
U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

BOREHOLE P- AND S-WAVE VELOCITY AT THIRTEEN STATIONS IN SOUTHERN CALIFORNIA

by

James F. Gibbs¹, David M. Boore¹, John C. Tinsley¹, and Charles S. Mueller²

U.S. Geological Survey Open-File Report OF 01-506

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

¹Menlo Park, CA 94025

²Denver, CO 80225

TABLE OF CONTENTS

																Page
Introduction																1
P- and S -Wave Travel-Time Data																4
Velocity Profiles																. 4
Summary Velocity Profiles																
Acknowledgments																13
References																13
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
Appendix A–Detailed Results:																- 4
Cerritos College Gymnasium	•		•	•	•	•	•	•	•			•	•	•	•	14
Cerritos College Physical Science Bldg	•		•	•	•	•	•	•	•			•	•	•	•	21
Cerritos College Police Bldg	•		•	•	•	•	•	•	•			•	•	•	•	28
Corps of Engineer Station	•		•	•	•	•	•	•	•				•	•	•	35
Hoover School				•	•	•	•	•	•		٠	•	•	•	•	42
Lincoln School				•	•	•	•	•	•	•	٠	•	•	•	•	49
Lincoln School Whittier																56
Los Alisos Adult School																63
Olive Junior High School																70
San Bernadino Fire Station	•							•					•		•	77
Santa Anita Golf Course																84
South Western Academy																91
St. Paul High School	•						•	•			•	•	•			98
Appendix B–Poisson's Ratios:																
Cerritos College Gymnasium																105
Cerritos College Physical Science Bldg																106
Cerritos College Police Bldg																107
Corps of Engineer Station																108
Hoover School																109
Lincoln School																110
Lincoln School Whittier																111
Los Alisos Adult School																112
Olive Junior High School																113
San Bernadino Fire Station																114
Santa Anita Golf Course																115
South Western Academy																116
St. Paul High School																117
0 1																•

BOREHOLE P- AND S-WAVE VELOCITY AT THIRTEEN SITES IN SOUTHERN CALIFORNIA

by

James F. Gibbs, David M. Boore, John C. Tinsley, and Charles S. Mueller INTRODUCTION

The U.S. Geological Survey (USGS), as part of a program to aquire seismic velocity data at locations of strong-ground motion in earthquakes (e.g. Gibbs, et al., 2000), has investigated thirteen additional sites in the Southern California region. Of the thirteen sites, twelve are in the vicinity of Whittier, California and one is located in San Bernardino, California.

Several deployments of temporary seismographs were made after the Whittier Narrows, California earthquake of 1 October 1987 (Mueller et al., 1988). A deployment, between 2 October and 9 November 1987, was the motivation for selection of six of the drill sites. Temporary portable seismographs at Hoover School (HOO), Lincoln School (LIN), Corps of Engineers Station (NAR), Olive Junior High School (OLV), Santa Anita Golf Course (SAG) and Southwestern Academy (SWA), recorded significant aftershock data. These portable sites with the exception of Santa Anita Golf Course were co-sited with strong-motion recorders.

Stations at HOO, Lincoln School Whittier (WLB), Saint Paul High School (STP), Alisos Adult School (EXC), Cerritos College Gymnasium (CGM), Cerritos College Physical Science Building (CPS), and Cerritos College Police Building (CPB) were part of an array of digital strong-motion stations deployed from "bedrock" in Whittier to near the deepest part of the Los Angeles basin in Norwalk. Although development and siting of this new array (patially installed at the time of this writing) was generally motivated by the Whittier Narrows earthquake, these new sites (with the exception of HOO) were not part of any Whittier Narrows aftershock deployments. A similar new digital strong-motion site was installed at the San Bernardino Fire Station during the same time frame.

Velocity data were obtained to depths of about 90 meters at two sites, 30 meters at seven sites, and 18 to 25 meters at four sites. Lithology data from the analysis of cuttings and samples, was obtained from the two 90-meter deep holes and from five of the shallower holes to supplement the velocity interpretation. The two 90-meter boreholes (SB1, CPB) have been instrumented with borehole seismometers for continuous monitoring of earthquake activity (Rogers, et al., 1998). No drill samples or cuttings were obtained from the other six sites but driller's logs were scanned for major changes noted there. The velocity models at those sites were interpreted using only the measured data and major changes in the driller's log as noted above.

The sites are shown in Figure 1 and listed in Table 1, which gives references to information regarding the strong-motion data. Several hundred strong-motion records of the main-shock were written by this moderate size earthquake ($M_L = 5.9$) making it important from a scientific and engineering prospective (Brady et al., 1988, Shakal et al., 1988).

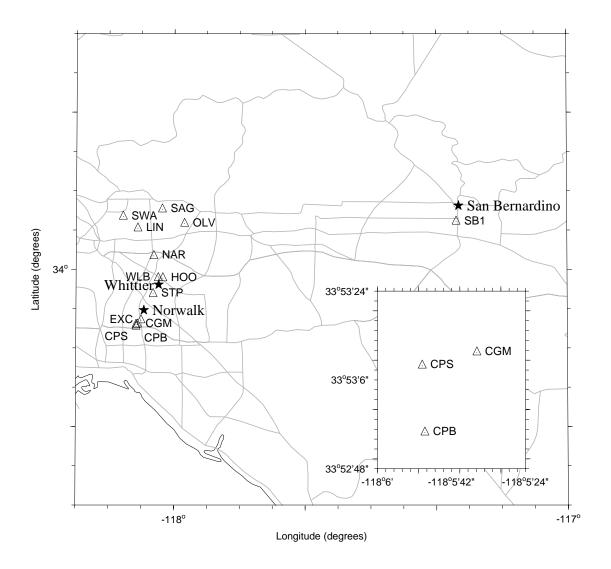


Figure 1. Regional map showing the locations of boreholes (triangles) included in this report. Inset shows the locations of the Cerritos College boreholes at an expanded scale. Locations of roads and cities are approximate.

Table 1. Site names, three letter codes, and coordinates using the North American Datums of $1927~(\mathrm{NAD}27)$ and $1983~(\mathrm{NAD}83)$.

Station	StaCode	Lat:NAD27	Long:NAD27	Lat:NAD83	Long:NAD83
Cerritos College Gymnasium	CGM	33.88663	-118.09329	33.88664	-118.09419
Cerritos College Physical Sci. Bldg.	CPS	33.88589	-118.09698	33.88590	-118.09788
Cerritos College Police Bldg.	CPB	33.88212	-118.09680	33.88213	-118.09770
Corps of Engineers Station *	NAR	34.03219	-118.05225	34.03220	-118.05315
Hoover School *	HOO	33.98491	-118.02889	33.98492	-118.02979
Lincoln School *	LIN	34.09043	-118.09305	34.09044	-118.09395
Lincoln School Whittier	WLB	33.98535	-118.04061	33.98536	-118.04151
Los Alisos Adult School	EXC	33.89559	-118.08428	33.89560	-118.08518
Olive Junior High School *	OLV	34.10073	-117.97409	34.10074	-117.97499
San Bernardino Fire Station	SB1	34.10534	-117.28201	34.10535	-117.28289
Santa Anita Golf Course	SAG	34.13096	-118.03074	34.13097	-118.03164
South Western Academy *	SWA	34.11533	-118.13046	34.11534	-118.13136
St. Paul High School	STP	33.95158	-118.05369	33.95159	-118.05459

^{*} Strong-motion accelerograph located near borehole (see location maps in Appendix A).

P- AND S-WAVE TRAVEL-TIME DATA

Shear waves were generated at the ground surface by an air-powered horizontal ram (Liu, et al., 1988) striking an anvil at either end of an aluminum channel 2.3 meters long. The ram was driven first in one direction and then in the other to generate pulses of opposite polarity. A switch attached to the shear source triggered the recorder and established the reference for the timing of arrivals. P-waves were generated by striking a steel plate with a sledge hammer. The recorder was triggered by a switch attached to the handle of the sledge hammer. P- and S-wave sources were offset from the borehole (same horizontal distance but different locations) to minimize the effect of waves traveling down the grout surrounding the casing. The source offsets varied from 2 to 4 meters depending on available space and depth of the borehole. Shallow holes (30 meters or less) were offset 2 or 3 meters.

Downhole measurements were made at 2.5-meter intervals at ten locations and at 2-meter spacing at three of the shallower boreholes. The measurements were made by moving a three-component geophone to each depth and clamping it to the casing by an electrically-activated lever arm. A second three-component geophone was placed on the surface near the shear source used to verify timing of the triggered recorder. The data were recorded on diskettes using a 12-channel recording system.

VELOCITY PROFILES

The procedure for determining velocities is summarized in Figure 2. Because the orientation of the downhole geophone could not be controlled when moving from one depth to the next, the azimuth of the horizontal geophones relative to the source was unknown and changed with depth. To minimize the effects of those changes, the horizontal components were rotated to the direction that maximized the integral square amplitude within a time interval containing the shear wave (Boatwright $et\ al.$, 1986). P- and S-wave first-arrival times were determined from the time series displayed at each depth on a 20-inch computer screen. The P-wave arrival-time was obtained from the vertical trace, and the S-wave arrival-times were obtained from the average of the rotated horizontal traces for ram strikes in opposite directions. The arrivals were timed to the nearest millisecond, probably a realistic precision for clear arrivals uncontaminated by noise.

A trial set of layer boundaries was chosen for the S-wave model, based on the lithologic descriptions and geophysical logs at the two sites (CBP, SB1) where geologic information was available. At five sites (CGM, CPS, EXC, STP, WLB) simplified lithology, determined from drill cuttings, was used to supplement the velocity determinations. At the remaining six sites (NAR, HOO, LIN, OLV, SAG, SWA) the velocity models were determined without the benefit of lithology or electric logs. The travel-time data were fit in a least-squares sense by a model made up of constant velocity layers, taking into account refraction across the interfaces between layers. The travel times were weighted by the inverse of an assigned normalized variance. A normalized standard deviation of 1 was assigned to the clear arrivals and values up to 5 were assigned to the others. The residuals were examined, and layer boundaries were added, if necessary, to reduce large residuals or to remove systematic trends in the residuals. The *P*-wave travel time data were analyzed initially with the set of layer boundaries finally determined for the *S*-wave data. Layer boundaries were then added if needed to fit the data and deleted if not needed. Commonly, an additional layer

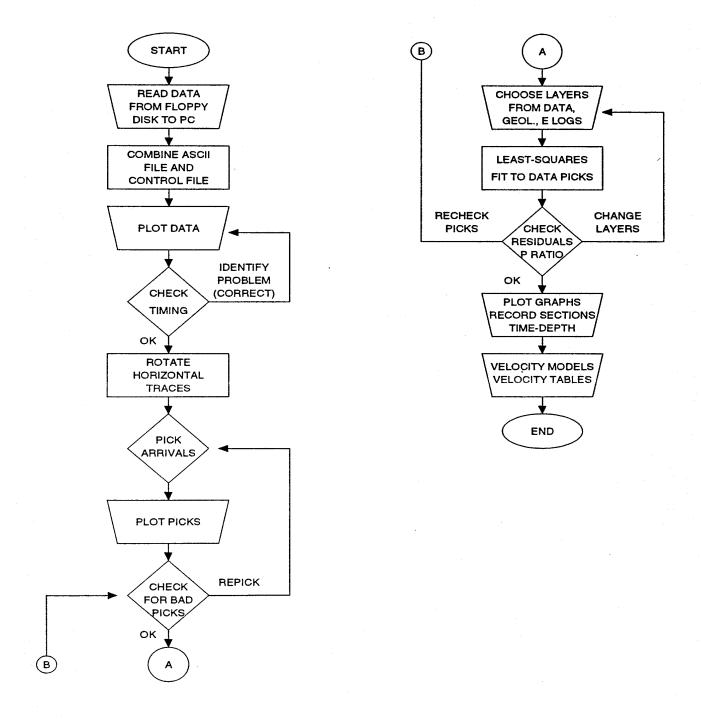


Figure 2. Flow-chart outlining the data processing and steps in the interpretation.

boundary corresponding to the top of the zone of water saturation was needed to fit the P-wave data.

