'the user clicked on cancel. Check to see if the 'user wants to cancel this operation or use an 'existing scenario file.

if (tmpAns0 = NIL) then
 aScenario = NIL
 av.ShowMsg("Retrieving file containing " +
 "scenarios ...")
 aScenario = av.Run("EV.WFGetScenarios","Select")
 av.ShowMsg(" ")
 'The user keyed "cancel," kill the script.
if (aScenario = NIL) then
 return NIL
end

'the user clicked on cancel. Check to see if the 'user wants to cancel this operation or use an 'existing scenario file.

if (tmpAns0 = NIL) then
 aScenario = NIL
 av.ShowMsg("Retrieving file containing " +
 "scenarios ...")
 aScenario = av.Run("EV.WFGetScenarios","Select")
 av.ShowMsg(" ")
 'The user keyed "cancel," kill the script.
if (aScenario = NIL) then
 return NIL
end

'this is not displayed on the screen.

'tmpAns1 = TRUE
while (tmpAns1)
 asendDic = Dictionary.Make(2)
 asendDic.Set("Scenario",aScenario)
asendDic.Set("View", theView)
aReturnDic = av.Run("EV.WFGetTheme", asendDic)
if (NOT(rtnVal)) then
 return NIL
end

'The user did not select a scenario file. End this script.
if (NOT(aReturnDic = NIL) AND (aReturnDic.Count > 0)) then
tmpAns1 = FALSE
else
 tmpAns2 = MsgBox.YesNo("It appears you clicked on CANCEL or the file contains no themes. Do you want to stop the assignment of weight factors?", "Selecting a scenario, Assigning Weight Factors", TRUE)
 if (tmpAns2) then
 return NIL
 end
end

'The user did not select a scenario file. End this script.
if NOT (aReturnDic = NIL)) then
tmpAns1 = FALSE
else
 tmpAns2 = MsgBox.YesNo ("You must identify a scenario file to maintain the list of themes and weight factors. Are you sure you DO NOT want to save the themes and weight factors? You will lose the work you just completed.", "Assigning Weight Factors", TRUE)
 if (tmpAns2) then
 return NIL
 end
end

'The user selected a file name. Unload the file name of the dictionary containing the themes and weight factors. Set the list of active themes to the themes contained in the weight-factor dictionary. Set the weight-factor flag to old, i.e., it is an existing file.
theFileNm = aReturnDic.Get("FileNm")
defdesc = aReturnDic.Get("Desc")
aThemeWFDic = aReturnDic.Get("WFDIC")
actThemes = aThemeWFDic.ReturnKeys
wftype = "OLD"
else
 wftype = "NEW"

'The user has chosen to use the active theme.
actThemes = theView.GetActiveThemes