Some of the dynamic Poisson's ratios σ , calculated with initial velocity models, resulted in ratios that were out of the accepted range of values (0.0–0.5). To obtain a value in the acceptable range we made minor adjustments to the velocities using one or more of the following procedures: repicking shallow arrivals (usually P arrivals because small changes in P travel-times have greater effect on σ), adding a shallow layer, and/or adjusting layer thickness to ensure that Poisson's ratio was in the range 0.0–0.5. In most cases the small changes were made in the P-wave velocities at shallow depths (for more details see, Gibbs, et al., 1999). Overall, the changes in velocity required to produce acceptable values of σ were small and were only in a few layers.

For example, at San Bernardino Fire Station several velocity models were tried to get Poisson's ratio into the accepted range. We were forced to average the P-wave velocity over the top 8.5 meters to get the ratio from a negative value to a value of 0.04. The preferred model in which the S-velocity follows the lithology (in general, the S-wave velocity is a better indicator of lithology than P-wave velocity) is included in Appendix A.

SUMMARY VELOCITY PROFILES

Figures 3-5 show the S-wave velocity profiles determined from the borehole measurements at the thirteen sites. The velocity profiles are plotted at the same scale for ease of comparison. Figures 6-8 show the P-wave velocity profiles for the same sites as Figures 3-5, respectively.

DESCRIPTION OF APPENDICES

Appendix A contains for each site: a location map, S- and P-wave time-series records, a time-depth plot, and tables giving arrival times and velocity values. The upper and lower bounds on the velocity plots show approximate 68 percent confidence limits. The bounds are not symmetrical because they are based on the inverse velocities in the layers. Appendix B contains tables of P- and S-wave velocity models and the Poisson's ratios obtained from those models.

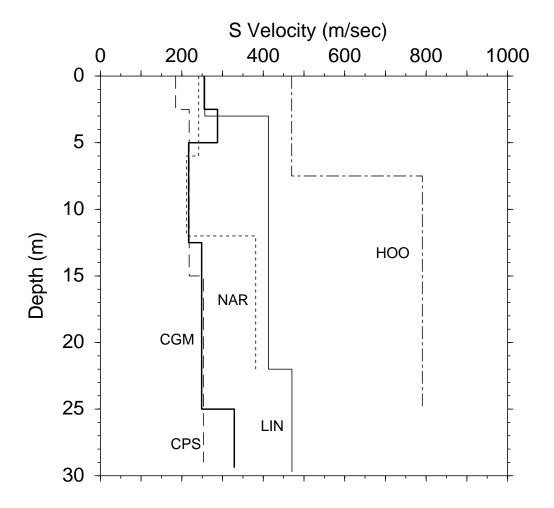


Figure 3. S-wave velocity models shown on the same figure for comparison.

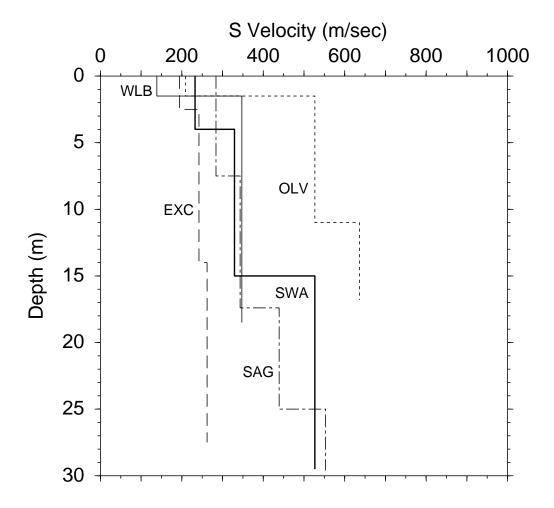


Figure 4. S-wave velocity models shown on the same figure for comparison.

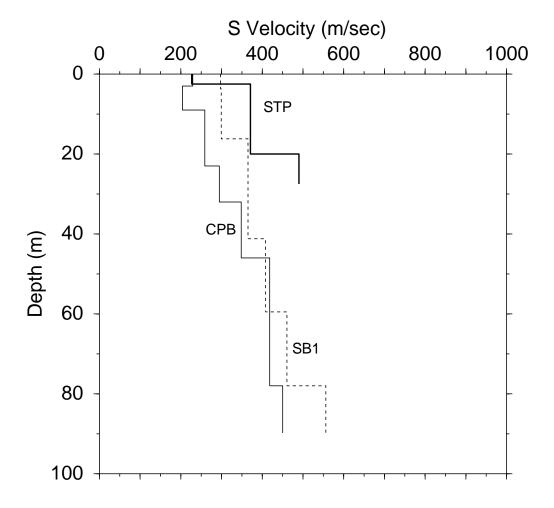


Figure 5. S-wave velocity models shown on same figure for comparison.

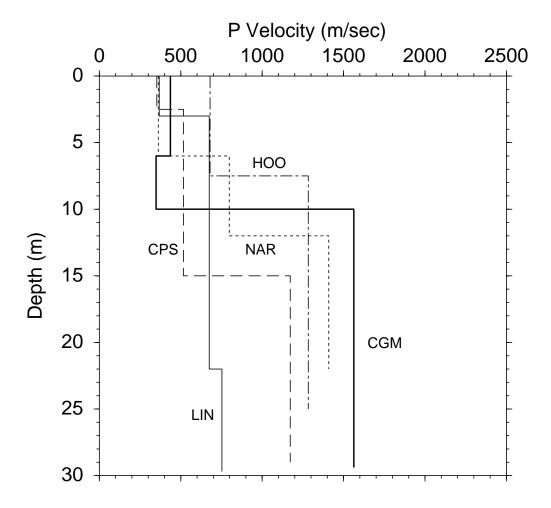


Figure 6. P-wave velocity models shown on the same figure for comparison.

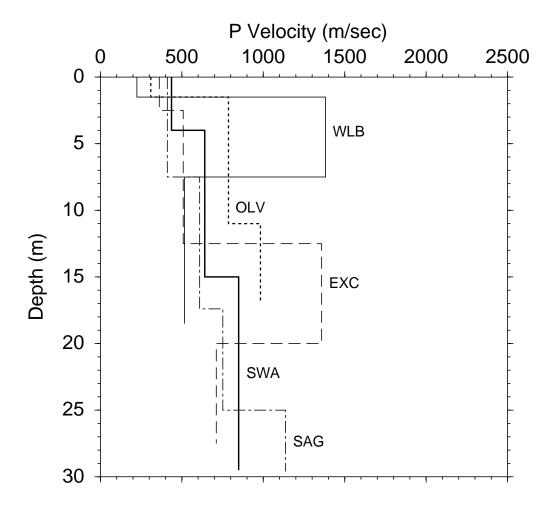


Figure 7. P-wave velocity models shown on the same figure for comparison.

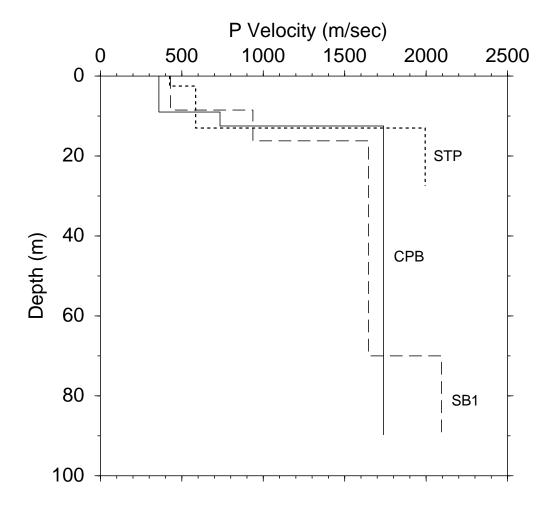


Figure 8. P-wave velocity models shown on the same figure for comparison.

ACKNOWLEDGMENTS

We could not have completed these studies without the assistance of many individuals who helped us to gain access to the sites, assisted with utilities clearances and granted permission to conduct the studies. These people include Michael Sebak at Cerritos College; Warren Thomas at Corps of Engineers Station; Margie Leon and Ray Rodriguez at Hoover School; Jack Feldman at Lincoln School; Stephen Finkle at Lincoln School Whittier; Mr. Hengler at Los Alisos Adult School; Daniel at Olive Junior High School; Richard McGreevy at San Bernardino Fire Station; Dave Cuellar, Terry Moeller, and Tom Dittmar at Santa Anita Golf Course; Charles Craig at South Western Academy; Father Robert Gallagher at St. Paul High School. We also thank Allen Foss of the U.S. Geological Survey for his help with the P- and S-wave logging.

REFERENCES

- Boatwright, John, Porcella, R., Fumal, T., Liu, Hsi-Ping, (1986), Direct estimates of shear wave amplification from a borehole near Coalinga, California: Earthquake Notes, v. 57, p. 8.
- Brady, A. G., Etheredge, E. C., and Porcella, R. L. (1988), The Whittier Narrows, California Earthquake of October 1, 1987, Prelininary assessment of strong ground motion records: Earthquake Spectra, v.4, no.1, p. 55-74.
- Gibbs, James F., Tinsley, John C., Boore, David M., and Joyner, William B., 1999, Seismic velocities and geological conditions at twelve sites subjected to strong ground motion in the 1994 Northridge, California, earthquake: a revision of OFR 96-740, U.S. Geological Survey, Open-File Report 99-446, 142p.
- Gibbs, James F., Tinsley, John C., Boore, David M., and Joyner, William B., 2000, Borehole velocity measurements and geological conditions at thirteen sites in the Los Angeles, California region: U.S. Geological Survey, Open-File Report OF 00-470, 118p.
- Liu, Hsi-Ping, Warrick, Richard E., Westerlund, Robert E., Fletcher, Jon B. and Maxwell, Gary L., 1988, An air-powered impulsive shear-wave source with repeatable signals: Bull. Seism. Soc. Am. v. 78, p. 355-369.
- Mueller, C., Dietel, C., Glassmoyer, G., Noce, T., Sembera, E., Spudich, P., and Watson, J., Digital Recordings of Aftershocks of the 1 October 1987 Whittier Narrows, California, Earthquake: U.S. Geological Survey, Open-File Report 88-688, 40p.
- Rogers, A., Mueller, C., Tinsley, J., and Koesterer, C., (1998), Instrumentation and geotechnical characteristics at two vertical strong motion arrays at Cerritos College, Norwalk, and downtown San Bernardino, California: U.S. Geological Survey, Open-File Report 98-346, 58p.
- Shakal, A., Huang, M. J., and Cao, T. Q. (1988), The Whittier Narrows, California Earthquake of October 1, 1987, CSMIP strong motion data: Earthquake spectra, v.4, no.1, p. 75-100.

APPENDIX—A

Detailed Results

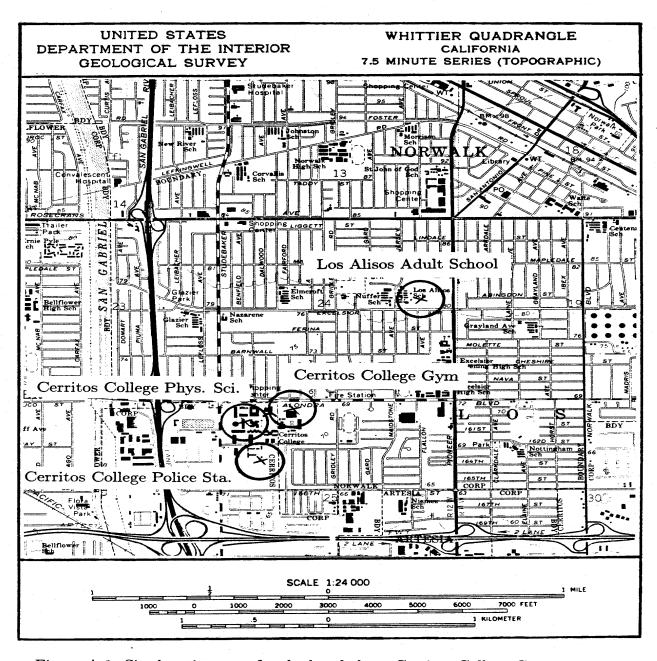


Figure A-1. Site location map for the borehole at Cerritos College Gymnasium.

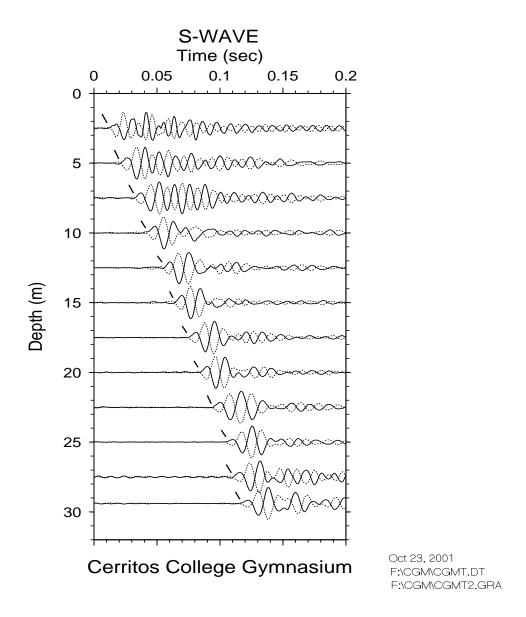


Figure A-2. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

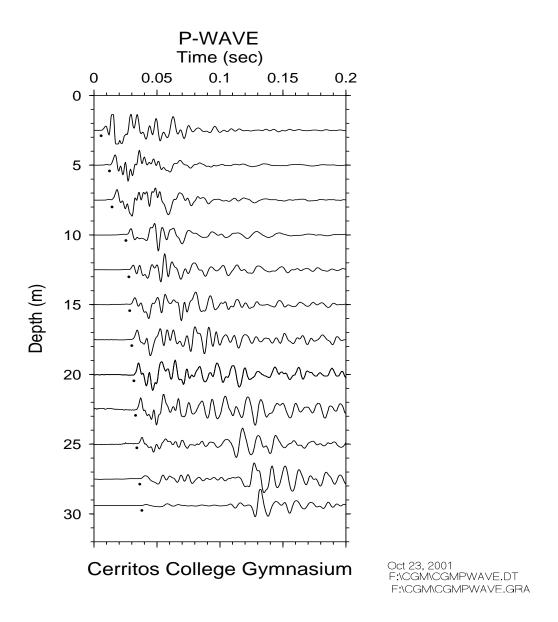


Figure A-3. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

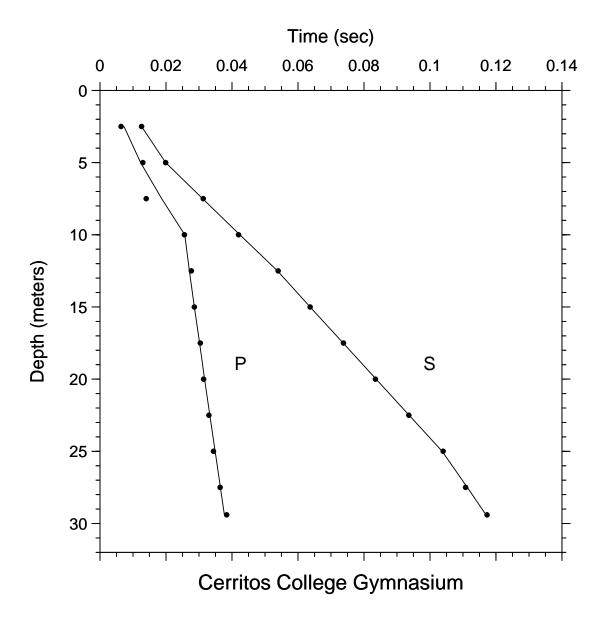


Figure A-4. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

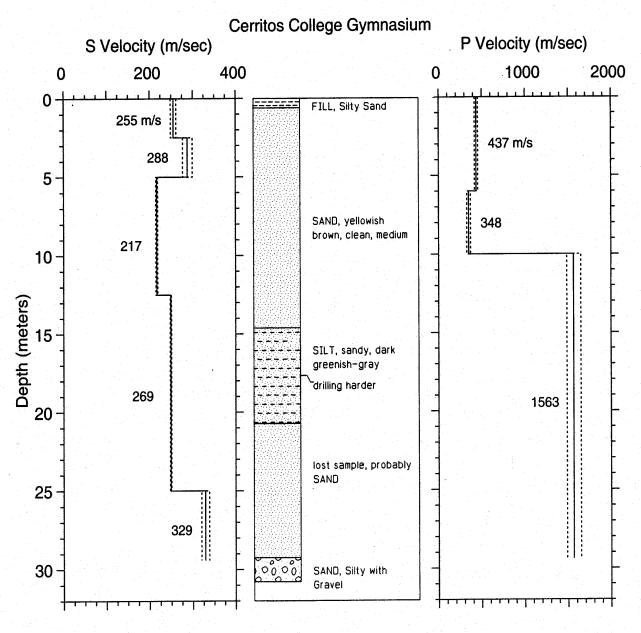


Figure A-5. S- and P-wave velocity profiles with dashed lines representing plus and minus one standard deviation. Generalized geologic log is shown for correlation with velocities.

ABLE A-1. S-wave arrival times and velocity summaries.

29.4 96.5 0.1173 0.1166

Location: Cerritos College Gymnasium: S Coordinates: 33.88663 -118.09329 Hole Code: 296 hoffset = 2.00 travel-time file: F:\CGM\CGMS.TT

1 0.0003

nlayers = 5

d(m)	d(ft)	tsl(s)	tvrt(s)	vavg(m/s)	sig	rsdl(sec)	dtb(m)	thk(m)	v(m/s)	vl(m/s)	vu(m/s)	dtb(ft)	thk(ft)	v(ft/s)	vl(ft/s)	vu(ft/s)
2.5	8.2	0.0126	0.0098	255	1	0.0000	2.5	2.5	255	249	262	8.2	8.2	837	817	858
5.0	16.4	0.0199	0.0185	270	1	0.0000	5.0	2.5	288	277	299	16.4	8.2	943	908	981
7.5	24.6	0.0313	0.0300	250	1	0.0002	12.5	7.5	217	215	219	41.0	24.6	711	704	718
10.0	32.8	0.0420	0.0415	241	1	-0.0004	25.0	12.5	249	247	250	82.0	41.0	816	811	822
12.5	41.0	0.0540	0.0530	236	1	0.0002	29.4	4.4	329	320	338	96.5	14.4	1079	1050	1109
15.0	49.2	0.0637	0.0631	238	1	0.0000										
17.5	57.4	0.0738	0.0731	239	1	0.0001										
20.0	65.6	0.0835	0.0832	240	1	-0.0002										
22.5	73.8	0.0936	0.0932	241	1	-0.0001										
25.0	82.0	0.1040	0.1032	242	1	0.0003			Explanat	ion:						
27.5	90.2	0.1108	0.1108	248	1	-0.0005			d(m)	= dep	th in meter:	5				

= depth in meters d(m)

= depth in feet d(ft)

tsl(s) = observed arrival time in seconds (from source to receiver, along a slant path). For the arrival times used in the S-wave model, the times are the average of picks from traces obtained from hammer blows differing in direction by 180 degrees.

tvrt(s) = vertical travel time computed from the model

vavg(m/s) = average velocity from the surface to each depth, computed as avg_vel = d(m)/tvrt(s)

= sigma, standard deviation normalized to the standard deviation of best picks

rsdl(sec) = residual (observed - fitted travel time), in secs

dtb(m) = depth to bottom of layer in meters

thk(m) = thickness of layer in meters

v(m/s) = velocity of layer in meters per second

vl(m/s) = lower limit of velocity in meters per second (see text for explanation of velocity limits)

vu(m/s) = upper limit of velocity in meters per second

dtb(ft) = depth to bottom of layer in feet

thk(ft) = thickness of laver in feet

v(ft/s) = velocity of layer in feet per second

vl(ft/s) = lower limit of velocity in feet per second

vu(ft/s) = upper limit of velocity in feet per second

TABLE A-2. P-wave arrival times and velocity summaries.

Location: Cerritos College Gymnasium: P Coordinates: 33.88663 -118.09329 Hole_Code: 296 hoffset = 2.00 travel-time file: F:\CGMP.TT

nlayers = 3

d(m)				vavg(m/s)	-	rsdl(sec)				vl(m/s)					vl(ft/s)	
2.5			0.0057	437	1	-0.0009	6.0	6.0	437	418	456	19.7	19.7	1432	1372	1497
5.0	16.4		0.0114	437	1	0.0007	10.0	4.0	348	328	371	32.8	13.1	1142	1075	1219
7.5	24.6	0.0140	0.0180	416	5	-0.0047	29.4	19.4	1563	1486	1648	96.5	63.6	5128	4877	5407
10.0	32.8	0.0256	0.0252	396	1	-0.0001										
12.5	41.0	0.0277	0.0268	466	1	0.0006										
15.0	49.2	0.0286	0.0284	528	1	-0.0001										
17.5	57.4	0.0304	0.0300	583	1	0.0002										
20.0	65.6	0.0314		632	1	-0.0004			Explanat							
22.5	73.8	0.0330		677	1	-0.0003			d(m)	-	th in met					
25.0	82.0		0.0348	718	1	-0.0005			d(ft)	_	th in fee					
27.5	90.2	0.0364		755	1	-0.0001			tsl(s)			ival time				
29.4	96.5	0.0384	0.0376	781	1	0.0007				to	receiver,	along a	slant pa	th). Fo	r the arr	ival
										tim	es used i	n the S-w	ave mode	l, the t	imes are	the
										ave	rage of p	icks from	traces	obtained	from ham	ner
										blo	ws differ	ing in di	rection	by 180 d	egrees.	
									tvrt(s)) = ver	tical tra	vel time	computed	from th	e model	
									vavg(m,	/s)= ave	rage velo	city from	the sur	face to	each depti	a,
										com	puted as	avg_vel =	d(m)/tv:	rt(s)		
									sig	= sig	ma, stand	ard devia	tion nor	malized	to the	
										sta	ndard dev	iation of	best pi	cks		
									rsdl(se	ec)= res	idual (ob	served -	fitted t	ravel ti	me), in s	ecs
									dtb(m)	= dep	th to bot	tom of la	yer in m	eters	•	
									thk (m)	= thi	ckness of	layer in	meters			
									v(m/s)	= vel	ocity of	layer in	meters p	er secon	d	
									vl(m/s)) = low	er limit	of velocit	ty in me	ters per	second	
										(se	e text fo	r explanat	tion of	velocity	limits)	
									vu(m/s)) = աթթ	er limit	of velocit	tv in me	ters per	second	
									dtb(ft)) = dep	th to bot	tom of la	ver in f	eet		
									thk(ft)			layer in				
									v(ft/s)			laver in		second		
									vl(ft/s		-	of velocit	-		econd	
									,,-			of velocit	-	•		
														F		

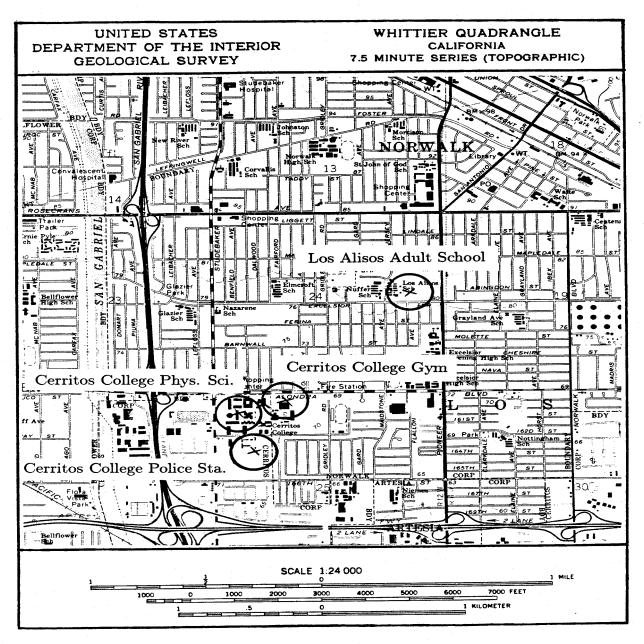


Figure A-6. Site location map for the borehole at Cerritos College Physical Science Building.