'Check each theme to ensure the geometry is polygon.
rtnVal = av.Run("EV.WFCheckThemes", actThemes)
Send the theme and default weight factor information to a script. The script shows the information to the user and allows the weight factors to be modified.

```
wfdic = av.Run("EV.WFAssignFactor",aThemeWFDic)

'No data were returned from the script.
'End this script.

if (wfdic.Count = 0) then
    MsgBox.Error("No weight factors were assigned. Ending the assignment of weight factors.",
                  "Assigning weight factors")
    return NIL
end

'Save the weight factors to a file.
'Ask the user for the name of the file to hold the scenarios.

if (wftype = "NEW") then
    tmpmsg = "Enter the file name for saving the " +
             "themes and weight factors."
else
    tmpmsg = "Enter the file name for saving the " +
             "themes and weight factors. Cancel " +
             "to use the same name."
end

'If this is a new scenario, ensure that a file name has been given.

tmpAns0 = TRUE
tmpAns1 = TRUE
if (NOT (theFileNm = NIL)) then
    tmpFileNmDef = theFileNm.GetBaseName
else
    tmpFileNmDef = ""
end
while (tmpAns0)
    'Ask for a file name and make sure it is valid.

    tmpFileNm = NIL
    aFileNm = NIL
    while (tmpAns1)
        tmpFileNm = MsgBox.Input(tmpmsg,
                                "Enter file name.",
                                tmpFileNmDef)
        if (NOT (tmpFileNm = NIL)) then
            aFileNm = tmpFileNm.Trim
            if (NOT (aFileNm.Contains("")
                  OR (aFileNm.Count + evScenarioDir.Count)
                     > 150) then
                MsgBox.Error("The full pathname " +
                             evScenarioDir + "," + aFileNm +
                             " contain spaces. Use " +
                             "underscores in place " +
                             "of spaces.","Bad File Name")
            end
            if ((aFileNm.Count + evScenarioDir.Count) > 150) then
                MsgBox.Error("The full pathname " +
                             evScenarioDir + "," + aFileNm +
                             " exceeds 150 characters. " +
                             "Shorten the file name.",
                             "Bad File Name")
            end
        else
            if (wftype = "OLD") then
                tmpAns1 = FALSE
            else
                exit
            end
        end
        tmpFileNmDef = aFileNm.asString
    end
end
if (wftype = "NEW") then
    if (NOT (aFileNm = NIL)) then
        tmpAns0 = FALSE
    end
else
    tmpAns0 = FALSE
end

'Check the file system. If the file exists, create a default name and let the user decide which file to use. The scenario files are stored in the home directory. Change the CWD to the home directory.
if (aFileNm <> NIL) then
  ev_cwd = FileName.GetCWD
  ev_pwd = av.GetProject.GetWorkDir
  evScenarioDir.asFileName.SetCWD
  av.GetProject.SetWorkDir(evScenarioDir.asFileName)
  if (NOT (aFileNm.Contains(".dbf"))) then
    aFileNm = aFileNm + ".dbf"
  end

  theFileNm = aFileNm.asFileName
  aBaseNm = theFileNm.GetBaseName
  if (File.Exists(theFileNm)) then
    tmpAns = MsgBox.YesNo("The file "+aBaseNm+
      " exists. Do you wish to "+
      "overwrite the file?","
      "Saving weight factors.",FALSE)
    if (NOT (tmpAns)) then
      defnm = av.GetProject.MakeFileName
        ("weight_f","dbf")
      theFileNm = FileDialog.Put(defnm,"*.db", theFileNm.asString + " exists. " +
        "Save themes and weight " +
        "factors to:")
      if (theFileNm = NIL) then
        theFileNm = aFileNm.asFileName
      end
    else
      theFileNm = aFileNm.asFileName
      theOS = System.GetOS
      if (theOS = "#SYSTEM_OS_UNIX") then
        theFileNm.SetSaveAsUNIX
      end
    end
  end

  aDesc = defdesc
end

aDescLen = aDesc.Count
if (aDescLen <= 150) then
  tmpAns = FALSE
else
  MsgBox.Error("Your description of the "+
    "scenario must be 150 "+
    "characters or less.","Enter scenario description.")
end
end

'Ask the user for a description of the scenarios.
'Make sure the scenario description is 150 characters or less.
  defdesc = ""
  tmpAns = TRUE
  while (tmpAns)
    aDesc = MsgBox.Input("Enter a short "+
      "description of this scenario, "+
      "maximum length is "+
      "150 characters. If a scenario "+
      "file was used, that description "+
      "is shown","Enter scenario",defdesc)
    if (aDesc = NIL) then
      tmpAns1 = MsgBox.YesNo("You just keyed "+
        "CANCEL. Do you wish to "+
        "cancel the weight "+
        "factor entry? No will "+
        "cancel just the "+
        "description entry.","Cancel weight factor entry?",FALSE)
      aDesc = defdesc
    end
  end

  FileFld = aScenario.FindField("File_name")
  ExpFld = aScenario.FindField("Scenario")
  aScenario.SetEditable(TRUE)

  'If the file name already exists in the scenario
  'file replace the description entry.
  found = TRUE
  if (aScenario.GetNumRecords > 0) then
    for each rec in 0 ..
      (aScenario.GetNumRecords - 1)
      existfilenm = aScenario.ReturnValue
      (FileFld,rec)
      if (existfilenm = theFileNm.GetBaseName) then
        aScenario.SetValue(ExpFld,rec,aDesc)
        found = FALSE
        break
      end
    end
  end
  end

  'Save the file name and description to the file
  'of scenarios. Making the changes to the table
  'makes the changes to the disk file.
  FileFld = aScenario.FindField("File_name")
  ExpFld = aScenario.FindField("Scenario")
  aScenario.SetEditable(TRUE)

  'Save the file name and description to the file
'The file name was not found in the scenario
'file, add this is a new scenario.

if (found) then

'Add a record to the table of scenarios.

RecNum = aScenario.AddRecord

'Add the entry

aScenario.SetValue(FileFld,RecNum, theFileNm.GetBaseName)
aScenario.SetValue(ExpFld,RecNum,aDesc)
aScenario.SetEditable(FALSE)
end

'Make a virtual table to contain the themes and
'weight factors.

aVTab = VTab.MakeNew(theFileNm,dBASE)
themeFld = Field.Make("Theme_name", #FIELD_VCHAR,60,0)
WFField = Field.Make("W_Factor",#FIELD_FLOAT,9,3)
aVTab.AddFields( {themeFld, WFField})

'Save the theme names and weight factors to the
'virtual table.

aVTab.SetEditable(TRUE)

for each aTheme in wfdic.ReturnKeys
    'Add a record to the virtual table.
    RecNum = aVTab.AddRecord
    aVTab.SetValue(themeFld,RecNum,aTheme.asString)
aVTab.SetValue(WFField,RecNum,wfdic.Get(aTheme))
end

aVTab.SetEditable(FALSE)
else

'Modify the file with new values.

aVTab = VTab.Make(theFileNm,TRUE,FALSE)
themeFld = aVTab.FindField("Theme_name")
WFField = aVTab.FindField("W_Factor")
aVTab.SetEditable(TRUE)
for each aTheme in wfdic.ReturnKeys
    for each tmpJ in 0 .. (aVTab.GetNumRecords - 1)
        filTheme = aVTab.ReturnValue(themeFld,tmpJ)
        if (filTheme = aTheme) then
            aVTab.SetValue(WFField,tmpJ, wfdic.Get(aTheme))
        end
    end
end

aVTab.SetEditable(FALSE)
end

'REset the current working directory.

ev_cwd.SetCWD
av.GetProject.SetWorkDir(ev_pwd)
av.ShowMsg("Have assigned weight factors.")
EV.WFAssignFactor

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:45:56 2000

'Script to assign weight factors to a list of themes
'Existing weight factors or defaults of 1
'are placed in a dictionary along with the themes.

'******************************************************************************
'aTheme -- Loop variable used to loop through all
'themes passed to this script.
'recDic -- Dictionary passed from the calling script
'that contains the themes and default
'weight factors.
'themeDesc -- Variable used to display the theme
'names to the user.
'tmpl -- Temporary counter.
'wfactor -- Weight factors entered by the user.
'wfVal -- Variable used to display the weight
'factors to the user.

******************************************************************************

Get the information passed from the calling script
and initialize variables.

******************************************************************************

recDic = SELF
themeDesc = ""
wfVal = ""
tmpl = 0

******************************************************************************

'Show the user the themes and default weight
'factors. Allow the user to change the weight
'factors.

passDic = Dictionary.Make(2)
passDic.Set("Themes",themeDesc)
passDic.Set("Weight",wfVal)
wfactor = av.Run("EV.GetWeightFactors",passDic)

******************************************************************************

'Return the weight factors to the calling script.

******************************************************************************

'The user keyed "cancel," exit the script.

if (wfactor.Count = 0) then
exit
end

******************************************************************************

'Return the revised weight factors.

tmpAns = TRUE
while (tmpAns)
tmpl = 0
for each tmpl in 0 .. (themeDesc.asList.Count - 1)
for each aTheme in recDic.ReturnKeys
if (themeDesc.asList.Get(tmpl) = aTheme.asString) then
if (wfactor.Get(tmpl).isNumber) then
recDic.Set(aTheme,wfactor.Get(tmpl).asNumber)
else
MsgBox.Error("Weight factors must " +
"be numeric. Theme " +
aTheme.asString + " was " +
"assigned a weight " +
"factor of " +
for each aTheme in recDic.ReturnKeys
if (firsttheme = NIL) then
firsttheme = aTheme
end
themeDesc = themeDesc + " "+ aTheme.asString
wfVal = wfVal + " "+ recDic.
end
Get(aTheme).asString
end

'Show the user the themes and default weight
'tfactors. Allow the user to change the weight
'tfactors.

passDic = Dictionary.Make(2)
passDic.Set("Themes",themeDesc)
passDic.Set("Weight",wfVal)
wfactor = av.Run("EV.GetWeightFactors",passDic)

******************************************************************************

'Return the weight factors to the calling script.

******************************************************************************

'The user keyed "cancel," exit the script.

if (wfactor.Count = 0) then
exit
end

******************************************************************************

'Return the revised weight factors.

tmpAns = TRUE
while (tmpAns)
tmpl = 0
for each tmpl in 0 .. (themeDesc.asList.Count - 1)
for each aTheme in recDic.ReturnKeys
if (themeDesc.asList.Get(tmpl) = aTheme.asString) then
if (wfactor.Get(tmpl).isNumber) then
recDic.Set(aTheme,wfactor.Get(tmpl).asNumber)
else
MsgBox.Error("Weight factors must " +
"be numeric. Theme " +
aTheme.asString + " was " +
"assigned a weight " +
"factor of " +
wfactor.Get(tmpI),
"Found nonnumeric " +
"weight factor.")
wfactor = av.Run("Ev.GetWeightFactors",
passDic)
break
end

end
end
tmpAns = FALSE
end
return recDic
EV.WFCheckThemes

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:46:03 2000

'This script is used to pass a list of themes. The script then checks each theme to ensure the geometry is polygon. The merge theme works on only polygons, not lines and points. If all themes passed are polygon, the script returns TRUE, else it returns FALSE.

*********************************************

actThemes -- List of themes passed to this script.
aField -- The shape field.
aFTab -- Theme's FTab.
aShape -- The shape value.
aTheme -- Loop variable used to loop through the list of themes.
theName -- The theme name.
theShapeType -- Type of shape.
tmpl -- Temporary counter.
tmpJ -- Number of themes passed.
tmpK -- Temporary counter.

*********************************************

' Loop through each passed theme. If the shape type is not polygon, print a message and stop this script.

*********************************************

'Get the themes passed and clear the status bar.

actThemes = SELF
av.ClearMsg
av.ShowMsg("Checking to ensure the themes " + "selected are valid.")

'Loop through each record and look at the shape type
tmpl = 1
tmpJ = actThemes.Count
for each aTheme in actThemes
aFTab = aTheme.GetFTab
aField = aFTab.FindField("Shape")
for each tmpI in 0 .. (aFTab.GetNumRecords - 1)
aShape = aFTab.ReturnValue(aField,tmpI)
theShapeType = aShape.GetDimension
if (theShapeType < 2) then
    theName = aTheme.GetName
    MsgBox.Error("The theme " + theName + " contains shapes other than " + "polygons. This application can " + "process only polygons.", "Assigning weight factors")
    return FALSE
end
end

'Update the status bar.

tmpK = (tmpl / tmpJ) * 100
av.SetStatus(tmpK)
tmpl = tmpl + 1
end
av.ClearMsg
return TRUE
This script allows the user to select a file containing a list of scenarios. A scenario consists of the themes used, their weight factors, and the name of the resulting theme.

'aVTab -- Table of scenario files and descriptions.
ev_cwd -- Current working directory.
'EV_DATA -- System environment variable holding the full pathname to the data base that accompanies the application.
ev_data -- Variable holding the full pathname to the data base that accompanies the application.
ev_home -- Variable holding the full pathname to the user area where files are saved.
ev_home -- Variable holding the full pathname to the user area where files are saved.
ev_temp -- Variable holding the full pathname to the temporary work area.
ev_temp -- Variable holding the full pathname to the temporary work area.
evevenvDic -- Dictionary containing the system environment variables, returned from "EV.GetEnvVar."
fdmsg -- Message asking the user to select a file.
fileNm -- Name of the file the user selected.
tmpAns -- Used to check user responses.
usetype -- Used to select message, select file to save, or select scenario file.

Get the information passed from the calling script and the system environment variables.

usetype = SELF

Get the system environment variables.
tmpAns = MsgBox.YesNo("Do you wish to create "+
"a new file for maintaining the "+
"list of scenarios?", "New File?", FALSE)
if (tmpAns) then
    aVTab = av.Run("EV.WFMakeScenario",""")
else
    return NIL
else
    fileNm = "new"
end

'A new operation, create the first scene file.
if (fileNm = "new") then
    aVTab = av.Run("EV.WFMakeScenario","")
else
    'The scenario file exists, use it.
    if
        (TextFile.Make(fileNm,#File_Perm_READ).GetSize = 0) then
            MsgBox.Error("There are no records in the "+
            "file " + fileNm.asString, 
            "Get Scenario")
        ev_cwd.SetCWD
        exit
    end
    aVTab = VTAB.Make(fileNm,TRUE,FALSE)
end
end

'No file name and this is a save operation.
'Create the file to maintain the scenario
'file names and descriptions. Write the column
'headings to the file.

ev_cwd.SetCWD
av.GetProject.SetWorkDir(ev_pwd)
return aVTab
EV.WFGetTheme

'This script creates the list of themes that the user
'uses to create a scenario.

******************************************************************************
'aFile -- Name of the file in the record number
'"recNum."
'aFileNm -- Name of the file containing the themes
'and weight factors, the scenario file.
'aScenario -- Name of the passed file. This file
'contains the list of files that contain
'the themes and weight factors.
'aVTab -- VTab of themes and weight factors.
'ev_cwd -- Current working directory.
'EV_DATA -- System environment variable holding the
'full pathname to the data base that
'accompanies the application.
'ev_data -- Variable holding the full pathname to
'the data base that accompanies the
'application.
'EV_HOME -- System environment variable holding the
'full pathname to the user area where
'files are saved.
'ev_home -- Variable holding the full pathname to
'the user area where files are saved.
'EV_TEMP -- System environment variable holding the
'full pathname to the temporary work
'area.
'tempI -- Temporary counter.
'WFField -- Field containing the weight factor.
******************************************************************************

'Get the information passed from the calling script,
'the system environment variables, and the current
'working directory.

******************************************************************************

'Get the name of the file containing the list
'of scenario files.

passDic = SELF
aScenario = passDic.Get("Scenario")
theView = passDic.Get("View")

'Get the system environment variables.