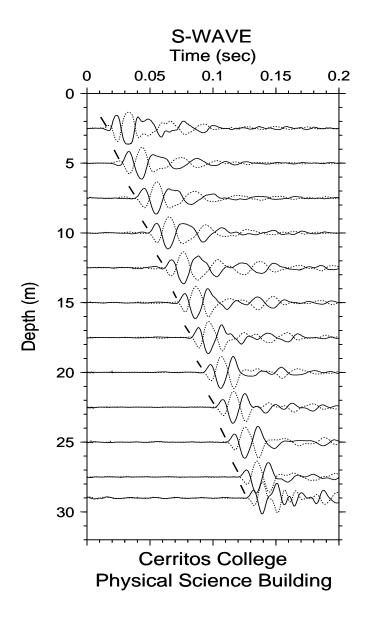


Figure A-7. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

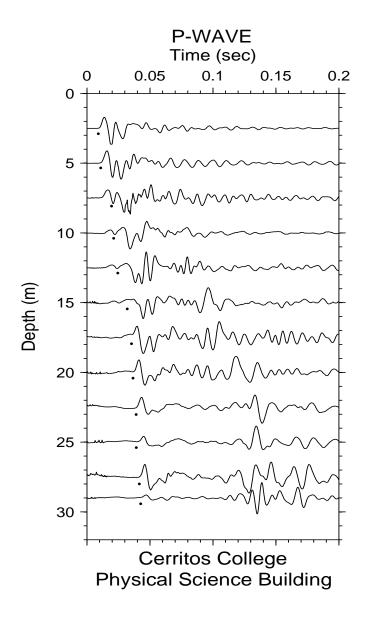


Figure A-8. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

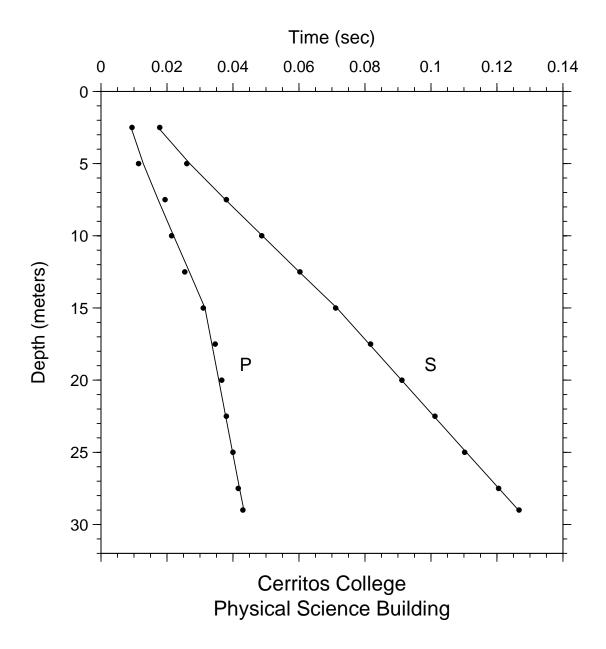


Figure A-9. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

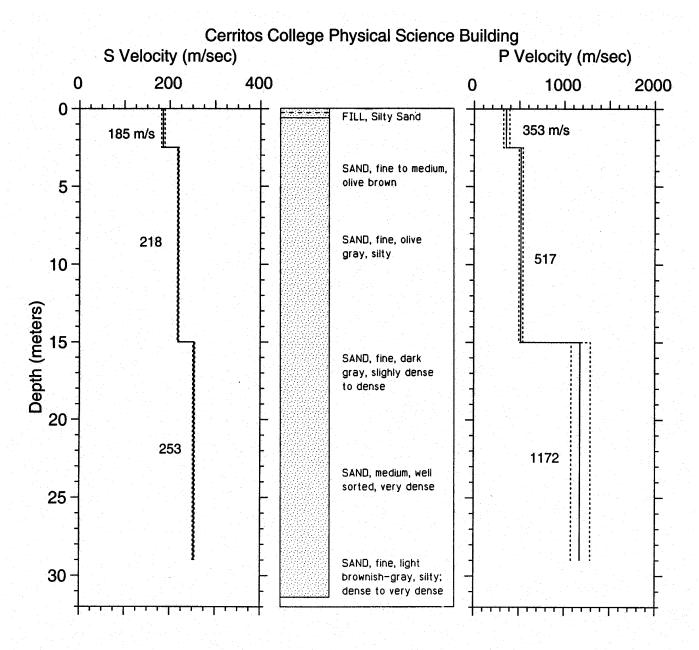


Figure A-10. S- and P-wave velocity profiles with generalized geologic log. Dashed lines represent plus and minus one standard deviation.

ABLE A-3. S-wave arrival times and velocity summaries.

Location: Physical Sciences Building: S Coordinates: 33.88589 -118.09700 Hole_Code: 297 hoffset = 2.00 travel-time file: F:\CPS\CPSS.TT

							nlayer:	5 = 3								
d(m)	d(ft)	tsl(s)	tvrt(s)	vavg(m/s)	sig	rsdl(sec)	dtb(m)	thk(m)	v(m/s)	vl(m/s)	vu(m/s)	dtb(ft)	thk(ft)	v(ft/s)	vl(ft/s)	vu(ft/s)
2.5	8.2	0.0178	0.0135	185	1	0.0005	2.5	2.5	185	181	189	8.2	8.2	607	594	620
5.0	16.4	0.0260	0.0250	200	1	-0.0009	15.0	12.5	218	216	220	49.2	41.0	715	710	721
7.5	24.6	0.0380	0.0364	206	1	0.0003	29.0	14.0	253	251	255	95.1	45.9	830	823	836
10.0	32.8	0.0487	0.0479	209	1	-0.0002										
12.5	41.0	0.0603	0.0594	210	1	0.0002										
15.0	49.2	0.0711	0.0709	212	1	-0.0004										
17.5	57.4	0.0817	0.0807	217	1	0.0004										
20.0	65.6	0.0912	0.0906	221	1	0.0001			Explanat	ion:						
22.5	73.8	0.1012	0.1005	224	1	0.0003			d(m)	= dep	th in met	ers				
25.0	82.0	0.1102	0.1104	226	1	-0.0005			d(ft)	-	th in fee					
27.5	90.2	0.1205		229	1	-0.0001			tsl(s)			ival time				
29.0	95.1	0.1267	0.1262	230	1	0.0002						along a	_			
												n the S-w				
												icks from				mer
												ing in di		-	-	
									tvrt(s)			vel time				
									vavg(m)		-	city from avg vel =			each dept	h,
									sig			ard deviat			to the	
									219	_	•	iation of			00 0110	
									rsdl(se	ec)= res	idual (ob	served -	fitted t	ravel ti	me), in s	ecs
									dtb(m)	= dep	th to bot	tom of la	yer in m	eters		
									thk(m)	= thi	ckness of	layer in	meters			
									v(m/s)	= vel	ocity of	layer in	meters p	er secon	d	
									vl(m/s)	= low	er limit	of veloci	ty in me	ters per	second	
										(se	e text fo	r explanat	ion of	velocity	limits)	
									vu(m/s)	= upp	er limit	of velocit	ty in me	ters per	second	
									dtb(ft)	= dep	th to bot	tom of la	yer in f	eet		
									thk(ft)	= thi	ckness of	layer in	feet			

v(ft/s) = velocity of layer in feet per second vl(ft/s) = lower limit of velocity in feet per second vu(ft/s) = upper limit of velocity in feet per second

ABLE A-4. P-wave arrival times and velocity summaries.

Location: Physical Sciences Building: P Coordinates: 33.88589 -118.09700 Hole Code: 297 hoffset = 2.00 travel-time file: F:\CPS\CPSP.TT

nlayers = 3

							,										
d(m)	d(ft)	tsl(s)	tvrt(s)	vavg(m/s)	sig	rsdl(sec)	dtb(m)	thk(m)	v(m/s)	vl(m/s)	vu(m/s)	dtb(ft)	thk(ft)	v(ft/s)	vl(ft/s)	vu(ft/s)	
2.5	8.2	0.0094	0.0071	353	1	0.0003	2.5	2.5	353	322	390	8.2	8.2	1158	1057	1280	
5.0	16.4	0.0114	0.0119	420	1	-0.0014	15.0	12.5	517	495	540	49.2	41.0	1695	1626	1771	
7.5	24.6	0.0194	0.0168	448	1	0.0021	29.0	14.0	1172	1076	1287	95.1	45.9	3845	3530	4223	
10.0	32.8	0.0214	0.0216	463	1	-0.0006											
12.5	41.0	0.0254	0.0264	473	1	-0.0014											
15.0	49.2	0.0310	0.0313	480	1	-0.0005											
17.5	57.4	0.0346	0.0334	524	1	0.0010											
20.0	65.6	0.0366	0.0355	563	1	0.0009			Explanat	cion:							
22.5	73.8	0.0380	0.0377	597	1	0.0002			d(m)	= dep	th in met	ers					
25.0	82.0	0.0400	0.0398	628	1	0.0001			d(ft)	= dep	th in fee	t					
27.5	90.2	0.0416	0.0419	656	1	-0.0004			tsl(s)	= obs	erved arr	ival time	in seco	nds (fro	m source		
29.0	95.1	0.0430	0.0432	671	1	-0.0003					receiver,					ival	
											es used i	_	-				
											rage of p			•			
										bloo	wa diffar	ing in di	rostion	h 100 d	0.78000		

blows differing in direction by 180 degrees. tvrt(s) = vertical travel time computed from the model

vavg(m/s) = average velocity from the surface to each depth,

computed as avg vel = d(m)/tvrt(s)

= sigma, standard deviation normalized to the standard deviation of best picks

rsdl(sec) = residual (observed - fitted travel time), in secs

dtb(m) = depth to bottom of layer in meters

thk(m) = thickness of layer in meters

v(m/s) = velocity of layer in meters per second

vl(m/s) = lower limit of velocity in meters per second (see text for explanation of velocity limits)

vu(m/s) = upper limit of velocity in meters per second

dtb(ft) = depth to bottom of layer in feet

thk(ft) = thickness of layer in feet

v(ft/s) = velocity of layer in feet per second

vl(ft/s) = lower limit of velocity in feet per second

vu(ft/s) = upper limit of velocity in feet per second

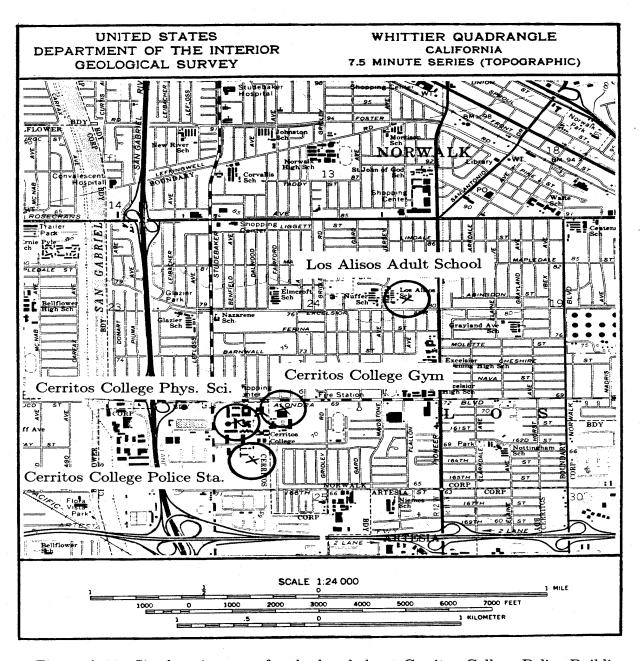
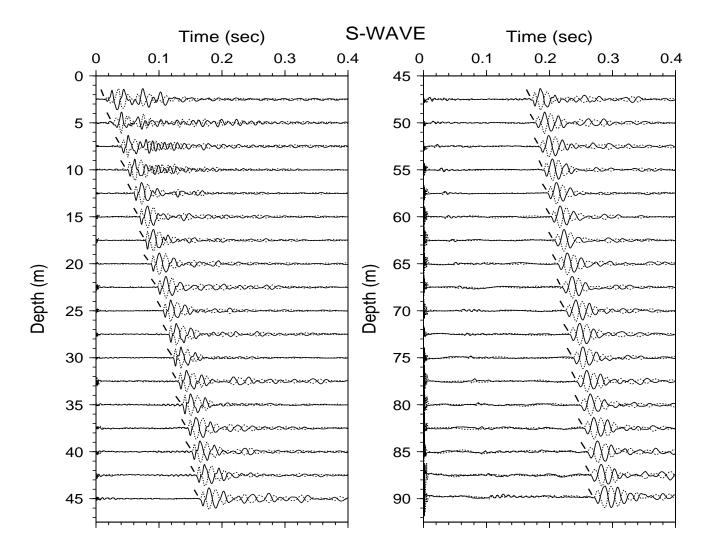



Figure A-11. Site location map for the borehole at Cerritos College Police Building.