evevenvDic = av.Run("EV.GetEnvVar","")
ev_data = evevenvDic.Get("EV_DATA")
ev_home = evevenvDic.Get("EV_HOME")
ev_temp = evevenvDic.Get("TEMP")

'The files are stored in the user's home directory.
'Change the current working directory to the user's
'home directory. Maintain the CWD so that it can be
'changed back before exiting the script.

ev_cwd = FileName.GetCWD
ev_pwd = av.GetProject.GetWorkDir
evScenarioDir = ev_data + "\Scenes\Scenarios"
evScenarioDir.asFileName.SetCWD
'Create the list of scenario files and allow the user to select the desired scenario file.

'***************************************************************

'Get the field names from the file containing the list of scenario files.
fileFld = aScenario.FindField("File_Name")
expFld = aScenario.FindField("Scenario")

Create a list of the files and their descriptions.

thefiles = {}
thedesc = {}
if (aScenario.GetNumRecords < 1) then
    MsgBox.Error("There are no scenario files in " + aScenario.asString,"Error finding " + "scenario file.")
    exit
end
for each recNum in 0 .. (aScenario.GetNumRecords - 1)
    thefiles.Add(aScenario.ReturnValue(fileFld,recNum).asString)
    thedesc.Add(aScenario.ReturnValue(expFld,recNum).asString)
end

'Build the list to show the user.

theFilDesc = {}
theFilDesc.Add("The file name --> The file description")
for each recNum in 0 .. (thefiles.Count - 1)
    aFile = thefiles.Get(recNum)
    theFilDesc.Add(aFile + " --> " + thedesc.Get(recNum))
end

'tmpAns = TRUE

while (tmpAns)
    aFile = MsgBox.ListasString(theFilDesc,
        "Select the "+ "desired scenario file.",
        "Select Scenario.")
    if (aFile = NIL) then
        exit
    end
    for each entNum in 0 .. (theFilDesc.Count - 1)
        if (aFile = theFilDesc.Get(entNum)) then
            if (entNum > 1) then
                tmpAns = FALSE
                break
            end
        end
    end
end

User selected "cancel," end script.

if (aFile = NIL) then
    exit
end

'***************************************************************

'Get the file containing the themes and weight factors and return the information to the calling script.

'***************************************************************

'Get the name of the file containing the themes and weight factors.

for each tmpI in 0 .. (aFile.Count - 1)
    if (aFile.Middle(tmpI,1) = " ") then
        fileNmLen = tmpI + 1
        break
    end
end

aFileNm = aFile.Left(fileNmLen)
defdesc = aFile.Right(aFile.Count - (fileNmLen + 4)).Trim
theFileNm = FileName.Make(aFileNm.Trim)
if (System.GetOS = "#SYSTEM_OS_UNIX") then
    theFileNm.SetSaveAsUNIX
end

aVTab = VTab.Make(theFileNm,FALSE,FALSE)

'Get the field names needed to read the VTab.
ThemeFld = aVTab.FindField("Theme_name")
WFField = aVTab.FindField("W_factor")

'Make and populate a dictionary where the key is 'the theme and the value is the weight factor.

theWFDic = Dictionary.Make(aVTab.GetNumRecords)
if (aVTab.GetNumRecords < 1) then
    MsgBox.Error ("There are no themes in the " +
                    "file " + aFileNm,
                    "Error opening the scenario file.")
exit
end
for each recNum in 0 .. (aVTab.GetNumRecords - 1)
    aTheme = aVTab.ReturnValue(ThemeFld,recNum)
inview = theView.FindTheme(aTheme)
    if (inview = Nil) then
        MsgBox.Error("The theme " + aTheme.asString +
                    " is not in view " +
                    theView.asString,"Getting Themes")
    end
    errList = aVTab.ReturnValue(ThemeFld,0).asString
end
if (aVTab.GetNumRecords > 1) then
    for each errNum in 1 ..
        (aVTab.GetNumRecords -1)
        errList = errList + nl +
                    aVTab.ReturnValue(ThemeFld,errNum)
    end
end
MsgBox.Report(errList,
        "Expecting the following themes.")
exit
else
    wf = aVTab.ReturnValue(WFField,recNum)
    theWFDic.Set(aTheme,wf)
end
end

'Make another dictionary to return the file name, 'dictionary of themes and weight factors, and the 'VTab of themes and weight factors.

theRetDic = Dictionary.Make(4)
theRetDic.Set("FileNm",theFileNm)
theRetDic.Set("Desc",defdesc)
theRetDic.Set("WFDIC",theWFDic)
theRetDic.Set("VTAB",aVTab)

'tReturn the CWD to its original values.
ev_cwd.SetCWD
av.GetProject.SetWorkDir(ev_pwd)
return theRetDic
EV.WFMakeScenario

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:46:36 2000

'Script to make the file that holds the scenario
'files and their descriptions. The scenario files
'contain the list of themes and weight factors
'to use when screening a watershed.

*******************************************************************************

'aVTab -- VTab of file names and descriptions.
'ev_cwd -- Current working directory.
'EV_DATA -- System environment variable holding the
' full pathname to the data base that
' accompanies the application.
'ev_data -- Variable holding the full pathname to
' the data base that accompanies the
' application.
'EV_HOME -- System environment variable holding the
' full pathname to the user area where
' files are saved.
'ev_home -- Variable holding the full pathname to
' the user area where files are saved.
'ev_pwd -- The project working directory.
'EV_TEMP -- System environment variable holding the
' full pathname to the temporary work
' area.
'ev_temp -- Variable holding the full pathname to
' the temporary work area.
'evevenvDic -- Dictionary containing the system
' environment variables, returned from
' "EV.GetEnvVar."

'fld1 -- Field containing the name of the
' scenario file.
'fld2 -- Field containing the explanation of the
' scenario file.
'fldLst -- List of fields to add to aVTab.
'fileNm -- Name of the file containing the list of
' scenario files.

*******************************************************************************

'Get the system environment variables

evevenvDic = av.Run("EV.GetEnvVar","")
ev_data = evevenvDic.Get("EV_DATA")
ev_home = evevenvDic.Get("EV_HOME")
ev_temp = evevenvDic.Get("EV_TEMP")

'Get the current working directory. Change it to
'the home directory, if necessary. The file containing
'the list of scenarios is assumed to be in
'the home directory.

evSceneDir = ev_data + "\Scenes"
ev_pwd = av.GetProject.GetWorkDir
ev_cwd = FileName.GetCWD
if (ev_cwd.asString <> evSceneDir) then
  evSceneDir.asFileName.SetCWD
end
av.GetProject.SetWorkDir(evSceneDir.asFileName)

'Make the file name.

fileNm = av.GetProject.MakeFileName("scenes","dbf")
if (System.GetOS = "#SYSTEM_OSUNIX")  then
  fileNm.SetSaveAsUNIX
end

'Create the file and VTab.

aVTab = VTab.MakeNew(fileNm,dBase)

'Add the fields to the table.

aVTab.SetEditable(TRUE)
fld1 = Field.Make("File_Name",#FIELD_VCHAR,150,0)
fld2 = Field.Make("Scenario",#FIELD_VCHAR,150,0)
fldLst = { fld1, fld2 }
aVTab.AddFields(fldLst)
aVTab.SetEditable(FALSE)

'Return the VTab.
'Return the CWD and PWD to their original values.

av.GetProject.SetWorkDir(ev_pwd)
ev_cwd.SetCWD

return aVTab
EV.AOIApply

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:46:44 2000

'This is the "Apply" script for the Identify Watershed
'of Interest Tool. The logic of this script is
'from ESRI's View.Identify script.

*********************************************

'aBitMap -- Bit map used to select records.
'aBitMapSuc -- Bit map resulting from a query.
'aGUI -- Variable used to loop through a list of GUIs.
'aVTab -- VTab of file names and descriptions.
'ev_cwd -- Current working directory.
'EV_DATA -- System environment variable holding the
   full pathname to the data base that
   accompanies the application.
'ev_data -- Variable holding the full pathname to
   the data base that accompanies the
   application.
'EV_HOME -- System environment variable holding the
   full pathname to the user area where
   files are saved.
'ev_home -- Variable holding the full pathname to
   the user area where files are saved.
'EV_TEMP -- System environment variable holding the
   full pathname to the temporary work
   area.
'evenvDic -- Dictionary containing the system
   environment variables, returned from
   "EV.GetEnvVar."
'evwoiField -- The field used to identify the
   watershed of interest.
'evwoiFileNm -- Name of the file containing the
   watershed of interest.
'evwoiFound -- True, at least one theme contains
   the point "evwoiPoint."
'evwoiFTab -- FTab for themes being examined.
'evwoiFTabFields -- Fields in the FTab "evwoiFTab."
'evwoiFTheme -- Theme created from the FTab that
   resulted from the user selecting a
   watershed of interest.
'evwoiGUI -- List of GUIs for this project. Used
   to reset the tool bar.
'evwoiHuc -- Theme containing the next level of
   hydrologic units to examine.
'evwoiHuc8c -- Eight-digit hydrologic unit code.
'evwoiKey -- First feature in the list "evwoiKeys"
'evwoiKeys -- List of features containing
   "evwoiPoint" in the themes contained in
   "evwoiThemes."

'evwoiLabel -- Hydrologic unit for the feature
   containing the point "evwoiPoint."
'evwoiLabelField -- Field in "evwoiFTab" that contain
   the primary hydrologic unit code
   for the theme "evwoiTheme."
'evwoiNm -- Name of the hydrologic unit that
   contains the point "evwoiPoint."
'evwoiNmField -- Field containing the name of the
   hydrologic units.
'evwoiNumRec -- Number of records containing the
   8-digit hydrologic-unit code.
'evwoiPoint -- Location the user pointed to and
   clicked on.
'evwoiRect -- Rectangle used to focus view after
   a watershed of interest has been
   selected.
'evwoiSrcNm -- Name of the shape file containing
   the next hydrologic unit theme at which
   to look.
'evwoiQuery -- Query used to select records from
   "evwoiTheme" VTab.
'evwoiTheme -- First theme in the list
   "evwoiThemes" should be the watershed
   of interest theme.
'evwoiThemes -- List of themes in "evwoiView."
'evwoiTmp -- Temporary variable used to identify
   the primary hydrologic unit code for
   theme "evwoiTheme."
'evwoiVal -- The value of the WOI field for the
   "evwoiKey" feature.
'evwoiView -- View with which to work.
'evwoiWOIField -- Variable used to create the WOI
   field in tables.
'recNum -- Record number found in a query.
'theField -- Field containing the themes' primary
   hydrologic unit code.
'tmpAns -- Response to a message.
'tmpList -- Temporary list used to add columns to
   tables.

*********************************************

' Get the system environment variables, the active
view, the point entered by the user, and the
watershed of interest theme. Initialize
variables and make sure the features on the
theme can be selected by pointing.
WOICLICK allows the user to select the view,
thus, the only active document should be the
view with which the user wishes to work.

*********************************************
'Get the system environment variables

evevenvDic = av.Run("EV.GetEnvVar","")
ev_data = evevenvDic.Get("EV_DATA")
ev_home = evevenvDic.Get("EV_HOME")
ev_temp = evevenvDic.Get("EV_TEMP")
ev_cwd = FileName.GetCWD

'Get the view and location of the point where
'the mouse was clicked.

evwoiView = av.GetActiveDoc
evwoiPoint = evwoiView.GetDisplay.ReturnUserPoint

'Get the first theme in the list of themes.
'The GetThemes command returns a list of all themes
'in a View ordered as they are seen in the table of
'contents. EV.WOIClick moves the watershed of
'interest to the first position in this list.
'Thus, the first theme in the list is the watershed
'of interest the user has selected.

evwoiThemes = evwoiView.GetThemes
evwoiTheme = evwoiThemes.Get(0)

'Examine the "evwoiTheme," if it has been used before
'reset the WOI column to allow a new watershed of
'interest to be identified.

evwoiTheme.GetFTab.SetEditable(TRUE)
evwoitestfld = evwoiTheme.GetFTab.FindField("WOI")
if (evwoiTheme.GetFTab.FindField("Huc_14") = NIL) then
  repval = 8
else
  repval = 11
end
else
  repval = 14
end

if (Not (evwoitestfld = NIL)) then
  evwoiNumRec =
evwoiTheme.GetFTab.GetNumRecords
  for each aRecNum in 0 .. (evwoiNumRec - 1)
    avalue = evwoiTheme.GetFTab.ReturnValue
      (evwoitestfld,aRecNum)
    if (avalue = 99) then
      if (evwoiTheme.GetFTab.ReturnValue
          (evwoiTheme.GetFTab.FindField("Hu_name"),
           aRecNum).Contains("Part of")) then
        theval = repval * 2
      else
        theval = repval
      end
    end
  end
end

evwoiTheme.getftab.seteditable(FALSE)

'If the features on this theme can be found by a
'point then get the feature associated with the
'point "evwoiPoint."

evwoiFound = FALSE
evwoiLabel = NIL
if (evwoiTheme.CanFindByPoint) then
  '*********************************************
  
  ' Get the information needed to identify the
  ' hydrologic unit the user identified and
  ' determine the hydrologic unit level of this
  ' theme.
  
  '*********************************************

  evwoiKeys = evwoiTheme.FindByPoint(evwoiPoint)

  'There is one or more keys. Use the first key to
  'get the label associated with the feature. In
  'this case the label is the appropriate
  'hydrologic unit code.

  if (evwoiKeys.Count > 0) then
    evwoiFound = TRUE
    evwoiKey = evwoiKeys.Get(0)
  end

  'Get the FTab associated with the theme. Use the
  'fields in that table to determine which field
  'should be used as the label field (The
  'hydrologic unit code) for the proper level of
  'hydrologic unit.

  evwoiFTab = evwoiTheme.GetFTab
evwoiFTabFields = evwoiFTab.GetFields
evwoiTmp = 0
evwoiLabelField = NIL
for each aField in evwoiFTabFields

    if ((aField.asString = "Huc_8") or (aField.asString = "Huc8")) then
        if (evwoiTmp < 8) then
            evwoiTmp = 8
            evwoiLabelField = aField
        end
    end
    if ((aField.asString = "Huc_11") or (aField.asString = "Huc11")) then
        if (evwoiTmp < 11) then
            evwoiTmp = 11
            evwoiLabelField = aField
        end
    end
    if ((aField.asString = "Huc_14") or (aField.asString = "Huc14")) then
        if (evwoiTmp < 14) then
            evwoiTmp = 14
            evwoiLabelField = aField
        end
    end

'***********************************************************************
' Set the label field and get the hydrologic unit code and name.
'***********************************************************************

'***********************************************************************
'Set the label field for the theme. Then get the value for that field (the hydrologic unit code for the watershed on which the user just clicks.

evwoiTheme.SetLabelField(evwoiLabelField)
evwoiLabel = evwoiTheme.ReturnValueString
    (evwoiTheme.GetLabelField.GetName,evwoiKey)

'Get the name of the watershed selected.

evwoiQuery = ";[ " + evwoiTheme.GetLabelField.
    asString + "] = " + evwoiLabel.asString.Quote
aBitMap = Bitmap.Make(evwoiTheme.GetFTab.
    GetNumRecords)
aBitMap.ClearAll
aBitMapSuc = evwoiTheme.GetFTab.Query
    (evwoiQuery,aBitMap,
    #VTAB_SELTYPE_NEW)
if (aBitMapSuc.Not) then
    return NIL
end
recNum = aBitMap.GetNextSet(0)

evwoiNmField = evwoiTheme.GetFTab.
    FindField("Name")
if (evwoiNmField = NIL) then
    evwoiNm = "Unnamed "
    if (evwoiTmp = 8) then
        evwoiNm = evwoiNm + "8-digit watershed"
    elseif (evwoiTmp = 11) then
        evwoiNm = evwoiNm + "11-digit watershed"
    else
        evwoiNm = evwoiNm + "14-digit watershed"
    end
else
    evwoiNm = evwoiTheme.GetFTab.
        ReturnValueString
            (evwoiNmField,recNum)
end

***********************************************************************
' Ask the user to decide what to do next.
'***********************************************************************
tmpAns = MsgBox.YesNoCancel("Watershed " + evwoiLabel.asString + 
    "Yes -- Use this " + 
    "watershed." + nl + 
    "No -- Select smaller " + 
    "watersheds" + nl + 
    "Cancel -- Select " + 
    "another watershed." ,
    "Is this your " + 
    "watershed of interest?" ,
    "TRUE")
if (tmpAns = NIL) then
    return NIL
elseif (tmpAns) then
    return NIL
elseif (tmpAns) then
    return NIL
else
    return NIL
'User wants to use this watershed as the watershed of interest. Get the WOI field, set the value to 99, and zoom to that watershed.

```plaintext
evwoiField = evwoiTheme.GetFTab.FindField("WOI")
evwoiTheme.GetFTab.SetEditable(TRUE)
evwoiVal = evwoiTheme.GetFTab.ReturnValue(evwoiField, evwoiKey)
evwoiTheme.GetFTab.SetValue(evwoiField, evwoiKey, 99)
evwoiTheme.GetFTab.SetEditable(FALSE)
aBitMap.ClearAll
aBitMap.Set(evwoiKey)
evwoiTheme.GetFTab.SetSelection(aBitMap)
av.Run("EV.WOIZoom", evwoiTheme)
av.Run("EV.WOIStreams", evwoiView)
for each aGUI in evwoiGUIs
 if (aGUIasString = "View") then
 tmpList = {}
 evwoiQuery = ":[Huc_8] = "+ evwoiLabel.asString.Quote
 theBitMap = evwoiFTab.GetSelection
 evwoiFTab.Query(evwoiQuery, theBitMap, #VTAB_SELTYPE_NEW)
 evwoiFTab.UpdateSelection
 evwoiFileNm = FileName.Make(evwoiTheme.GetSrcName.asString)
 evwoiView.DeleteTheme(evwoiTheme)
 evwoiView.Invalidate
 File.Delete(evwoiFileNm)
 end
end
```

'Create the query needed to get the 11-digit hydrologic units associated with the 8-digit hydrologic unit the user selected.

```plaintext
evwoiQuery = "[Huc_8] = " + evwoiLabel.asString.Quote
theBitMap = evwoiFTab.GetSelection
```

'Use the file name associated with the watershed of interest theme currently being used to save the selected data. Delete the watershed of interest theme and redraw the view.

```plaintext
evwoiFileNm = FileName.Make(evwoiTheme.GetSrcName.asString)
evwoiView.DeleteTheme(evwoiTheme)
evwoiView.Invalidate
File.Delete(evwoiFileNm)
```

'Export the selected 11-digit hydrologic units to the file name associated with the watershed of interest theme currently being used. Add the WOI field to the table.

```plaintext
evwoiFTab = evwoiHuc.ExportToFTab(evwoiFileNm)
evwoiWOIField = Field.Make("WOI", #FIELD_SHORT, 2, 0)
tmpList = {}
tmpList.Add(evwoiWOIField)
evwoiFTab.SetEditable(TRUE)
evwoiFTab.AddFields(tmpList)
evwoiFTab.SetEditable(FALSE)
```

'Make the theme from the FTab, set the legend to uniform color where the color is cyan, and display that theme.