Cerritos College Police Station

Figure A-12. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

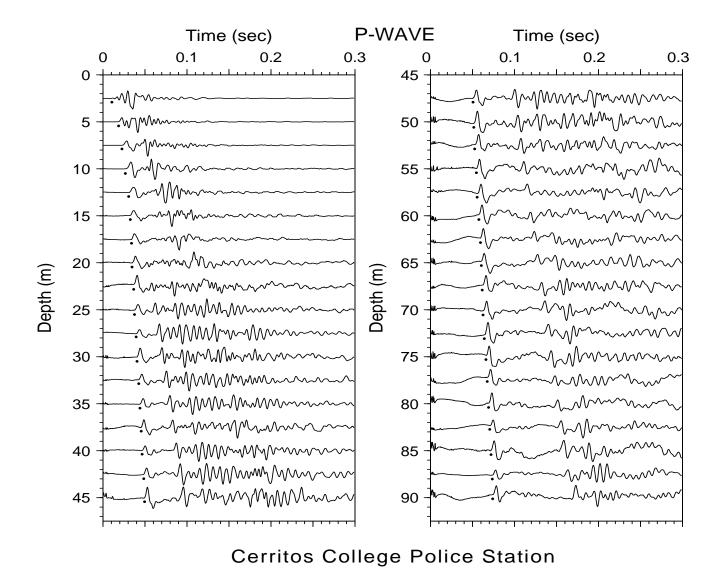


Figure A-13. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

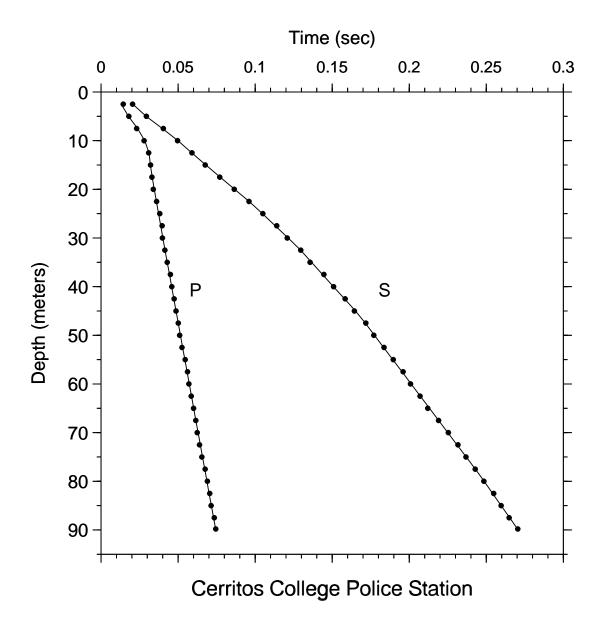


Figure A-14. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

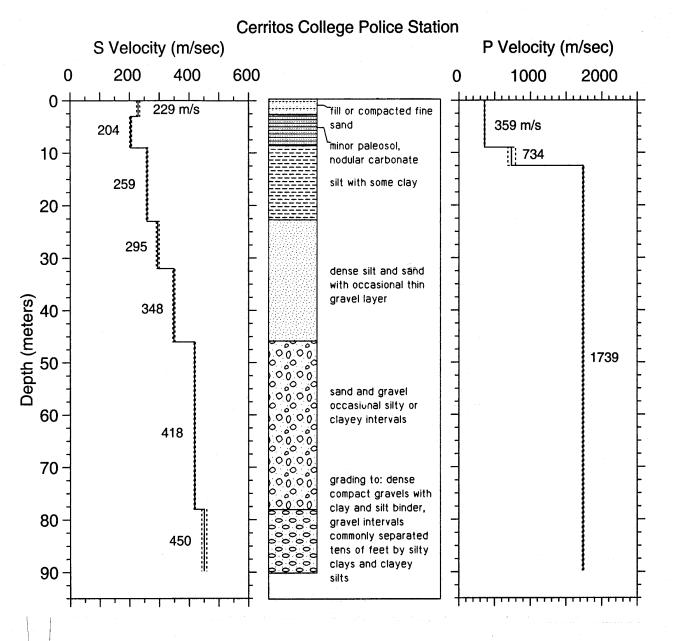


Figure A-15. Velocity profiles for the borehole at Cerritos College Police Building. Generalized geology is shown for correlation with velocities. Dashed lines are one standard deviation.

ABLE A-5. S-wave arrival times and velocity summaries.

Location: Cerritos Police Building: S Coordinates: 33.88212 -118.09680 Hole_Code: 283 hoffset = 4.00 travel-time file: F:\CPB\CPB\CPBS.TT

nlavers :

							nlayers	5 = 7								
d(m)	d(ft)	tsl(s)	tvrt(s)	vavg(m/s)	sig	rsdl(sec)	dtb(m)	thk(m)	v(m/s)	vl(m/s)	vu(m/s)	dtb(ft)	thk(ft)	v(ft/s)	vl(ft/s)	vu(ft/s)
2.5	8.2	0.0204	0.0109	229	1	-0.0002	3.0	3.0	229	224	235	9.8	9.8	752	735	770
5.0	16.4	0.0294	0.0229	218	1	0.0001	9.0	6.0	204	201	207	29.5	19.7	669	658	680
7.5	24.6	0.0404	0.0352	213	1	0.0006	23.0	14.0	259	256	262	75.5	45.9	849	841	858
10.0	32.8	0.0496	0.0464	216	1	-0.0003	32.0	9.0	295	290	299	105.0	29.5	966	951	982
12.5	41.0	0.0590	0.0560	223	1	0.0002	46.0	14.0	348	345	352	150.9	45.9	1143	1131	1156
15.0	49.2	0.0676	0.0657	228	1	-0.0004	78.0	32.0	418	416	420	255.9	105.0	1372	1365	1380
17.5	57.4	0.0770	0.0753	232	1		89.8	11.8	450	442	459	294.6	38.7	1477	1450	1505
20.0	65.6	0.0864	0.0850	235	1											
22.5	73.8	0.0960	0.0946	238	1											
25.0	82.0	0.1050	0.1033	242	1											
27.5	90.2	0.1140	0.1118	246	1	0.0010										
30.0	98.4	0.1208	0.1203	249	1				Explanat							
32.5	106.6	0.1296	0.1285	253	1	0.0001			d(m)	-	th in mete					
35.0	114.8	0.1356	0.1357	258	1				d(ft)		th in feet					
37.5	123.0	0.1446	0.1429	262	1	0.0009			tsl(s)		erved arri					
40.0	131.2	0.1509	0.1501	267	1	0.0001					receiver,	-	-			
42.5	139.4	0.1584	0.1572	270	1	0.0004					es used ir			•		
45.0	147.6	0.1644	0.1644	274	1						rage of pi					mer
47.5	155.8	0.1718	0.1709	278	1						ws differi					
50.0	164.0	0.1770	0.1769	283	1				tvrt(s)		tical trav					
52.5	172.2	0.1836	0.1829	287	1	0.0002			vavg(m)		rage veloc	-			eacn depti	n,
55.0	180.4	0.1896	0.1888	291	1	0.0003					puted as a					
57.5	188.6 196.9	0.1960	0.1948	295 299	1	0.0007			sig		ma, standa				to the	
60.0 62.5	205.1	0.2008 0.2070	0.2008 0.2068	302	1						ndard devi		-			
65.0	213.3	0.2070	0.2068	302 306	1	-0.0002			rsai(se		idual (obs th to bott				me), in s	ecs
67.5	221.5	0.2120	0.2128	309	1	-0.0011			thk(m)		ch to bott ckness of			ecers		
70.0	229.7	0.2150	0.2167	311	1	0.0001			v(m/s)		ocity of]					
72.5	237.9	0.2316	0.2307	314	1				v(m/s) vl(m/s)		er limit o					
75.0	246.1	0.2368	0.2367	317	1				ν т (ш/ э/		er rimic (e text for		-	-		
77.5	254.3	0.2428	0.2427	317	1	21222			vu(m/s)		e cexc for er limit o					
80.0	262.5	0.2484	0.2483	322	1				dtb(ft)		th to bott		-	-	Second	
82.5	270.7	0.2548	0.2539	325	1	0.0002			thk(ft)	-	ch co bocc ckness of		-			
85.0	278.9	0.2596	0.2594	328	ī				v(ft/s)		ocity of]			second		
87.5	287.1	0.2648	0.2650	330	1				vl(ft/s		er limit o	-	-		econd	
89.8	294.6	0.2704	0.2701	332	ī						er limit o					
			2.2.32		_				, , -				-,	P		

ABLE A-6. P-wave arrival times and velocity summaries.

Location: Cerritos Police Building: P Coordinates: 33.88212 -118.09680 Hole_Code: 283 hoffset = 4.00 travel-time file: F:\CPB\CPBP.TT

nlayers = 3

							nrayer	s - s								
d(m)	d(ft)	tsl(s)	tvrt(s)	vavg(m/s)	siq	rsdl(sec)	dtb(m)	thk(m)	v(m/s)	vl(m/s)	vu(m/s)	dtb(ft)	thk(ft)	v(ft/s)	vl(ft/s)	vu(ft/s)
2.5	8.2	0.0144	0.0070	359	ī	0.0013	9.0	9.0	359	355	364	29.5	29.5	1179	1164	1193
5.0	16.4	0.0180	0.0139	359	1	0.0002	12.5	3.5	734	685	792	41.0	11.5	2410	2247	2598
7.5	24.6	0.0231	0.0209	359	1	-0.0006	89.8	77.3	1739	1729	1749	294.6	253.6	5705	5671	5738
10.0	32.8	0.0279	0.0264	378	1	-0.0004										
12.5	41.0	0.0309	0.0298	419	1	-0.0002										
15.0	49.2	0.0321	0.0313	480	1	0.0001										
17.5	57.4	0.0330	0.0327	535	1	-0.0002										
20.0	65.6	0.0339	0.0342	586	1	-0.0006			Explanat							
22.5	73.8	0.0360	0.0356	632	1	0.0001			d(m)	-	th in met					
25.0	82.0	0.0381	0.0370	675	1	0.0008			d(ft)	-	th in fee					
27.5	90.2	0.0396	0.0385	715	1	0.0009			tsl(s)			ival time				
30.0	98.4	0.0398	0.0399	752	1	-0.0003					,	along a	-			
32.5	106.6	0.0414	0.0413	786	1	-0.0001						n the S-w				
35.0 37.5	114.8 123.0	0.0429	0.0428	818	1	0.0000 0.0006						icks from				mer
37.5 40.0	131.2	0.0450	0.0442 0.0457	848 876	1	0.0006			tvrt(s)			ing in di vel time				
42.5	131.2	0.0433	0.0437	903	1	0.0001						city from	-			_
42.5 45.0	147.6	0.0474	0.0471	927	1	0.0002			vavg(m)		-	avg vel =			each depc	п,
47.5	155.8	0.0501	0.0500	951	1	0.0000			sig			avy_ver - ard deviat			to the	
50.0	164.0	0.0510	0.0514	973	1	-0.0005			519	_	,	aru uevra. Tation of			co che	
52.5	172.2	0.0525	0.0528	994	ī	-0.0004			redl(se			served -			mel in s	ecs
55.0	180.4	0.0546	0.0543	1013	1	0.0002			dtb(m)			tom of la			mc,, 111 -	
57.5	188.6	0.0561	0.0557	1032	1	0.0003			thk(m)	-		laver in	-			
60.0	196.9	0.0570	0.0572	1050	ī	-0.0002			v(m/s)			layer in		er secon	d	
62.5	205.1	0.0585	0.0586	1067	1	-0.0002			vl(m/s)		-	of velocit	-			
65.0	213.3	0.0600	0.0600	1083	1	-0.0001						r explanat				
67.5	221.5	0.0615	0.0615	1098	1	0.0000			vu(m/s)	= upp	er limit	of velocit	ty in me	ters per	second	
70.0	229.7	0.0624	0.0629	1113	1	-0.0006			dtb(ft)	= dep	th to bot	tom of la	yer in f	eet		
72.5	237.9	0.0639	0.0643	1127	1	-0.0005			thk(ft)	= thi	ckness of	layer in	feet			
75.0	246.1	0.0654	0.0658	1140	1	-0.0004			v(ft/s)	= vel	ocity of	layer in	feet per	second		
77.5	254.3	0.0675	0.0672	1153	1	0.0002			vl(ft/s	s) = low	er limit	of velocit	ty in fe	et per s	econd	
80.0	262.5	0.0690	0.0687	1165	1	0.0003			vu(ft/s	s) = upp	er limit	of velocit	ty in fe	et per s	econd	
82.5	270.7	0.0705	0.0701	1177	1	0.0004										
85.0	278.9	0.0714	0.0715	1188	1	-0.0002										
87.5	287.1	0.0735	0.0730	1199	1	0.0005										
89.8	294.6	0.0744	0.0743	1209	1	0.0001										

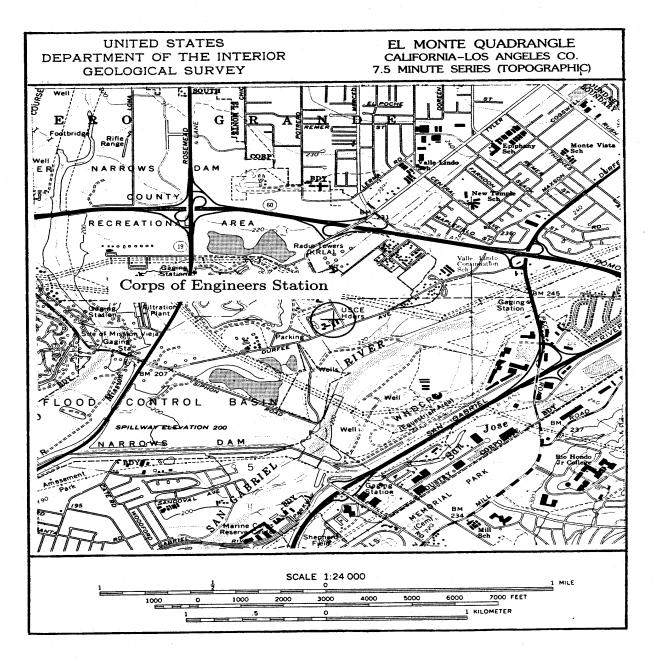


Figure A-16. Site location map for the borehole at Corps of Engineers Station. The accelerograph is located approximately 45 meters from the borehole.

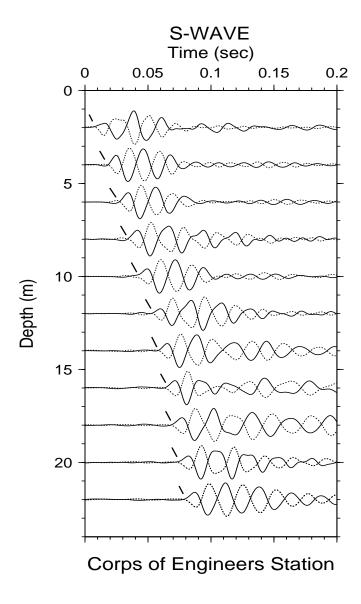


Figure A-17. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

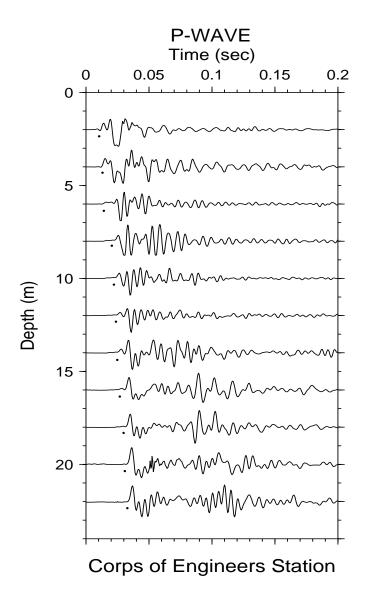


Figure A-18. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

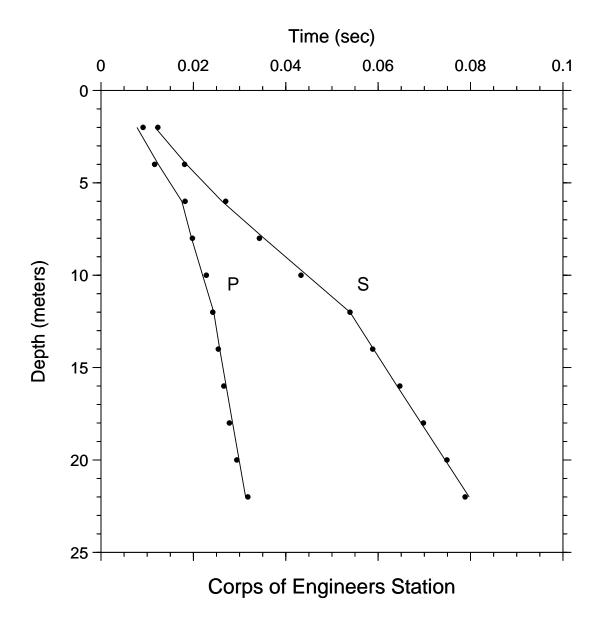


Figure A-19. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

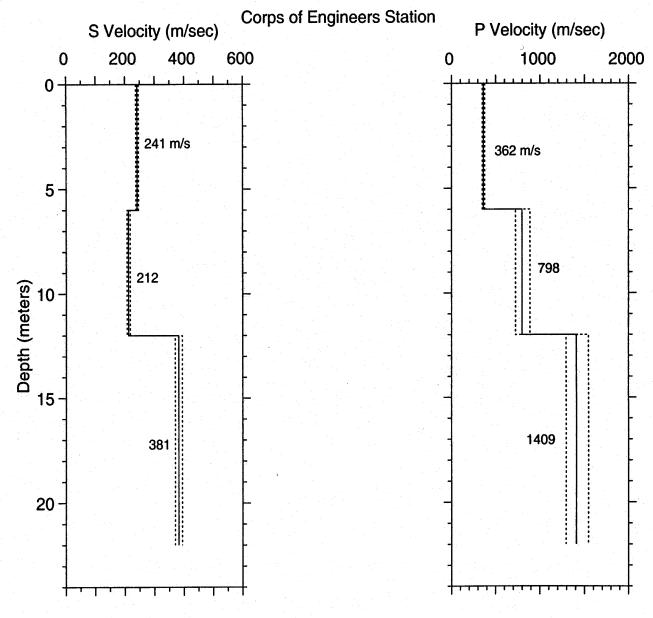


Figure A-20. S- and P-wave velocity profiles with dashed lines representing one standard deviation. Lithology is not available from this borehole.

ABLE A-7. S-wave arrival times and velocity summaries.

Location: Corps of Engineers Station: S Coordinates: 34.03219 -118.05225 Hole_Code: 298 hoffset = 2.00 travel-time file: F:\NAR\NARS.TT

nlayers = 3

12.0 6.0

6.0

6.0

d(m)	d(ft)	tsl(s)	tvrt(s)	vavg(m/s)	sig	rsdl(sec)
2.0	6.6	0.0123	0.0083	241	1	0.0006
4.0	13.1	0.0181	0.0166	241	1	-0.0004
6.0	19.7	0.0270	0.0249	241	1	0.0008
8.0	26.2	0.0343	0.0343	233	1	-0.0010
10.0	32.8	0.0433	0.0438	228	2	-0.0012
12.0	39.4	0.0539	0.0532	226	1	0.0000
14.0	45.9	0.0588	0.0584	240	1	-0.0002
16.0	52.5	0.0647	0.0637	251	1	0.0006
18.0	59.1	0.0698	0.0689	261	1	0.0005
20.0	65.6	0.0749	0.0742	270	1	0.0004
22.0	72.2	0.0788	0.0794	277	1	-0.0009

Explanation:

dtb(m) thk(m) v(m/s) vl(m/s) vu(m/s)

241

212

22.0 10.0 381 370

d(m) = depth in meters
d(ft) = depth in feet

d(ft) = depth in feet
tsl(s) = observed arrival time in seconds (from source

to receiver, along a slant path). For the arrival times used in the S-wave model, the times are the average of picks from traces obtained from hammer blows differing in direction by 180 degrees.

19.7 19.7

39.4 19.7

72.2 32.8 1252

dtb(ft) thk(ft) v(ft/s) vl(ft/s) vu(ft/s)

792

695

678

1214

714

1292

 ${\tt tvrt(s)}$ = vertical travel time computed from the model ${\tt vavg(m/s)}\text{=}$ average velocity from the surface to each depth,

computed as avg_vel = d(m)/tvrt(s)

sig = sigma, standard deviation normalized to the standard deviation of best picks

rsdl(sec)= residual (observed - fitted travel time), in secs

dtb(m) = depth to bottom of layer in meters

thk(m) = thickness of layer in meters

246

217

394

v(m/s) = velocity of layer in meters per second

vl(m/s) = lower limit of velocity in meters per second (see text for explanation of velocity limits)

vu(m/s) = upper limit of velocity in meters per second

dtb(ft) = depth to bottom of layer in feet

thk(ft) = thickness of layer in feet

v(ft/s) = velocity of layer in feet per second

vl(ft/s) = lower limit of velocity in feet per second

vu(ft/s) = upper limit of velocity in feet per second

ABLE A-8. P-wave arrival times and velocity summaries.