```plaintext
evwoiFTheme = FTheme.Make(evwoiFTab)
evwoiView.AddTheme(evwoiFTheme)
av.Run("EV.WOIColor", evwoiFTheme)
evwoiFTheme.SetActive(TRUE)
```
evwoIFTheme.SetVisible(TRUE)
evwoIRect = Rect.MakeEmpty
(evwoIFTheme.ReturnExtent)
if (evwoIRect.ReturnSize = (0@0) ) then
  evwoIView.GetDisplay.PanTo
  (evwoIRect.ReturnOrigin)
else
  evwoIView.GetDisplay.SetExtent
  (evwoIRect.Scale(1.1))
end

evwoIFTheme.GetFTab.SetEditable(TRUE)
evwoIField = evwoIFTheme.GetFTab.FindField("WOI")
for each tmpI in 0 .. (evwoIFTheme.GetFTab.GetNumRecords - 1)
  evwoIFTheme.GetFTab.SetValue
  (evwoIField,tmpI,8)
end

11-digit hydrologic units are visible, and the user clicked within an 11-digit hydrologic unit.

else (evwoITmp = 11) then

'Get the 8-digit hydrologic unit code associated
'with the 11-digit hydrologic unit watersheds
'currently displayed. All 14-digit hydrologic units
'within the 8 are used during the evaluating process.

evwoIFTab = evwoIFTheme.GetFTab
evwoIField = evwoIFTab.FindField("Huc_8")
evwoIHuc8c = evwoIFTab.ReturnValue
  (evwoIField,1)

'Get the FTab for the 14-digit hydrologic units.

evwoISrcNm = SrcName.Make
  (ev_data + "/In_hu14.shp")
evwoIHuc = Theme.Make(evwoISrcNm)
evwoIFTab = evwoIHuc.GetFTab

'Use the file name associated with the watershed
'of interest theme currently being used to
'save the selected data. Delete the watershed
'of interest theme and redraw the theme.

evwoFileNm = FileName.Make
  (evwoIFTheme.GetSrcName.asString)
evwoIView.DeleteTheme(evwoIFTheme)
evwoIView.Invalidate

'Create the query needed to get the 14-digit hydrologic units associated with the 8-digit hydrologic unit the user selected.

'Export the selected 14-digit hydrologic units to the file name associated with the watershed of interest theme currently being used. Add the WOI field to the table.

evwoIFTab = evwoIHuc.ExportToFTab
  (evwoIFileNm)
evwoWOIField = Field.Make
  ("WOI",#FIELD_SHORT,2,0)
tmpList = {}
tmpList.Add(evwoWOIField)
evwoIFTab.SetEditable(TRUE)
evwoIFTab.AddFields(tmpList)
evwoIFTab.SetEditable(FALSE)
evwoIFTheme = FTheme.Make(evwoIFTab)
evwoIView.AddTheme(evwoIFTheme)

'Build a query to display only the 14-digit hydrologic unit watershed.

evwoIFTheme.SetActive(TRUE)
evwoIFTheme.SetVisible(TRUE)

'Export the selected 14-digit hydrologic units to the file name associated with the watershed of interest theme currently being used. Add the WOI field to the table.

evwoIFTab = evwoIHuc.ExportToFTab
  (evwoIFileNm)
evwoWOIField = Field.Make
  ("WOI",#FIELD_SHORT,2,0)
tmpList = {}
tmpList.Add(evwoWOIField)
evwoIFTab.SetEditable(TRUE)
evwoIFTab.AddFields(tmpList)
evwoIFTab.SetEditable(FALSE)
evwoIFTheme = FTheme.Make(evwoIFTab)
evwoIView.AddTheme(evwoIFTheme)

'Build a query to display only the 14-digit hydrologic unit watershed.

evwoIQuery = 
  "[Huc_11] = " + evwoILabel.asString.Quote
theBitMap = evwoIFTab.GetSelection
evwoIFTab.Query(evwoIQuery,theBitMap,
  #VTAB_SELTYPE_NEW)
evwoIFTab.UpdateSelection

'Export the selected 14-digit hydrologic units to the file name associated with the watershed of interest theme currently being used. Add the WOI field to the table.

evwoIFTab = evwoIHuc.ExportToFTab
  (evwoIFileNm)
evwoWOIField = Field.Make
  ("WOI",#FIELD_SHORT,2,0)
tmpList = {}
tmpList.Add(evwoWOIField)
evwoIFTab.SetEditable(TRUE)
evwoIFTab.AddFields(tmpList)
evwoIFTab.SetEditable(FALSE)
evwoIFTheme = FTheme.Make(evwoIFTab)
evwoIView.AddTheme(evwoIFTheme)

'Build a query to display only the 14-digit hydrologic unit watershed.

evwoIQuery = 
  "[Huc_11] = " + evwoILabel.asString.Quote
theBitMap = evwoIFTab.GetSelection
evwoIFTab.Query(evwoIQuery,theBitMap,
  #VTAB_SELTYPE_NEW)
evwoIFTab.UpdateSelection

'Export the selected 14-digit hydrologic units to the file name associated with the watershed of interest theme currently being used. Add the WOI field to the table.
evwoiFTheme.SetActive(TRUE)
evwoiFTheme.SetVisible(TRUE)
av.Run("EV.WOIZoom", evwoiFTheme)

'Set the field WOI to identify the location of
each 14-digit hydrologic unit. Set the field to 8
'if the 14-digit hydrologic units are not in the
'11-digit hydrologic unit selected by the user. Set
'the value to 11 for the 14-digit hydrologic units
'within the 11-digit hydrologic unit selected by the
'user.

evwoiFTab.SetActive(TRUE)
evwoiFTab = evwoiFTheme.GetFTab
evwoiField = evwoiFTab.FindField("WOI")
evwoiQuery = "[Huc_14] = " +
evwoiLabel.asString.Quote
theBitMap = evwoiFTab.GetSelection
evwoiFTab.Query(evwoiQuery, theBitMap,
#VTAB_SELTYPE_NEW)
evwoiFTab.UpdateSelection
evwoiFTheme.SetActive(TRUE)
evwoiFTheme.SetVisible(TRUE)
av.Run("EV.WOIZoom", evwoiFTheme)
av.Run("EV.WOIStreams", evwoiView)
evwoiFTab.SetActive(TRUE)

'User selected a 14-digit hydrologic unit watershed.
'Center on that and add the 1:100,000 streams.

elseif (evwoiTmp = 14) then

'Get the 8-digit hydrologic unit code associated
'with the 11-digit hydrologic unit watersheds
'currently displayed.

if (NOT evwoiFound) then
  System.Beep
end

elseif (evwoiTmp = 14) then

'Beep if the feature could not be found by pointing.

System.Beep
EV.WOIClick

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:46:51 2000

'Script executed when the WS icon is clicked.
'Allows the user to select an existing watershed
'of interest theme or create a new watershed of
'interest theme.

'*********************************************

'actApplyScript -- Apply script currently active.
'aFTab -- FTab for a theme.
'aGUI -- Loop variable used to loop through the
'       GUIs in the project.
'ev_cwd -- Current working directory.
'EV_DATA -- Current environment variable holding the
'       full pathname to the data base that
'       accompanies the application.
'ev_data -- Variable holding the full pathname to
'       the data base that accompanies the
'       application.
'EV_HOME -- Current environment variable holding the
'       full pathname to the user area where
'       files are saved.
'ev_home -- Variable holding the full pathname to
'       the user area where files are saved.
'EV_TEMP -- Current environment variable holding the
'       full pathname to the temporary work
'       area.
'evenvDic -- Dictionary containing the system
'       environment variables, returned from
'       "EV.GetEnvVar."
'evwoiAllThemes -- List of all themes in
'       "evwoiView."
'evwoiFileNm -- File name for the watershed of
'       interest theme.
'evwoiFTab -- 8-digit hydrologic unit FTab.
'evwoiGUIs -- List of GUIs in the project.
'evwoiHuc -- 8-digit hydrologic unit theme.
'evwoiSrcNm -- Source name for the 8-digit
'       hydrologic units.
'evwoiTheme -- The watershed of interest theme.
'evwoiThemes -- Themes that contain the WOI field.
'evwoiTmpFileNm -- Default file name for the
'       watershed of interest theme.
'evwoiView -- View containing the watershed of
'       interest.
'evwoiWOIField -- Field used to identify the
'       watershed of interest.
'tmpAns -- Response to a command.
'tmpI -- Temporary counter.

'tmpMsg -- Message for the message box.
'tmpList -- List used to add fields to the tables.

'*********************************************

Get the system environment variables and the
view.
'*********************************************

evevenvDic = av.Run("EV.GetEnvVar",""
ev_data = evevenvDic.Get("EV_DATA")
ev_home = evevenvDic.Get("EV_HOME")
ev_temp = evevenvDic.Get("TEMP")
ev_cwd = FileName.GetCWD
evwoiView = av.Run("EV.ViewGet", "Watershed of Interest " +
"Click Event")

'*********************************************

'Get a list of themes, determine which
themes show watersheds of interest, and get the
active apply script.
'*********************************************

Find the script name of the active tool, which is
the tool on which the user clicked. If this
'script was activated by split watershed or
by cut watershed just move the stream coverage
'on top. Moving the stream coverage will be done
'later in the script.

evwoiGUIs = av.GetProject.GetGUIs
for each aGUI in evwoiGUIs
    if (aGUI.asString = "View") then
        actApplyScript = aGUI.GetToolBar.GetActive.
        GetApply
            break
    end
end

evwoiAllThemes = evwoiView.GetThemes
evwoiThemes = {}
evwoiTheme = NIL

if (evwoiThemes.Count > 0) then
  aThemesString = NIL
  for each aTheme in evwoiThemes
    if (aThemesString = NIL) then
      aThemesString = aThemeasString
    else
      aThemesString = aThemesString + nl + aThemeasString
    end
  end
  tmpAns = MsgBox.YesNo(aThemesString,
    "Do you wish to use " +
    "one of the following " +
    "watersheds of interest?", TRUE)
  while (tmpAns)
    evwoiTheme = MsgBox.List(evwoiThemes,
      "Select one of the following " +
      "watershed of interest themes.",
      "Select a watershed of interest.")
    if (NOT (evwoiTheme = NIL)) then
      tmpAns = FALSE
    else
      tmpAns = MsgBox.YesNo("Do you really " +
        "want to quit?", TRUE)
      if (tmpAns) then
        tmpAns = FALSE
      end
    end
  end
end

if (evwoiTheme = NIL) then
  'If the tool for selecting watershed of interest
  'is not the watershed selection tool, return
  'from the script and do nothing.
  if (NOT (actApplyScript = "EV.WOIApply")) then
    return NIL
  end
end

evwoiSrcNm = SrcName.Make
  (ev_data + "/In_hu8.shp")
evwoiHuc = Theme.Make(evwoiSrcNm)
evwoiFTab = evwoiHuc.GetFTab
evwoiTmpFileNm = av.GetProject.MakeFileName
  ("WOI", "shp")
evwoiFileNm = FileDialog.Put(evwoiTmpFileNm,
  "WOI*.shp",
  "Create a new watershed of interest?")
if (evwoiFileNm = NIL) then
  return NIL
end

evwoiFTab = evwoiHuc.ExportToFTab(evwoiFileNm)
evwoiWOIField = Field.Make("WOI",
  #FIELD_SHORT,2,0)
tmpList = {}
tmpList.Add(evwoiWOIField)
evwoiFTab.SetEditable(TRUE)
evwoiFTab.AddField(tmpList)
evwoiFTab.SetEditable(FALSE)
evwoiFTheme = FTheme.Make(evwoiFTab)
evwoiView.AddTheme(evwoiFTheme)
evwoiFTheme.SetActive(TRUE)
evwoiFTheme.SetVisible(TRUE)

'Set the legend to uniform color. Color of cyan. 'Zoom to the proper resolution.

av.Run("EV.WOIColor",evwoiFTheme)
passDic = Dictionary.Make(2)
passDic.Set("Theme",evwoiFTheme)
passDic.Set("View",evwoiView)
av.Run("EV.Zoom2FullExtent",passDic)

else

'If the split or cut tools got to this script, 'add the stream coverage.

if ((actApplyScript.Contains("SplitWater")) or
    (actApplyScript.Contains("CutWater"))) then
  av.Run("EV.WOIStreams","")
end

end

'Set the legend of the theme to a uniform color, 'with the color cyan.

av.Run("EV.WOIColor",evwoiTheme)

'Zoom in to the proper HUC.

av.Run("EV.WOIZoom",evwoiTheme)
end

else

'The user selected a theme. Make that theme active 'and visible. Zoom to the selected records.

tmpl = -1
for each aTheme in evwoiAllThemes
  tmpl = tmpl + 1
  if (aTheme = evwoiTheme) then
    break
  end
end

'If the split or cut tools got to this script, 'add the stream coverage.

if ((actApplyScript.Contains("SplitWater")) or
    (actApplyScript.Contains("CutWater"))) then
  av.Run("EV.WOIStreams","")
end

end
EV.WOIColor

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:46:59 2000

'Script is passed a theme. The script then sets
'the theme legend to uniform color. The color is
'cyan.

'******************************************************************************
'evwoiCTheme -- Theme passed from the calling script.
'evwoiSymbolList -- List of symbols in the legend.
'evwoiColor -- The color applied to the legend.
'******************************************************************************

evwoiCTheme = SELF

evwoiSymbolList = SymbolList.FromList
    (evwoiCTheme.GetLegend.GetSymbols)
evwoiColor = Color.GetCyan
    evwoiSymbolList.UniformColor(evwoiColor)

'******************************************************************************
EV.WOICut

'A script allowing the user to cut a piece of a
'watershed and use that piece as the watershed
'of interest.

'Make all themes inactive except the WOI.

for each aTheme in theView.GetThemes
  tmpField = aTheme.GetFTab.FindField("WOI")
  if (tmpField <> NIL) then
    theTheme = aTheme
    break
  end
end

'tGet the view, the list of themes, the active
'themes, the watershed of interest theme, and
'the user entered polygon.

'Get the first theme in the list that is a
'watershed of interest theme. The “WOIClick”
'event moves the selected watershed of interest to
'the top of the table of contents unless a stream
'coverage is the only theme listed before the
'watershed of interest.

for each aTheme in theView.GetThemes
  tmpField = aTheme.GetFTab.FindField("WOI")
  if (tmpField <> NIL) then
    theTheme = aTheme
    break
  end
end

'tGet the view, “WOIClick” asks the user to identify
'the View and, thus, the WOI is in the active
'document.

theView = av.GetActiveDoc

'tGet the first theme in the list that is a
'watershed of interest theme. The “WOIClick”
'event moves the selected watershed of interest to
'the top of the table of contents unless a stream
'coverage is the only theme listed before the
'watershed of interest.

for each aTheme in theView.GetThemes
  tmpField = aTheme.GetFTab.FindField("WOI")
  if (tmpField <> NIL) then
    theTheme = aTheme
    break
  end
end

'tGet the view, the list of themes, the active
'themes, the watershed of interest theme, and
'the user entered polygon.

'Get the first theme in the list that is a
'watershed of interest theme. The “WOIClick”
'event moves the selected watershed of interest to
'the top of the table of contents unless a stream
'coverage is the only theme listed before the
'watershed of interest.

for each aTheme in theView.GetThemes
  tmpField = aTheme.GetFTab.FindField("WOI")
  if (tmpField <> NIL) then
    theTheme = aTheme
    break
  end
end

'tGet the view, “WOIClick” asks the user to identify
'the View and, thus, the WOI is in the active
'document.

theView = av.GetActiveDoc
numRec = theTheme.GetFTab.GetNumRecords
shpField = theTheme.GetFTab.FindField("Shape")
recNum = NIL
for each tmpI in 0 .. (numRec - 1)
  wtdpoly = theTheme.GetFTab.ReturnValue(shpField,tmpI)
  if (wtdpoly.contains(userPoly)) then
    recNum = tmpI
    break
  end
end
if (recNum = NIL) then
  MsgBox.Error("The graphic you drew is not " +
               "contained in any of the " +
               "watersheds in the theme " +
               theTheme.asString,
               "Cuting a watershed."
  )
  return NIL
end

'Make the selected theme active, get the FTab 'and make it editable
theTheme.SetActive(TRUE)
theFTab = theTheme.GetFTab
theFTab.SetEditable(TRUE)
theFTab.BeginTransaction

'Add the user polygon to the FTab as a shape.
newRec = theFTab.AddRecord
theFTab.SetValue(shpField,newRec,userPoly)

'Remove the new shape from the watershed and 'save the change.
diffshp = wtdpoly.ReturnDifference(userPoly)
theFTab.SetValue(shpField,recNum,diffshp)

'Create the spatial index.
theFTab.CreateIndex(shpField)

'End the edit process.
theTheme.GetFTab.EndTransaction
theTheme.GetFTab.SetEditable(FALSE)

'Update the new record in the FTab.
passDic = Dictionary.Make(3)
passDic.Set("THEME",theTheme)
passDic.Set("OLD",recNum)
passDic.Set("NEW",newRec)
av.Run("EV.WOISetVal",passDic)

'Repaint the theme.
theTheme.Invalidate(TRUE)

'Return all themes to their original state.
for each aTheme in theView.GetThemes
  if (aTheme.IsActive) then
    aTheme.SetActive(FALSE)
  end
end
for each aTheme in actThemes
  aTheme.SetActive(TRUE)
end
EV.WOIGetWOI

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:47:07 2000

'Script that finds the watershed of interest
'themes in the active view.

'*****************************************************
'theThemes -- List of themes passed from the calling
          script.
'rtnThemes -- List of watershed of interest themes
          found by the script.
'aTheme -- Loop variable used to loop through all
          themes passed by the calling script.

'*****************************************************

theThemes = SELF

rtnThemes = {}
for each aTheme in theThemes
    if (aTheme.CanSelect) then
        if (NOT (aTheme.GetFTab.FindField("WOI")
            = NIL)) then
            if (NOT (aTheme.asString.Contains("Hash_"))) then
                rtnThemes.Add(aTheme)
            end
        end
    end
end
return rtnThemes
EV.WOIHucllevel

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:50:42 2000

'*********************************************
'aField -- Loop variable used to loop through
       "evwoiFTabFields."
aTheme -- Theme passed from the calling program.
evwoiFTab -- FTab for the theme passed from the
       calling program.
evwoiFTabFields -- Fields in "evwoiFTab."
evwoiTmpl -- Temporary counter signifying the
       hydrologic unit level of this theme.
evwoiLabelField -- Field containing the hydrologic
       unit code.
'passDic -- Dictionary containing the information
       passed from the calling script.
'newRec -- Record number added to the theme's FTab.
'recNum -- Record number of the modified feature.
'rtnDic -- Dictionary used to return information
       to the calling script.
'theTheme -- Theme passed from the calling script.

*********************************************

' Use the fields in the table to determine which
field should be used as the label field
(the hydrologic unit code). Set the indicator
to the proper level of hydrologic unit.

*********************************************

evwoiTmpl = 0
evwoiLabelField = NIL
for each aField in evwoiFTabFields
   if (aField.asString = "Huc_8") then
      if (evwoiTmpl < 8) then
         evwoiTmpl = 8
         evwoiLabelField = aField
      end
   end
   if (aField.asString = "Huc_11") then
      if (evwoiTmpl < 11) then
         evwoiTmpl = 11
         evwoiLabelField = aField
      end
   end
   if (aField.asString = "Huc_14") then
      if (evwoiTmpl < 14) then
         evwoiTmpl = 14
         evwoiLabelField = aField
      end
   end
end

*********************************************

' Build the return dictionary and return.

rtnDic = Dictionary.Make(2)
rtnDic.Set("LABEL",evwoiLabelField)
rtnDic.SET("TMP",evwoiTmpl)
return rtnDic

*********************************************

115
EV.WOISetVal

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:50:51 2000

'Update the other entries in FTab after a cut or 'split watershed operation.

*********************************************
'aField -- Loop variable used to look at all '    fields in "theFields."
'evtmp -- Huc level for this theme.
'passDic -- Dictionary containing the information '    passed from the calling script.
'newName -- Name of the new feature.
'newRec -- Record number added to the theme's FTab. 'oldVal -- Value of the field for the watershed that '    was modified.
'recNum -- Record number of the modified feature. 'rtnDic -- Dictionary containing the theme's huc '    level.
'theFields -- Fields in "theFTab." 'theFTab -- FTab for "theTheme."
'theTheme -- Theme passed from the calling script. 'wtrshed -- Geometry of the new feature.

*********************************************
'Get the information passed to this script, '    establish variable values, and determine the '    huc level of the watershed of interest theme. '*********************************************

passDic = SELF
theTheme = passDic.Get("THEME")
recNum = passDic.Get("OLD")
newRec = passDic.Get("NEW")

'Determine the huc level.

rtnDic = av.Run("EV.WOIHuclevel",theTheme)
evtmp = rtnDic.Get("TMP")

'******************************************************
'theme = theTheme.GetFTab
theFTab.SetEditable(TRUE)
theFields = { }
theFields = theFTab.GetFields

'Loop through each field and populate the fields 'for the newly created feature.

for each aField in theFields
    if (aField.asString = "Shape") then
        wtrshed = theFTab.ReturnValue(aField,newRec)
    elseif (aField.asString = "Area") then
        theFTab.SetValue(aField,newRec,
            wtrshed.ReturnArea)
    elseif (aField.asString = "Perimeter") then
        theFTab.SetValue(aField,newRec,
            wtrshed.ReturnLength)
    elseif (aField.asString.Contains("name") then
        newName = "Part of " +
            theFTab.ReturnValue(aField,recNum)
        theFTab.SetValue(aField,newRec,oldVal)
    else
        oldVal = theFTab.ReturnValue(aField,recNum)
        theFTab.SetValue(aField,newRec,oldVal)
    end
end
theFTab.SetEditable(FALSE)
return NIL
EV.WOISplitWatershed

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:51:03 2000

'Script to split a feature into two pieces.

'*********************************************
'aBitMap -- Bit map used to indicate which records
'have been used or which records to select.
'abitlist -- List used to create and modify a
'bit map.
'actThemes -- List of active themes in "theView."
'aLine -- The line entered by the user that is
'used to split the feature into two pieces.
'aTheme -- The first theme in the View that
'contains the field "WOI," (the theme
'being split).
'evwoiFTab -- FTab for the theme being split,
'"aTheme."
'evwoiLabelField -- Field containing the hydrologic
'unit code.
'evwoiTmp -- Temporary variable that contains the huc
'level indicator.
'newNm -- Name of the portion of the hydrologic
'unit that has been split.
'nmField -- Name field in "evwoiFTab."
'recNm -- Name of the hydrologic unit being split.
'recNum -- Record number in a table.
'result -- Contains the geometry after the feature
'has been split.
' rtnDict -- Dictionary returned from a script
'containing the huc level for "aTheme."
'shpField -- Field containing the geometry of the
'features in "aTheme."
'theTheme -- Loop variable used to loop through
'the themes in the view.
'theType -- Type of geometry contained in shpField.
'theView -- The active view.
'tmpAns -- Response to a command.
'tmpHuc -- Hydrologic unit code of the record
'being modified.
'tmpField -- Variable used to see if "WOI" is a field
'in theFTab for "theTheme."
'woiField -- "WOI" field in the "evwoiFTab."

'*********************************************

theView = av.GetActiveDoc
av.ShowMsg("Getting line used to divide the " +
"watersheds.")
aLine = theView.ReturnUserPolyLine
if (aLine.isNull) then
    return NIL
end

'Get the first theme in the list. The “WOIClick”
'top moves the selected watershed of interest to
'the top of the table of contents unless a stream
'coverage overlies it.

av.ShowMsg("Getting the watershed of interest.")
for each theTheme in theView.GetThemes
    tmpField = theTheme.GetFTab.FindField("WOI")
    if (tmpField <> NIL) then
        theTheme.SetActive(FALSE)
        actThemes.Add(theTheme)
        aTheme = theTheme
        break
    end
end

'Make all themes inactive except the WOI.

actThemes = { }
for each theTheme in theView.GetThemes
    if (theTheme.IsActive) then
        theTheme.SetActive(FALSE)
    else
        theTheme.SetActive(TRUE)
    end
end

'*********************************************

'Split the watershed.

'*********************************************
av.ShowMsg("Splitting the watershed.")
av.UseWaitCursor

'Using the line entered by the user to split the 'watershed.
theView.SetEditableTheme(aTheme)
evwoiFTab = aTheme.GetFTab
evwoiFTab.StartEditingWithRecovery
evwoiFTab.BeginTransaction
shpField = evwoiFTab.FindField("Shape")
theType = shpField.GetType
if ((theType = #FIELD_SHAPEPOLY) or
    (theType = #FIELD_SHAPELINE)) then
    result = aTheme.Split(aLine)
end
evwoiFTab.EndTransaction
evwoiFTab.StopEditingWithRecovery(TRUE)

'*********************************************

' Populate the data fields for the newly ' created feature.
'*********************************************

'Determine the level of HUCs in this theme.
rtt_Dic = av.Run("EV.WOIHuclevel",aTheme)
evwoiLabelField = rtt_Dic.Get("LABEL")
evwoiTmp = rtt_Dic.Get("TMP")

'Find the huc that was modified and set values.
abitMap = evwoiFTab.GetSelection
recNum = abitMap.GetNextSet(0)
tmpHuc = evwoiFTab.ReturnValue
evwoiFTab.SetValue(woiField,recNum,evwoiTmp*2)
recNm = evwoiFTab.ReturnValue(nmField,recNum)
newNm = "Part of " + recNm
evwoiFTab.SetValue(nmField,recNum,newNm)
end

'Create a shape index.
shpField = evwoiFTab.FindField("Shape")
evwoiFTab.CreateIndex(shpField)
evwoiFTab.SetEditable(FALSE)

'Zoom to the selected watersheds.
av.Run("EV.WOIZoom",aTheme)

'Update the WOI and name fields.
recNum = 0
woiField = evwoiFTab.FindField("WOI")
nmField = evwoiFTab.FindField("Name")
if (nmField = NIL) then
    nmField = evwoiFTab.FindField("Hu_name")
end
evwoiFTab.SetEditable(TRUE)
abitlist = {}
for each abit in abitMap
    abitlist.Add(abit)
end
while (recNum >= 0)
    recNum = abitMap.GetNextSet(recNum)
    if (recNum > 0 ) then
        evwoiFTab.SetValue(woiField, recNum, evwoiTmp*2)
        recNm = evwoiFTab.ReturnValue(nmField,recNum)
        newNm = "Part of " + recNm
        evwoiFTab.SetValue(nmField,recNum,newNm)
    end
end

End
for each aTheme in actThemes
  aTheme.SetActive(TRUE)
end
EV.WOISTreams

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:51:11 2000

'This script loads the 1:100,000 stream coverage
'into the view as an aid to the user. If the
'coverage already exists in the view, the script
'will move the coverage to the top of the table of
'contents and make the coverage visible.

'**********************************************************
'aTheme -- Loop variable used to look at each
theme in "evwoistrView."
'EV_DATA -- System environment variable holding the
' full pathname to the data base that
' accompanies the application.
'ev_data -- Variable holding the full pathname to
' the data base that accompanies the
' application.
'EV_HOME -- System environment variable holding the
' full pathname to the user area where
' files are saved.
'ev_home -- Variable holding the full pathname to
' the user area where files are saved.
'ev_pwd -- Project working directory.
'EV_TEMP -- System environment variable holding the
' full pathname to the temporary work
' area.
'ev_temp -- Variable holding the full pathname to
' the temporary work area.
evevenvDic -- Dictionary containing the system
' environment variables, returned from
' "EV.GetEnvVar."
'evwoIColor -- Color being assigned to the legend.
'evwoiSymbolList -- List of graphic symbols in the
' view.
'evwoiStreams -- 1:100,000 stream theme.
'evwoiSrcNm -- File name of the shape file
' containing the 1:100,000 stream
' coverage.
'evwoiStreams -- Themes in "evwoistrView."
'evwoiStreamView -- Active view.
'tmpCnt -- Temporary counter.
tmpSrcNm -- Source name of the theme being
' examined.

'**********************************************************

Get the system environment variables and
the view.

'**********************************************************

evevenvDic = av.Run("EV.GetEnvVar",""")
ev_data = evevenvDic.Get("EV_DATA")
ev_home = evevenvDic.Get("EV_HOME")
ev_temp = evevenvDic.Get("EV_TEMP")

'The view is passed from the calling script.

evwoistrView = av.GetActiveDoc

Determine if the 1:100,000 theme is already
part of the view.

'**********************************************************

evwoiStreams = evwoistrView.GetThemes
tmpCnt = -1
for each aTheme in evwoiStreams

tmpSrcNm = aTheme.GetName

tmpCnt = tmpCnt + 1
if (tmpSrcNm.Contains("Stream100.shp"))

then

    evwoiStreams = tmpSrcNm

    aTheme.SetVisible(TRUE)

    end

break
end

Add or move the 1:100,000 stream theme.
If the 1:100,000 stream theme does not exist in the view, add the theme, make the lines green, and make the theme visible.

```
if (evwoistrSrcNm = NIL) then
 evwoistrSrcNm = SrcName.Make(ev_data + "/stream100.shp")
 evwoiStreams = Theme.Make(evwoistrSrcNm)
 evwoiSymbolList = SymbolList.FromList(evwoiStreams.GetLegend.GetSymbols)
 evwoiColor = Color.GetGreen
 evwoiSymbolList.UniformColor(evwoiColor)
 evwoiStreams.SetVisible(TRUE)
else

 'The 1:100,000 stream theme exists. Move the theme to the top of the table of contents and redraw the view.

 evwoiStreams = Theme.Make(evwoistrSrcNm)
 evwoiStreams.SetVisible(TRUE)
 evwoiStreams.Shuffle(evwoiStreams.GetLegend.GetSymbols)
 evwoiStreams.UpdateLegend
 evwoiStreams.Invalidate
end
```
EV.WOIZoom

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:51:21 2000

'Modified ArcView's "View.ZoomSelected" to look
'at the theme passed.

'*********************************************

'evwoiRect -- Area that will fill the view.
'evwoiZoomDis -- Display showing the view.
'evwoiZoomTheme -- Theme passed from the calling
'         script.
'evwoiZoomView -- View containing the theme.
'*********************************************

'*********************************************

' Get the theme and the view passed. Make sure
' the theme can be selected then get the view area
' and zoom to the view area.
'*********************************************

if (NOT (aTheme = evwoiZoomTheme)) then
aTheme.SetActive(FALSE)
aTheme.SetVisible(FALSE)
end
end

evwoiRect = Rect.MakeEmpty

evwoiRect = evwoiRect.UnionWith
( evwoiZoomTheme.GetSelectedExtent)

'Zoom to the appropriate area.

if (evwoiRect.IsEmpty) then
    evwoiRect = evwoiZoomTheme.ReturnExtent
    evwoiZoomView.GetDisplay.SetExtent
    (evwoiRect.Scale(1.1))
elseif (evwoiRect.ReturnSize = (0@0) ) then
    evwoiZoomView.GetDisplay.PanTo
    (evwoiRect.ReturnOrigin)
else
    evwoiZoomView.GetDisplay.SetExtent
    (evwoiRect.Scale(1.1))
end

'Redraw the view.

evwoiZoomDis = evwoiZoomView.GetDisplay

evwoiZoomView.Draw(evwoiZoomDis)
EV.Zoom2FullExtent

'Created by James (Jay) L. Kiesler, Jr.
'Created on Wed Apr 26 15:51:29 2000

'Script to zoom to the full extent of the the view
'passed to this script. Modification of ESRI's
"View.ZoomFullExtent." Only look at the view passed
'to the script and not the active document.

******************************************************************************
'evz2feView -- View passed from the calling script.
'evz2feExtent -- Extent of the view.
******************************************************************************

******************************************************************************
' Get the view passed from the calling script
' and reset the extent to the full extent of the
' view.
******************************************************************************

'Get the view passed to the script and the extent of
'that view.
theDic = SELF
evz2feView = theDic.Get("View")
evz2feTheme = theDic.Get("Theme")
for each aTheme in evz2feView.GetThemes
  if (NOT (aTheme = evz2feTheme)) then
    aTheme.SetActive(FALSE)
    aTheme.SetVisible(FALSE)
  end
end
evz2feExtent = evz2feView.ReturnExtent
'Zoom to the full extent.

if (evz2feExtent.IsEmpty) then
  return NIL
elseif (evz2feExtent.ReturnSize = (0@0)) then
  evz2feView.GetDisplay.PanTo
    (evz2feExtent.ReturnOrigin)
else
  evz2feView.GetDisplay.SetExtent
    (evz2feExtent.Scale(1.1))
  av.GetProject.SetModified(true)
end
evwoiZoomDis = evz2feView.GetDisplay
evz2feView.Draw(evwoiZoomDis)
APPENDIX 2. LISTING OF DATA LAYERS AND METADATA ABOUT EACH LAYER

County.shp
Table county.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
Fips_cnty – Federal Information Processing County Code
In_cty – Two-digit State of Indiana County Code
St – Two-letter Postal abbreviation for the state
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles

In_hu8.shp
Table in_hu8.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Name – Name of the hydrologic unit
States – States in which the hydrologic unit lie
Published – Published area of the hydrologic unit, in many cases this includes area outside Indiana
Huc_8 – 8-digit hydrologic unit code identifying the hydrologic unit

In_hu11.shp
Table in_hu11.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Huc_11 – 11-digit hydrologic unit code identifying the 11-digit hydrologic unit
Huc_8 – 8-digit hydrologic unit code within which the 11-digit hydrologic unit is
In_hu14.shp
Table in_hu14.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Hu_acres – Area of the feature, in acres
Noncontrib – Area of the feature that does not directly contribute to surface-water runoff, in acres
Sq_miles – Area of the feature, in square miles
Noncon_sqm – Area of the feature that does not directly contribute to surface-water runoff, in square miles
Huc_14 – 14-digit hydrologic unit code identifying the hydrologic unit
Huc_11 – 11-digit hydrologic unit code within which the 14-digit hydrologic unit is
Huc_8 – 8-digit hydrologic unit code within which the 14-digit hydrologic unit is

Acres_corn.shp
Source of corn values – Written Communication, September 17, 1996, U.S. Department of Agriculture, National Agricultural Statistics Service, Indiana Agricultural Statistics Service Agricultural Experiment Station, Purdue University
Table acres_corn.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cy – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Corn – Acres of the feature planted in corn

Acres_soy.shp
Source of soybean values – Written Communication, September 17, 1996, U.S. Department of Agriculture, National Agricultural Statistics Service, Indiana Agricultural Statistics Service Agricultural Experiment Station, Purdue University
Table acres_soy.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cy – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Soybean – Acres of the feature planted in soybeans

Acres_wheat.shp
Source of wheat values – Written Communication, September 17, 1996, U.S. Department of Agriculture, National Agricultural Statistics Service, Indiana Agricultural Statistics Service Agricultural Experiment Station, Purdue University
Table acres_wheat.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Wheat – Acres of the feature planted in wheat

**Acres_planted.shp**
Source of values – Written Communication, September 17, 1996, U.S. Department of Agriculture, National Agricultural Statistics Service, Indiana Agricultural Statistics Service Agricultural Experiment Station, Purdue University

**Table acres_planted.dbf**

**Column Heading – Column Description**
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Plt_acres – Acres of the feature planted in corn, soybeans, and wheat. Determined by summing the values in the corn, soybean, and wheat themes.
Zenty – Percentage of the county planted in corn, soybeans, and wheat. Determined by dividing Plt_acres by acres.
Crop_per_n.shp

Table crop_per_n.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Crop_nit – Percentage of the crop needs for nitrogen met by animal waste produced in the county

Crop_per_p.shp

Table crop_per_p.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Crop_pho – Percentage of the crop needs for phosphorus met by animal waste produced in the county
**Crop_per_k.shp**

**Table crop_per_k.dbf**
**Column Heading – Column Description**
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Crop_pot – Percentage of the crop needs for potassium met by animal waste produced in the county

**Animal_was_n.shp**

**Table animal_was_n.dbf**
**Column Heading – Column Description**
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Waste_pot – Estimate of the pounds of potassium contained in animal waste produced in the county
**Animal_was_p.shp**  
**Table animal_was_p.dbf**  
**Column Heading – Column Description**  
Area – Area of the feature, in map units (square meters)  
Perimeter – Perimeter of the feature, in map units (meters)  
Statecty – Concatenation of the Federal Information Processing State and County Codes  
St – Two-letter Postal abbreviation for the state  
In_cty – Two-digit State of Indiana County Code  
Cntyname – Name of the county  
Acres – Area of the feature, in acres  
Sq_miles – Area of the feature, in square miles  
Waste_pho – Estimate of the pounds of phosphorus contained in animal waste produced in the county  

**Animal_was_k.shp**  
**Table animal_was_k.dbf**  
**Column Heading – Column Description**  
Area – Area of the feature, in map units (square meters)  
Perimeter – Perimeter of the feature, in map units (meters)  
Statecty – Concatenation of the Federal Information Processing State and County Codes  
St – Two-letter Postal abbreviation for the state  
In_cty – Two-digit State of Indiana County Code  
Cntyname – Name of the county  
Acres – Area of the feature, in acres  
Sq_miles – Area of the feature, in square miles  
Waste_pot – Estimate of the pounds of potassium contained in animal waste produced in the county
Animal_was_tnut.shp

Table animal_was_tnut.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Total_nut – Estimate of the pounds of nitrogen, phosphorus, and potassium contained in animal waste produced in the county. Determined by summing the values in the pounds of nitrogen, phosphorus, and potassium themes.

Horses.shp

Table horses.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Horses – Head of horses in a county
Cattle.shp

Table cattle.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Cattle – Head of cattle in a county

Cattle_dairy.shp

Table cattle_dairy.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Dairy – Head of dairy cattle in a county
**Cattle_ndairy.shp**

**Table cattle_ndairy.dbf**

**Column Heading – Column Description**

Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Non_dairy – Head of nondairy cattle in a county

**Poultry.shp**

**Table poultry.dbf**

**Column Heading – Column Description**

Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Poultry – Head of poultry in a county
**Sheep.shp**

**Table sheep.dbf**
**Column Heading – Column Description**
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntynme – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Sheep – Head of sheep in a county

**Swine.shp**

**Table swine.dbf**
**Column Heading – Column Description**
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntynme – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Swine – Head of swine in a county
Population.shp

Table population.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Z990_base – 1990 base census population
Z990_est – Estimated population, July 1, 1990
Z991_est – Estimated population, July 1, 1991
Z992_est – Estimated population, July 1, 1992
Z993_est – Estimated population, July 1, 1993
Z994_est – Estimated population, July 1, 1994
Z995_est – Estimated population, July 1, 1995
Z996_est – Estimated population, July 1, 1996
Z997_est – Estimated population, July 1, 1997
Z998_est – Estimated population, July 1, 1998
Z999_est – Estimated population, July 1, 1999
**Population_cng.shp**

**Table population_cng.dbf**
**Column Heading – Column Description**
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Z990_base – April 1, 1990, base population
Z0_91_cng – Estimated population change, July 1, 1990, to July 1, 1991
Z1_92_cng – Estimated population change, July 1, 1991, to July 1, 1992
Z2_93_cng – Estimated population change, July 1, 1992, to July 1, 1993
Z3_94_cng – Estimated population change, July 1, 1993, to July 1, 1994
Z4_95_cng – Estimated population change, July 1, 1994, to July 1, 1995
Z5_96_cng – Estimated population change, July 1, 1995, to July 1, 1996
Z6_97_cng – Estimated population change, July 1, 1996, to July 1, 1997
Z7_98_cng – Estimated population change, July 1, 1997, to July 1, 1998
Z8_99_cng – Estimated population change, July 1, 1998, to July 1, 1999
Z5_99_cng – Estimated population change, July 1, 1995, to July 1, 1999
Z0_99_cng – Estimated population change, July 1, 1990, to July 1, 1999
Emp_ag_serv_forest.shp

Table emp_ag_serv_forest.dbf

Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
S t – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntynam e – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Z987 – Estimated individuals employed during 1987
Z988 – Estimated individuals employed during 1988
Z989 – Estimated individuals employed during 1989
Z990 – Estimated individuals employed during 1990
Z991 – Estimated individuals employed during 1991
Z992 – Estimated individuals employed during 1992
Z993 – Estimated individuals employed during 1993
Z994 – Estimated individuals employed during 1994
Z995 – Estimated individuals employed during 1995
Z996 – Estimated individuals employed during 1996
Z997 – Estimated individuals employed during 1997
Emp_construction.shp

Table emp_construction.dbf

Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Z987 – Estimated individuals employed during 1987
Z988 – Estimated individuals employed during 1988
Z989 – Estimated individuals employed during 1989
Z990 – Estimated individuals employed during 1990
Z991 – Estimated individuals employed during 1991
Z992 – Estimated individuals employed during 1992
Z993 – Estimated individuals employed during 1993
Z994 – Estimated individuals employed during 1994
Z995 – Estimated individuals employed during 1995
Z996 – Estimated individuals employed during 1996
Z997 – Estimated individuals employed during 1997
**Emp_farm.shp**  

**Table emp_farm.dbf**

**Column Heading – Column Description**

- **Area** – Area of the feature, in map units (square meters)
- **Perimeter** – Perimeter of the feature, in map units (meters)
- **Statecty** – Concatenation of the Federal Information Processing State and County Codes
- **St** – Two-letter Postal abbreviation for the state
- **In_cty** – Two-digit State of Indiana County Code
- **Cntyname** – Name of the county
- **Acres** – Area of the feature, in acres
- **Sq_miles** – Area of the feature, in square miles
- **Z987** – Estimated individuals employed during 1987
- **Z988** – Estimated individuals employed during 1988
- **Z989** – Estimated individuals employed during 1989
- **Z990** – Estimated individuals employed during 1990
- **Z991** – Estimated individuals employed during 1991
- **Z992** – Estimated individuals employed during 1992
- **Z993** – Estimated individuals employed during 1993
- **Z994** – Estimated individuals employed during 1994
- **Z995** – Estimated individuals employed during 1995
- **Z996** – Estimated individuals employed during 1996
- **Z997** – Estimated individuals employed during 1997
Emp_nonfarm.shp

Table emp_nonfarm.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Z987 – Estimated individuals employed during 1987
Z988 – Estimated individuals employed during 1988
Z989 – Estimated individuals employed during 1989
Z990 – Estimated individuals employed during 1990
Z991 – Estimated individuals employed during 1991
Z992 – Estimated individuals employed during 1992
Z993 – Estimated individuals employed during 1993
Z994 – Estimated individuals employed during 1994
Z995 – Estimated individuals employed during 1995
Z996 – Estimated individuals employed during 1996
Z997 – Estimated individuals employed during 1997
Emp_proprietors.shp

Table emp_proprietors.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Z987 – Estimated individuals employed during 1987
Z988 – Estimated individuals employed during 1988
Z989 – Estimated individuals employed during 1989
Z990 – Estimated individuals employed during 1990
Z991 – Estimated individuals employed during 1991
Z992 – Estimated individuals employed during 1992
Z993 – Estimated individuals employed during 1993
Z994 – Estimated individuals employed during 1994
Z995 – Estimated individuals employed during 1995
Z996 – Estimated individuals employed during 1996