Location: Corps of Engineers Station: P Coordinates: 34.03219 -118.05225 Hole Code: 298 hoffset = 2.00 travel-time file: F:\NAR\NARP.TT

players = 3

							nrayer	s - J								
d(m)	d(ft)	tsl(s)	tvrt(s)	vavg(m/s)	sig	rsdl(sec)	dtb(m)	thk(m)	v(m/s)	vl(m/s)	vu(m/s)	dtb(ft)	thk(ft)	v(ft/s)	vl(ft/s)	vu(ft/s)
2.0	6.6	0.0091	0.0055	362	2	0.0012	6.0	6.0	362	349	376	19.7	19.7	1188	1146	1233
4.0	13.1	0.0116	0.0110	362	1	-0.0007	12.0	6.0	798	724	889	39.4	19.7	2618	2375	2915
6.0	19.7	0.0182	0.0166	362	3	0.0008	22.0	10.0	1409	1294	1545	72.2	32.8	4622	4246	5070
8.0	26.2	0.0198	0.0191	419	3	0.0002										
10.0	32.8	0.0228	0.0216	463	1	0.0009										
12.0	39.4	0.0242	0.0241	498	1	-0.0001										
14.0	45.9	0.0254	0.0255	549	1	-0.0004										
16.0	52.5	0.0266	0.0269	594	3	-0.0005			Explanat	ion:						
18.0	59.1	0.0278	0.0284	635	2	-0.0007			d(m)	= dep	th in met	ers				
20.0	65.6	0.0294	0.0298	672	1	-0.0004			d(ft)	= dep	th in fee	t				
22.0	72.2	0.0318	0.0312	705	1	0.0005			tsl(s)	= obs	erved arr	ival time	in seco	nds (fro	m source	
										to	receiver,	along a	slant pa	th). Fo	r the arr	ival
										tim	es used i	n the S-w	ave mode.	l, the t	imes are	the
										ave	rage of p	icks from	traces	obtained	from ham	mer
										blo	ws differ:	ing in di	rection	by 180 d	egrees.	

tvrt(s) = vertical travel time computed from the model vavg(m/s) = average velocity from the surface to each depth, computed as avg vel = d(m)/tvrt(s) = sigma, standard deviation normalized to the standard deviation of best picks rsdl(sec) = residual (observed - fitted travel time), in secs

dtb(m) = depth to bottom of layer in meters thk(m) = thickness of layer in meters

dtb(ft) = depth to bottom of layer in feet thk(ft) = thickness of layer in feet

v(ft/s) = velocity of layer in feet per second vl(ft/s) = lower limit of velocity in feet per second vu(ft/s) = upper limit of velocity in feet per second

v(m/s) = velocity of layer in meters per second vl(m/s) = lower limit of velocity in meters per second

vu(m/s) = upper limit of velocity in meters per second

(see text for explanation of velocity limits)

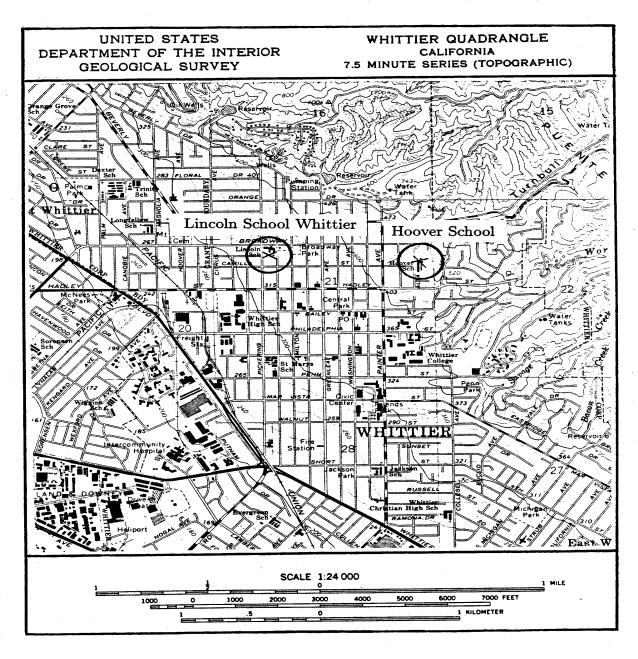


Figure A-21. Site location map for the borehole at Hoover School. The accelerograph is located approximately 30 meters from the borehole.

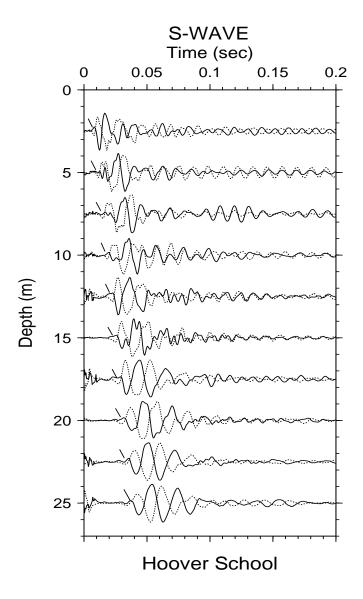


Figure A-22. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

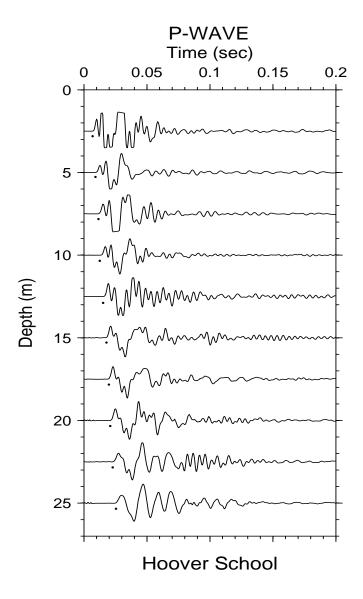


Figure A-23. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

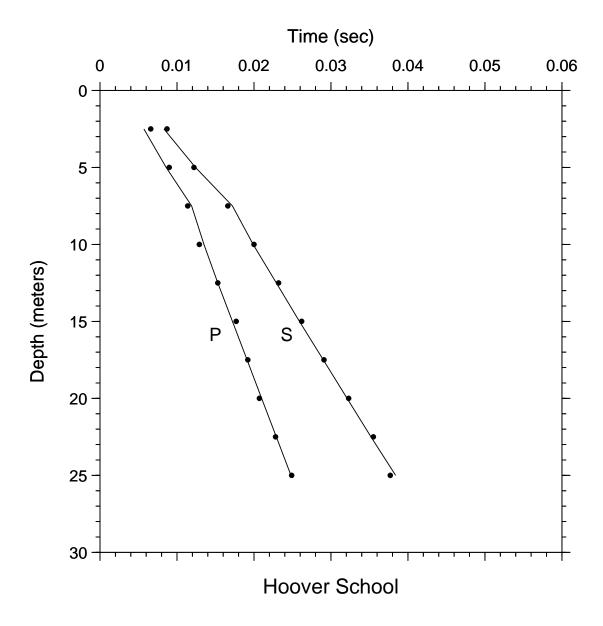


Figure A-24. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

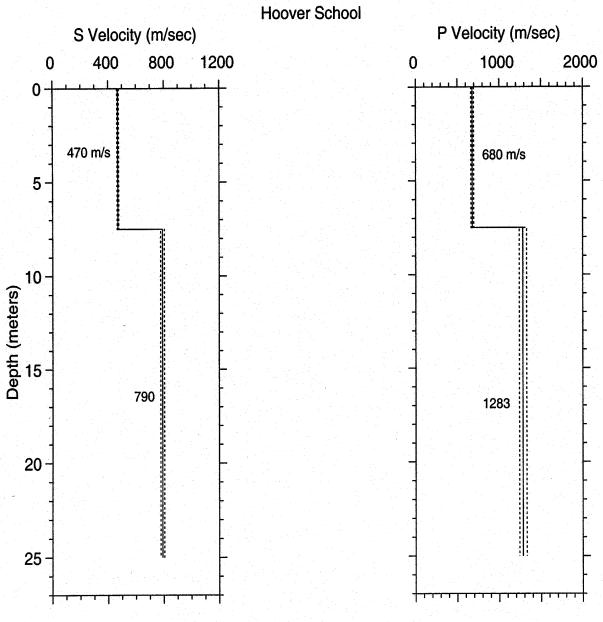


Figure A-25. S- and P-wave velocity profiles with dashed lines representing one standard deviation. Lithology is not available from this borehole.

ABLE A-9. S-wave arrival times and velocity summaries.

Location: Hoover School: S Coordinates: 33.98491 -118.02890 Hole_Code: 299 hoffset = 3.00 travel-time file: F:\HOO\HOOS2.TT

hoffset	= 3.0	0 trav	zel-time	file: F:\l	H00\H	DOS2.TT										
							nlayers	5 = 2								
d(m)	d(ft)	tsl(s)	tvrt(s)	vavg(m/s)	sig	rsdl(sec)	dtb(m)	thk(m)	v(m/s)	vl(m/s)	vu(m/s)	dtb(ft)	thk(ft)	v(ft/s)	vl(ft/s)	vu(ft/s)
2.5	8.2	0.0087	0.0053	470	1	0.0004	7.5	7.5	470	464	476	24.6	24.6	1542	1521	1563
5.0	16.4	0.0122	0.0106	470	1	-0.0002	25.0	17.5	790	777	804	82.0	57.4	2593	2549	2639
7.5	24.6	0.0166	0.0160	470	1	-0.0006										
10.0	32.8	0.0200	0.0191	523	1	0.0001										
12.5	41.0	0.0232	0.0223	561	1	0.0003										
15.0	49.2	0.0262	0.0255	589	1	0.0003										
17.5	57.4	0.0291	0.0286	612	1	0.0001			Explanat	cion:						
20.0	65.6	0.0323	0.0318	629	1	0.0002			d(m)	= dept	th in met	ers				
22.5	73.8	0.0355	0.0349	644	1	0.0003			d(ft)	= dept	th in feet	t				
25.0	82.0	0.0377	0.0381	656	1	-0.0007			tsl(s)	= obs	erved arr:	ival time	in seco	nds (fro	m source	
										to	receiver,	along a	slant pa	th). Fo	r the arr	ival
										time	es used i:	n the S-wa	ave mode	l, the t	imes are	the
										ave:	rage of p	icks from	traces	obtained	from ham	mer
										blo	ws differ:	ing in di:	rection	by 180 d	legrees.	
									tvrt(s)) = ver	tical tra	vel time	computed	from th	e model	
									vavg(m,	/s)= ave:	rage velo	city from	the sur	face to	each dept	h,
										comp	puted as	avg_vel =	d(m)/tv	rt(s)		
									sig	= sign	ma, standa	ard deviat	cion nor	malized	to the	
										sta	ndard dev:	iation of	best pi	cks		
									rsdl(se	ec)= res:	idual (ob:	served -	fitted t	ravel ti	me), in s	ecs
									dtb(m)	= dept	th to bot	tom of lay	yer in m	eters		
									thk(m)	= thi	ckness of	layer in	meters			
									v(m/s)	= vel	ocity of	layer in :	meters p	er secon	d	
									vl(m/s)) = low-	er limit	of velocit	y in me	ters per	second	
										(se	e text fo	r explanat	ion of	velocity	limits)	
									vu(m/s)) = upp	er limit	of velocit	y in me	ters per	second	
									dtb(ft)) = dept	th to bot	tom of lay	yer in f	eet		
									thk(ft)) = thi	ckness of	layer in	feet			
									v(ft/s)) = vel	ocity of	layer in	feet per	second		
									vl(ft/s	s) = low	er limit	of velocit	y in fe	et per s	econd	
									vu(ft/s	s) = upp	er limit	of velocit	y in fe	et per s	econd	
										• • •			-	-		

ABLE A-10. P-wave arrival times and velocity summaries.