Z997 – Estimated individuals employed during 1997
Emp_farm_proprietors.shp

Table emp_farm_proprietors.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cy – Two-digit State of Indiana County Code
Cntynme – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Z987 – Estimated individuals employed during 1987
Z988 – Estimated individuals employed during 1988
Z989 – Estimated individuals employed during 1989
Z990 – Estimated individuals employed during 1990
Z991 – Estimated individuals employed during 1991
Z992 – Estimated individuals employed during 1992
Z993 – Estimated individuals employed during 1993
Z994 – Estimated individuals employed during 1994
Z995 – Estimated individuals employed during 1995
Z996 – Estimated individuals employed during 1996
Z997 – Estimated individuals employed during 1997
Emp_nonfarm_proprietor.shp

Table emp_nonfarm_proprietor.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Z987 – Estimated individuals employed during 1987
Z988 – Estimated individuals employed during 1988
Z989 – Estimated individuals employed during 1989
Z990 – Estimated individuals employed during 1990
Z991 – Estimated individuals employed during 1991
Z992 – Estimated individuals employed during 1992
Z993 – Estimated individuals employed during 1993
Z994 – Estimated individuals employed during 1994
Z995 – Estimated individuals employed during 1995
Z996 – Estimated individuals employed during 1996
Z997 – Estimated individuals employed during 1997
Emp\_government.shp

Table emp\_government.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In\_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq\_miles – Area of the feature, in square miles
Z987 – Estimated individuals employed during 1987
Z988 – Estimated individuals employed during 1988
Z989 – Estimated individuals employed during 1989
Z990 – Estimated individuals employed during 1990
Z991 – Estimated individuals employed during 1991
Z992 – Estimated individuals employed during 1992
Z993 – Estimated individuals employed during 1993
Z994 – Estimated individuals employed during 1994
Z995 – Estimated individuals employed during 1995
Z996 – Estimated individuals employed during 1996
Z997 – Estimated individuals employed during 1997
**Emp_federal.shp**

**Table emp_federal.dbf**

**Column Heading – Column Description**
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Z987 – Estimated individuals employed during 1987
Z988 – Estimated individuals employed during 1988
Z989 – Estimated individuals employed during 1989
Z990 – Estimated individuals employed during 1990
Z991 – Estimated individuals employed during 1991
Z992 – Estimated individuals employed during 1992
Z993 – Estimated individuals employed during 1993
Z994 – Estimated individuals employed during 1994
Z995 – Estimated individuals employed during 1995
Z996 – Estimated individuals employed during 1996
Z997 – Estimated individuals employed during 1997
Emp_state_local.shp

Table emp_state_local.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Z987 – Estimated individuals employed during 1987
Z988 – Estimated individuals employed during 1988
Z989 – Estimated individuals employed during 1989
Z990 – Estimated individuals employed during 1990
Z991 – Estimated individuals employed during 1991
Z992 – Estimated individuals employed during 1992
Z993 – Estimated individuals employed during 1993
Z994 – Estimated individuals employed during 1994
Z995 – Estimated individuals employed during 1995
Z996 – Estimated individuals employed during 1996
Z997 – Estimated individuals employed during 1997
Emp_state.shp

Table emp_state.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Z987 – Estimated individuals employed during 1987
Z988 – Estimated individuals employed during 1988
Z989 – Estimated individuals employed during 1989
Z990 – Estimated individuals employed during 1990
Z991 – Estimated individuals employed during 1991
Z992 – Estimated individuals employed during 1992
Z993 – Estimated individuals employed during 1993
Z994 – Estimated individuals employed during 1994
Z995 – Estimated individuals employed during 1995
Z996 – Estimated individuals employed during 1996
Z997 – Estimated individuals employed during 1997
Emp_local.shp

Table emp_local.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Z987 – Estimated individuals employed during 1987
Z988 – Estimated individuals employed during 1988
Z989 – Estimated individuals employed during 1989
Z990 – Estimated individuals employed during 1990
Z991 – Estimated individuals employed during 1991
Z992 – Estimated individuals employed during 1992
Z993 – Estimated individuals employed during 1993
Z994 – Estimated individuals employed during 1994
Z995 – Estimated individuals employed during 1995
Z996 – Estimated individuals employed during 1996
Z997 – Estimated individuals employed during 1997
Emp_military.shp

Table emp_military.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Z987 – Estimated individuals employed during 1987
Z988 – Estimated individuals employed during 1988
Z989 – Estimated individuals employed during 1989
Z990 – Estimated individuals employed during 1990
Z991 – Estimated individuals employed during 1991
Z992 – Estimated individuals employed during 1992
Z993 – Estimated individuals employed during 1993
Z994 – Estimated individuals employed during 1994
Z995 – Estimated individuals employed during 1995
Z996 – Estimated individuals employed during 1996
Z997 – Estimated individuals employed during 1997
Emp_finance.shp

Table emp_finance.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Z987 – Estimated individuals employed during 1987
Z988 – Estimated individuals employed during 1988
Z989 – Estimated individuals employed during 1989
Z990 – Estimated individuals employed during 1990
Z991 – Estimated individuals employed during 1991
Z992 – Estimated individuals employed during 1992
Z993 – Estimated individuals employed during 1993
Z994 – Estimated individuals employed during 1994
Z995 – Estimated individuals employed during 1995
Z996 – Estimated individuals employed during 1996
Z997 – Estimated individuals employed during 1997
**Emp_manufacture.shp**

**Table emp_manufacture.dbf**

**Column Heading – Column Description**
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Z987 – Estimated individuals employed during 1987
Z988 – Estimated individuals employed during 1988
Z989 – Estimated individuals employed during 1989
Z990 – Estimated individuals employed during 1990
Z991 – Estimated individuals employed during 1991
Z992 – Estimated individuals employed during 1992
Z993 – Estimated individuals employed during 1993
Z994 – Estimated individuals employed during 1994
Z995 – Estimated individuals employed during 1995
Z996 – Estimated individuals employed during 1996
Z997 – Estimated individuals employed during 1997
Emp_mining.shp

Table emp_mining.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Z987 – Estimated individuals employed during 1987
Z988 – Estimated individuals employed during 1988
Z989 – Estimated individuals employed during 1989
Z990 – Estimated individuals employed during 1990
Z991 – Estimated individuals employed during 1991
Z992 – Estimated individuals employed during 1992
Z993 – Estimated individuals employed during 1993
Z994 – Estimated individuals employed during 1994
Z995 – Estimated individuals employed during 1995
Z996 – Estimated individuals employed during 1996
Z997 – Estimated individuals employed during 1997
Emp_private.shp

Table emp_private.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Z987 – Estimated individuals employed during 1987
Z988 – Estimated individuals employed during 1988
Z989 – Estimated individuals employed during 1989
Z990 – Estimated individuals employed during 1990
Z991 – Estimated individuals employed during 1991
Z992 – Estimated individuals employed during 1992
Z993 – Estimated individuals employed during 1993
Z994 – Estimated individuals employed during 1994
Z995 – Estimated individuals employed during 1995
Z996 – Estimated individuals employed during 1996
Z997 – Estimated individuals employed during 1997
Emp_retail.shp

Table emp_retail.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Z987 – Estimated individuals employed during 1987
Z988 – Estimated individuals employed during 1988
Z989 – Estimated individuals employed during 1989
Z990 – Estimated individuals employed during 1990
Z991 – Estimated individuals employed during 1991
Z992 – Estimated individuals employed during 1992
Z993 – Estimated individuals employed during 1993
Z994 – Estimated individuals employed during 1994
Z995 – Estimated individuals employed during 1995
Z996 – Estimated individuals employed during 1996
Z997 – Estimated individuals employed during 1997
Emp_service.shp

Table emp_service.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Z987 – Estimated individuals employed during 1987
Z988 – Estimated individuals employed during 1988
Z989 – Estimated individuals employed during 1989
Z990 – Estimated individuals employed during 1990
Z991 – Estimated individuals employed during 1991
Z992 – Estimated individuals employed during 1992
Z993 – Estimated individuals employed during 1993
Z994 – Estimated individuals employed during 1994
Z995 – Estimated individuals employed during 1995
Z996 – Estimated individuals employed during 1996
Z997 – Estimated individuals employed during 1997
**Emp_transportation.shp**

**Table emp_transportation.dbf**

<table>
<thead>
<tr>
<th>Column Heading – Column Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area – Area of the feature, in map units (square meters)</td>
</tr>
<tr>
<td>Perimeter – Perimeter of the feature, in map units (meters)</td>
</tr>
<tr>
<td>Statecty – Concatenation of the Federal Information Processing State and County Codes</td>
</tr>
<tr>
<td>St – Two-letter Postal abbreviation for the state</td>
</tr>
<tr>
<td>In_cty – Two-digit State of Indiana County Code</td>
</tr>
<tr>
<td>Cntyname – Name of the county</td>
</tr>
<tr>
<td>Acres – Area of the feature, in acres</td>
</tr>
<tr>
<td>Sq_miles – Area of the feature, in square miles</td>
</tr>
<tr>
<td>Z987 – Estimated individuals employed during 1987</td>
</tr>
<tr>
<td>Z988 – Estimated individuals employed during 1988</td>
</tr>
<tr>
<td>Z989 – Estimated individuals employed during 1989</td>
</tr>
<tr>
<td>Z990 – Estimated individuals employed during 1990</td>
</tr>
<tr>
<td>Z991 – Estimated individuals employed during 1991</td>
</tr>
<tr>
<td>Z992 – Estimated individuals employed during 1992</td>
</tr>
<tr>
<td>Z993 – Estimated individuals employed during 1993</td>
</tr>
<tr>
<td>Z994 – Estimated individuals employed during 1994</td>
</tr>
<tr>
<td>Z995 – Estimated individuals employed during 1995</td>
</tr>
<tr>
<td>Z996 – Estimated individuals employed during 1996</td>
</tr>
<tr>
<td>Z997 – Estimated individuals employed during 1997</td>
</tr>
</tbody>
</table>
Emp_wholesale.shp

Table emp_wholesale.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Z987 – Estimated individuals employed during 1987
Z988 – Estimated individuals employed during 1988
Z989 – Estimated individuals employed during 1989
Z990 – Estimated individuals employed during 1990
Z991 – Estimated individuals employed during 1991
Z992 – Estimated individuals employed during 1992
Z993 – Estimated individuals employed during 1993
Z994 – Estimated individuals employed during 1994
Z995 – Estimated individuals employed during 1995
Z996 – Estimated individuals employed during 1996
Z997 – Estimated individuals employed during 1997
**Emp_wage_salary.shp**


**Table emp_wage_salary.dbf**

**Column Heading – Column Description**

- **Area** – Area of the feature, in map units (square meters)
- **Perimeter** – Perimeter of the feature, in map units (meters)
- **Statecty** – Concatenation of the Federal Information Processing State and County Codes
- **St** – Two-letter Postal abbreviation for the state
- **In_cy** – Two-digit State of Indiana County Code
- **Cntyname** – Name of the county
- **Acres** – Area of the feature, in acres
- **Sq_miles** – Area of the feature, in square miles
- **Z987** – Estimated individuals employed during 1987
- **Z988** – Estimated individuals employed during 1988
- **Z989** – Estimated individuals employed during 1989
- **Z990** – Estimated individuals employed during 1990
- **Z991** – Estimated individuals employed during 1991
- **Z992** – Estimated individuals employed during 1992
- **Z993** – Estimated individuals employed during 1993
- **Z994** – Estimated individuals employed during 1994
- **Z995** – Estimated individuals employed during 1995
- **Z996** – Estimated individuals employed during 1996
- **Z997** – Estimated individuals employed during 1997
Emp_full_parttm.shp

Table emp_full_parttm.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Z987 – Estimated individuals employed during 1987
Z988 – Estimated individuals employed during 1988
Z989 – Estimated individuals employed during 1989
Z990 – Estimated individuals employed during 1990
Z991 – Estimated individuals employed during 1991
Z992 – Estimated individuals employed during 1992
Z993 – Estimated individuals employed during 1993
Z994 – Estimated individuals employed during 1994
Z995 – Estimated individuals employed during 1995
Z996 – Estimated individuals employed during 1996
Z997 – Estimated individuals employed during 1997

Wu_withdrawals.shp
Source of values – U.S. Geological Survey

Table wu_withdrawals.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Pop – Estimated population, in thousands
Gw_with – Withdrawals of fresh ground water, in million gallons per day
Sw_with – Withdrawals of fresh surface water, in million gallons per day
Total_with – Sum of fresh ground- and surface-water withdrawals, in million gallons per day
Pc_with – Per capita withdrawals of fresh water, Total_with divided by Pop
**Wu_withdrawals_cat.shp**
Source of values – U.S. Geological Survey

**Table wu_withdrawals_cat.dbf**

Column Heading – Column Description

Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Pub_sup – Withdrawals of fresh water for public supply, in million gallons per day
Commercial – Withdrawals of fresh water for commercial uses, in million gallons per day
Domestic – Withdrawals of fresh water for domestic uses, in million gallons per day
Industrial – Withdrawals of fresh water for industrial uses, in million gallons per day
Therm_elect – Withdrawals of fresh water for thermoelectric power generation, in million gallons per day
Mining – Withdrawals of fresh water for mining uses, in million gallons per day
Livestock – Withdrawals of fresh water for livestock uses, in million gallons per day
Irrigation – Withdrawals of fresh water for irrigation uses, in million gallons per day
Total_with – Total withdrawal of fresh water, sum of all withdrawals, in million gallons per day

**Wu_with_sw.shp**
Source of values – U.S. Geological Survey

**Table wu_with_sw.dbf**

Column Heading – Column Description

Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Pub_sup – Withdrawals of fresh surface water for public supply, in million gallons per day
Commercial – Withdrawals of fresh surface water for commercial uses, in million gallons per day
Domestic – Withdrawals of fresh surface water for domestic uses, in million gallons per day
Industrial – Withdrawals of fresh surface water for industrial uses, in million gallons per day
Therm_elect – Withdrawals of fresh surface water for thermoelectric power generation, in million gallons per day
Mining – Withdrawals of fresh surface water for mining uses, in million gallons per day
Livestock – Withdrawals of fresh surface water for livestock uses, in million gallons per day
Irrigation – Withdrawals of fresh surface water for irrigation uses, in million gallons per day
Total_with – Total withdrawal of fresh surface water, sum of all withdrawals, in million gallons per day
Wu_with_gw.shp
Source of values – U.S. Geological Survey
Table wu_with_gw.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Pub_sup – Withdrawals of fresh ground water for public supply, in million gallons per day
Commercial – Withdrawals of fresh ground water for commercial uses, in million gallons per day
Domestic – Withdrawals of fresh ground water for domestic uses, in million gallons per day
Industrial – Withdrawals of fresh ground water for industrial uses, in million gallons per day
Therm_elect – Withdrawals of fresh ground water for thermoelectric power generation, in million gallons per day
Mining – Withdrawals of fresh ground water for mining uses, in million gallons per day
Livestock – Withdrawals of fresh ground water for livestock uses, in million gallons per day
Irrigation – Withdrawals of fresh ground water for irrigation uses, in million gallons per day
Total_with – Total withdrawal of fresh ground water, sum of all withdrawals, in million gallons per day

Wu_consump_use.shp
Source of values – U.S. Geological Survey
Table wu_consump_use.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Consum_use – Estimated quantity of water consumed, in million gallons per day
Conv_loss – Estimated quantity of water lost during movement from one location to another, in million gallons per day
Use_reclaimed – Estimated quantity of reclaimed wastewater, in million gallons per day
**Wu_public_supply.shp**  
Source of values – U.S. Geological Survey

**Table wu_public_supply.dbf**  
**Column Heading – Column Description**

- **Area**: Area of the feature, in map units (square meters)
- **Perimeter**: Perimeter of the feature, in map units (meters)
- **Statecty**: Concatenation of the Federal Information Processing State and County Codes
- **St**: Two-letter Postal abbreviation for the state
- **In_cty**: Two-digit State of Indiana County Code
- **Cntyname**: Name of the county
- **Acres**: Area of the feature, in acres
- **Sq_miles**: Area of the feature, in square miles
- **Pop_srv_gw**: Estimated population served by public suppliers getting water from ground-water sources
- **Pop_srv_sw**: Estimated population served by public suppliers getting water from surface-water sources
- **Pop_srv_to**: Estimated population served by public suppliers
- **With_gw**: Withdrawals of fresh ground water for use by public suppliers, in million gallons per day
- **With_sw**: Withdrawals of fresh surface water for use by public suppliers, in million gallons per day
- **With_tot**: Total withdrawals of water for use by public suppliers, in million gallons per day
- **Dom_del**: Estimated deliveries by public suppliers for domestic uses, in million gallons per day
- **Com_del**: Estimated deliveries by public suppliers for commercial uses, in million gallons per day
- **Ind_del**: Estimated deliveries by public suppliers for industrial uses, in million gallons per day
- **Thermo_del**: Estimated deliveries by public suppliers for thermoelectric uses, in millions gallons per day
- **Total_del**: Total deliveries by public suppliers, sum of all deliveries, in million gallons per day
- **Use_loss**: Public use and loss, With_tot minus Total_del, in million gallons per day
- **Percap_use**: Per capita use, Use_loss divided by Pop_srv_to, in gallons per day
- **Use_reclai**: Reclaimed wastewater, in million gallons per day
**Wu_domestic.shp**  
Source of values – U.S. Geological Survey

**Table wu_domestic.dbf**  
**Column Heading – Column Description**  
Area – Area of the feature, in map units (square meters)  
Perimeter – Perimeter of the feature, in map units (meters)  
Statecty – Concatenation of the Federal Information Processing State and County Codes  
St – Two-letter Postal abbreviation for the state  
In_cnty – Two-digit State of Indiana County Code  
Cntyname – Name of the county  
Acres – Area of the feature, in acres  
Sq_miles – Area of the feature, in square miles  
Ss_gw_with – Self-supplied withdrawals of fresh ground water for domestic use, in million gallons per day  
Ss_sw_with – Self-supplied withdrawals of fresh surface water for domestic use, in million gallons per day  
Ss_tot_with – Total self-supplied withdrawals of water for domestic use, in million gallons per day  
Ss_pop – Estimated population served by self-supplied withdrawals for domestic use  
Ss_per_cap – Per capita withdrawals of water for domestic use, Ss_tot_with divided by Ss_pop, in gallons per day  
Ps_del – Deliveries of water from public suppliers for domestic uses, in million gallons per day  
Ps_pop – Estimated population served by public-supply deliveries of water for domestic use  
Ps_per_cap – Per capita deliveries of water for domestic use, Ps_del divided by Ps_pop, in gallons per day  
With_del – Sum of the self-supplied withdrawals and public-supply deliveries for domestic use  
Consum_use – Consumptive use of water for domestic use

**Wu_commercial.shp**  
Source of values – U.S. Geological Survey

**Table wu_commercial.dbf**  
**Column Heading – Column Description**  
Area – Area of the feature, in map units (square meters)  
Perimeter – Perimeter of the feature, in map units (meters)  
Statecty – Concatenation of the Federal Information Processing State and County Codes  
St – Two-letter Postal abbreviation for the state  
In_cnty – Two-digit State of Indiana County Code  
Cntyname – Name of the county  
Acres – Area of the feature, in acres  
Sq_miles – Area of the feature, in square miles  
Ss_gw_with – Self-supplied withdrawals of fresh ground water for commercial use, in million gallons per day  
Ss_sw_with – Self-supplied withdrawals of fresh surface water for commercial use, in million gallons per day  
Ss_tot_with – Total self-supplied withdrawals of water for commercial use, in million gallons per day  
Ps_del – Deliveries of water from public suppliers for commercial use, in million gallons per day  
With_del – Sum of the self-supplied withdrawals and public-supply deliveries for commercial use  
Consum_use – Consumptive use of water for commercial use  
Use_reclai – Reclaimed wastewater, in million gallons per day
**Wu_industrial.shp**
Source of values – U.S. Geological Survey

**Table wu_industrial.dbf**

**Column Heading – Column Description**
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Ss_gw_with – Self-supplied withdrawals of fresh ground water for industrial use, in million gallons per day
Ss_sw_with – Self-supplied withdrawals of fresh surface water for industrial use, in million gallons per day
Ss_tot_with – Total self-supplied withdrawals of water for industrial use, in million gallons per day
Ps_del – Deliveries of water from public suppliers for industrial use, in million gallons per day
With_del – Sum of the self-supplied withdrawals and public-supply deliveries for industrial use
Consum_use – Consumptive use of water for industrial use
Use_reclai – Reclaimed wastewater, in million gallons per day

**Wu_mining.shp**
Source of values – U.S. Geological Survey

**Table wu_mining.dbf**

**Column Heading – Column Description**
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Gw_with – Withdrawals of fresh ground water for mining use, in million gallons per day
Sw_with – Withdrawals of fresh surface water for mining use, in million gallons per day
Tot_with – Total withdrawals of water for mining use, in million gallons per day
Consum_use – Consumptive use of water for mining use
Use_reclai – Reclaimed wastewater, in million gallons per day
**Wu_thermoelectric.shp**  
Source of values – U.S. Geological Survey

**Table wu_thermoelectric.dbf**  
**Column Heading – Column Description**

- **Area** – Area of the feature, in map units (square meters)
- **Perimeter** – Perimeter of the feature, in map units (meters)
- **Statecty** – Concatenation of the Federal Information Processing State and County Codes
- **St** – Two-letter Postal abbreviation for the state
- **In_cty** – Two-digit State of Indiana County Code
- **Cntyname** – Name of the county
- **Acres** – Area of the feature, in acres
- **Sq_miles** – Area of the feature, in square miles
- **Ss_gw_with** – Self-supplied withdrawals of fresh ground water for thermoelectric power generation, in million gallons per day
- **Ss_sw_with** – Self-supplied withdrawals of fresh surface water for thermoelectric power generation, in million gallons per day
- **Ss_tot_with** – Total self-supplied withdrawals of water for thermoelectric power generation, in million gallons per day
- **Ps_del** – Deliveries of water from public suppliers for thermoelectric power generation, in million gallons per day.
- **With_del** – Sum of the self-supplied withdrawals and public-supply deliveries for thermoelectric power generation
- **Consum_use** – Consumptive use of water for thermoelectric power generation
- **Use_reclai** – Reclaimed wastewater, in million gallons per day
- **Power_gen** – Estimated power generated, in million kilowatt hours
**Wu_ff_thermoelectric.shp**  
Source of values – U.S. Geological Survey  
**Table wu_ff_thermoelectric.dbf**  
**Column Heading – Column Description**  
Area – Area of the feature, in map units (square meters)  
Perimeter – Perimeter of the feature, in map units (meters)  
Statecty – Concatenation of the Federal Information Processing State and County Codes  
St – Two-letter Postal abbreviation for the state  
In_cnty – Two-digit State of Indiana County Code  
Cntyname – Name of the county  
Acres – Area of the feature, in acres  
Sq_miles – Area of the feature, in square miles  
Ss_gw_with – Self-supplied withdrawals of fresh ground water for fossil-fuel thermoelectric power generation, in million gallons per day  
Ss_sw_with – Self-supplied withdrawals of fresh surface water for fossil-fuel thermoelectric power generation, in million gallons per day  
Ss_tot_with – Total self-supplied withdrawals of water for fossil-fuel thermoelectric power generation, in million gallons per day  
Ps_del – Deliveries of water from public suppliers for fossil-fuel thermoelectric power generation, in million gallons per day  
With_del – Sum of the self-supplied withdrawals and public-supply deliveries for fossil-fuel thermoelectric power generation  
Consum_use – Consumptive use of water for fossil-fuel thermoelectric power generation  
Use_reclai – Reclaimed wastewater  
Power_gen – Estimated power generated, in million kilowatt hours
**Wu_hydroelectric.shp**  
Source of values – U.S. Geological Survey  
**Table wu_hydroelectric.dbf**  
**Column Heading – Column Description**  
Area – Area of the feature, in map units (square meters)  
Perimeter – Perimeter of the feature, in map units (meters)  
Statecty – Concatenation of the Federal Information Processing State and County Codes  
St – Two-letter Postal abbreviation for the state  
In_cty – Two-digit State of Indiana County Code  
Cntyname – Name of the county  
Acres – Area of the feature, in acres  
Sq_miles – Area of the feature, in square miles  
Instr_mgd – Quantity of instream water used by hydroelectric facilities to generate power, in million gallons per day  
Instr_acft – Quantity of instream water used by hydroelectric facilities to generate power, in thousands of acre-feet per year  
Offstr_with – Withdrawals of fresh surface water used by hydroelectric facilities to generate power, in million gallons per day  
Instr_pwge – Power generated using instream water, in million kilowatt hours  
Ofstr_pwgen – Power generated using withdrawals of fresh surface water, in million kilowatt hours  
Pwr_gen – Total power generated using instream and offstream withdrawals, in million kilowatt hours  
Instoffstr – Total water used by hydroelectric facilities, sum Instr_mgd and Offstr_with, in million gallons per day  

**Wu_irrigation.shp**  
Source of values – U.S. Geological Survey  
**Table wu_irrigation.dbf**  
**Column Heading – Column Description**  
Area – Area of the feature, in map units (square meters)  
Perimeter – Perimeter of the feature, in map units (meters)  
Statecty – Concatenation of the Federal Information Processing State and County Codes  
St – Two-letter Postal abbreviation for the state  
In_cty – Two-digit State of Indiana County Code  
Cntyname – Name of the county  
Acres – Area of the feature, in acres  
Sq_miles – Area of the feature, in square miles  
Gw_with – Withdrawals of fresh ground water for irrigation, in million gallons per day  
Sw_with – Withdrawals of fresh surface water for irrigation, in million gallons per day  
Tot_with – Total withdrawals of water for irrigation, in million gallons per day  
Consum_use – Consumptive use of water for mining use, in million gallons per day  
Conv_loss – Estimated quantity of water lost during movement from one location to another, in million gallons per day  
Use_reclai – Reclaimed wastewater, in million gallons per day  
Sprinkler – Estimated area irrigated by sprinklers, in thousands of acres  
Micro – Estimated area irrigated by micro-irrigation methods, in thousands of acres  
Surface – Estimated area irrigated by surface-irrigation methods, in thousands of acres  
Tot_acres – Estimated area irrigated, in acres
**Wu_livestock.shp**
Source of values – U.S. Geological Survey

**Table wu_livestock.dbf**

**Column Heading – Column Description**
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Ls_gw_with – Withdrawal of fresh ground water for stock and animal specialty uses, in million gallons per day
Ls_sw_with – Withdrawal of fresh surface water for stock and animal specialty uses, in million gallons per day
Ls_tot_with – Withdrawal of fresh water for stock and animal specialty uses, in million gallons per day
Sk_gw_with – Withdrawal of fresh ground water for stock uses, in million gallons per day
Sk_sw_with – Withdrawal of fresh surface water for stock uses, in million gallons per day
Sk_tot_with – Withdrawal of fresh water for stock uses, in million gallons per day
As_gw_with – Withdrawal of fresh ground water for animal specialty uses, in million gallons per day
As_sw_with – Withdrawal of fresh surface water for animal specialty uses, in million gallons per day
As_tot_with – Withdrawal of fresh water for animal specialty uses, in million gallons per day
Ls_consuse – Consumptive use of water for stock and animal specialty uses, in million gallons per day
Sk_consuse – Consumptive use of water for stock uses, in million gallons per day
As_consuse – Consumptive use of water for animal specialty uses, in million gallons per day

**Wu_wwtp.shp**
Source of values – U.S. Geological Survey

**Table wu_wwtp.dbf**

**Column Heading – Column Description**
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Total_fac – Total number of wastewater treatment plants
Pub_fac – Number of public wastewater-treatment plants
Other_fac – Number of nonpublic wastewater treatment plants
Rtn_wtr – Public releases of water from wastewater-treatment plants, in million gallons per day
Cerlis.shp
Source of values – Written Communication, November 1996, Douglas Campbell, Indiana Department of Environmental Management

Table cerlis.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Cerlist – Number of cerlis sites

ww.shp
Table ww.dbf
Column Heading – Column Description
Area – Area of the feature, in map units (square meters)
Perimeter – Perimeter of the feature, in map units (meters)
Statecty – Concatenation of the Federal Information Processing State and County Codes
St – Two-letter Postal abbreviation for the state
In_cty – Two-digit State of Indiana County Code
Cntyname – Name of the county
Acres – Area of the feature, in acres
Sq_miles – Area of the feature, in square miles
Ww_sup – Number of noncommunity ground-water suppliers