Location: Hoover School: P Coordinates: 33.98491 -118.02890 Hole_Code: 299 hoffset = 3.00 travel-time file: F:\HOO\HOOP2.TT

hoffset	= 3.0	0 trav	rel-time	file: F:\l	H00\H0	OOP2.TT										
							nlayers	s = 2								
d(m)	d(ft)	tsl(s)	tvrt(s)	vavg(m/s)	sig	rsdl(sec)	dtb(m)	thk(m)	v(m/s)	vl(m/s)	vu(m/s)	dtb(ft)	thk(ft)	v(ft/s)	vl(ft/s)	vu(ft/s)
2.5	8.2	0.0066	0.0037	680	1	0.0009	7.5	7.5	680	664	697	24.6	24.6	2231	2179	2286
5.0	16.4	0.0090	0.0074	680	1	0.0004	25.0	17.5	1283	1241	1328	82.0	57.4	4211	4072	4359
7.5	24.6	0.0114	0.0110	680	1	-0.0005										
10.0	32.8	0.0129	0.0130	771	1	-0.0006										
12.5	41.0	0.0153	0.0149	837	1	0.0000										
15.0	49.2	0.0177	0.0169	889	1	0.0005										
17.5	57.4	0.0192	0.0188	930	1	0.0001			Explanat	cion:						
20.0	65.6	0.0207	0.0208	963	1	-0.0003			d(m)	= dep	th in met	ers				
22.5	73.8	0.0228	0.0227	990	1	-0.0001			d(ft)	= dep	th in feet	t				
25.0	82.0	0.0249	0.0247	1013	1	0.0001			tsl(s)	= obs	erved arr:	ival time	in seco	nds (fro	m source	
										to	receiver,	along a	slant pa	th). Fo	r the arr	ival
										tim	es used i:	n the S-w	ave mode	l, the t	imes are	the
										ave	rage of p	icks from	traces	obtained	from ham	mer
										blo	ws differ:	ing in di	rection	by 180 d	legrees.	
									tvrt(s)) = ver	tical tra	vel time	computed	from th	e model	
									vavg(m,	/s)= ave	rage velo	city from	the sur	face to	each dept	h,
										com	puted as	avg_vel =	d(m)/tv	rt(s)		
									sig	= sig	ma, standa	ard deviat	tion nor	malized	to the	
										sta	ndard dev:	iation of	best pi	cks		
									rsdl(se	ec)= res	idual (ob:	served -	fitted t	ravel ti	me), in s	ecs
									dtb(m)	= dep	th to bot	tom of la	yer in m	eters		
									thk (m)	= thi	ckness of	layer in	meters			
									v(m/s)	= vel	ocity of	layer in	meters p	er secon	d	
									vl(m/s)) = low	er limit	of veloci	ty in me	ters per	second	
										(se	e text fo	r explanat	cion of	velocity	limits)	
									vu(m/s)) = upp	er limit	of veloci	ty in me	ters per	second	
									dtb(ft)) = dep	th to bot	tom of la	yer in f	eet		
									thk(ft)) = thi	ckness of	layer in	feet			
									v(ft/s)) = vel	ocity of	layer in	feet per	second		
									vl(ft/s	s) = low	er limit	of veloci	ty in fe	et per s	econd	
									vu(ft/s	s) = upp	er limit	of veloci	ty in fe	et per s	econd	
										• • •			-	-		

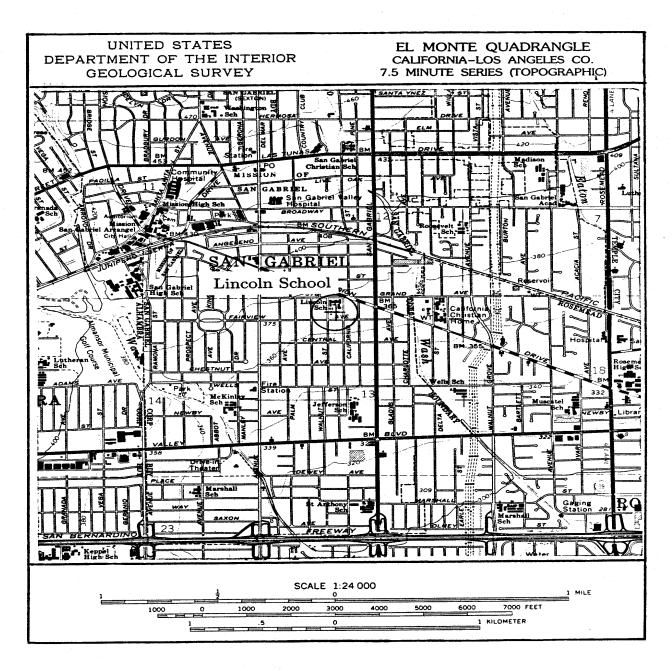


Figure A-26. Site location map for the borehole at Lincoln School. The accelerograph is located approximately 91 meters from the borehole.

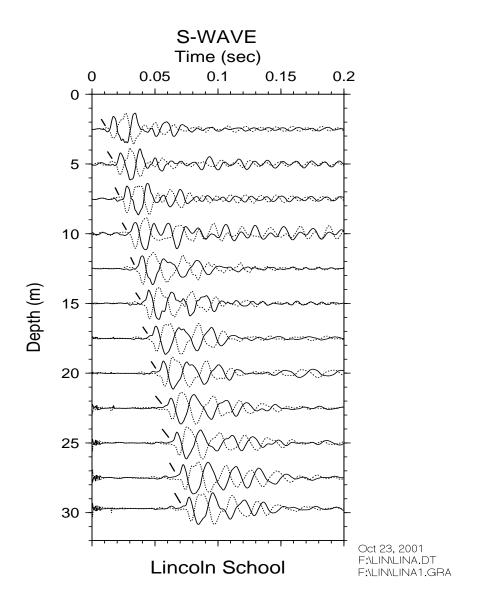


Figure A-27. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

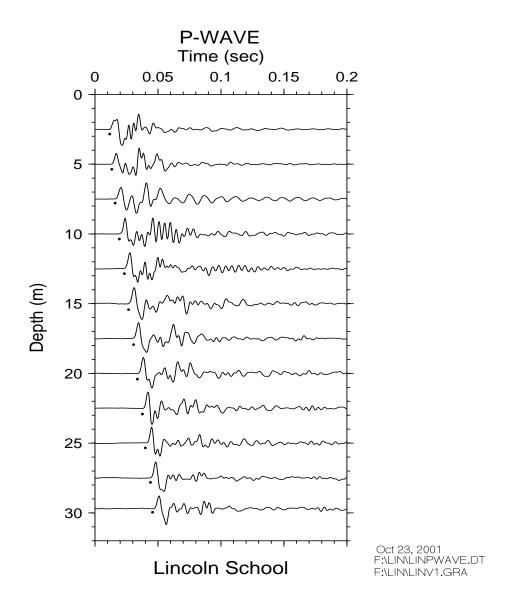


Figure A-28. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

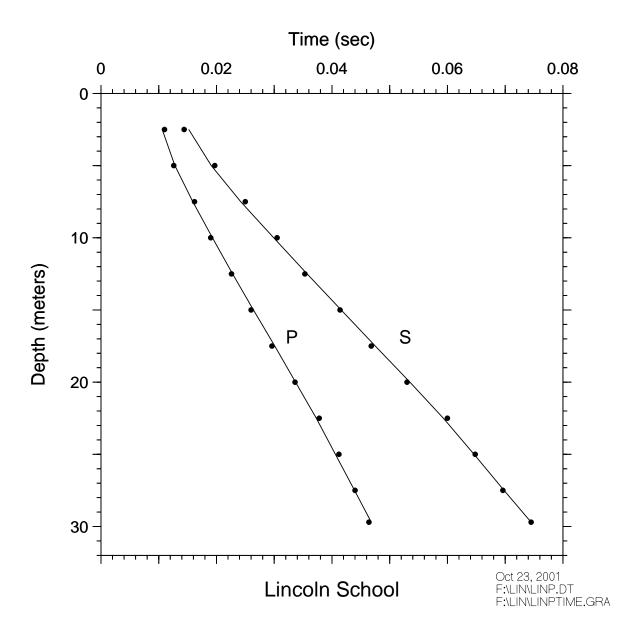


Figure A-29. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

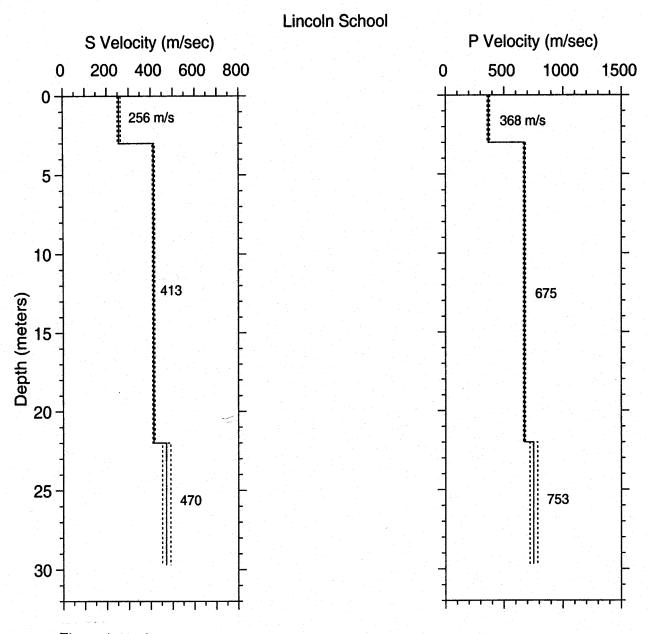


Figure A-30. S- and P-wave velocity profiles with dashed lines representing one standard deviation. Lithology is not available from this borehole.

ABLE A-11. S-wave arrival times and velocity summaries.

Location: Lincoln School: S Coordinates: 34.09043 -118.09300 Hole_Code: 300 hoffset = 3.00 travel-time file: F:\LIN\LINS2.TT

hoffset	= 3.0	0 trav	zel-time	file: F:\l	LIN\L	INS2.TT										
							nlayers	s = 3								
d(m)	d(ft)	tsl(s)	tvrt(s)	vavq(m/s)	siq	rsdl(sec)	dtb(m)	thk(m)	v(m/s)	vl(m/s)	vu(m/s)	dtb(ft)	thk(ft)	v(ft/s)	vl(ft/s)	vu(ft/s)
2.5	8.2	0.0144	0.0098	256	ī	-0.0008	3.0	3.0	256	249	264	9.8	9.8	841	818	865
5.0	16.4	0.0197	0.0166	302	1	0.0006	22.0	19.0	413	408	418	72.2	62.3	1354	1338	1371
7.5	24.6	0.0250	0.0226	332	1	0.0008	29.7	7.7	470	452	490	97.4	25.3	1544	1484	1609
10.0	32.8	0.0305	0.0287	349	1	0.0006										
12.5	41.0	0.0353	0.0347	360	1	-0.0004										
15.0	49.2	0.0414	0.0408	368	1	-0.0002										
17.5	57.4	0.0468	0.0468	374	1	-0.0007										
20.0	65.6	0.0530	0.0529	378	1	-0.0005			Explanat							
22.5	73.8	0.0600	0.0588	383	1	0.0007			d(m)	-	th in met					
25.0	82.0	0.0648	0.0641	390	1	0.0002			d(ft)		th in fee					
27.5		0.0696	0.0694	396	1				tsl(s)		erved arr					
29.7	97.4	0.0745	0.0741	401	1	0.0000					receiver,	_	_			
											es used i			•		
											rage of p					mer
											ws differ					
									tvrt(s)		tical tra rage velo		-			L
									vavy(m)		rage velo puted as				each depo	11,
									sig		puceu as ma, stand				to the	
									229	-	ndard dev				00 0110	
									redl(se		idual (ob		-		me) in s	ers
									dtb(m)		th to bot				,	
									thk(m)	-	ckness of		-			
									v(m/s)		ocity of	-		er secon	d.	
									vl(m/s)		er limit	-	_			
										(se	e text fo	r explanat	ion of	velocity	limits)	
									vu(m/s)	= upp	er limit	of velocit	ty in me	ters per	second	
									dtb(ft)	= dep	th to bot	tom of lay	yer in f	eet		
									thk(ft)	= thi	ckness of	layer in	feet			
									v(ft/s)	= vel	ocity of	layer in	feet per	second		
									vl(ft/s	s) = low	er limit	of velocit	ty in fe	et per s	econd	
									vu(ft/s	s) = upp	er limit	of velocit	ty in fe	et per s	econd	

ABLE A-12. P-wave arrival times and velocity summaries.

Location: Lincoln School: P Coordinates: 34.09044 -118.09306 Hole_Code: 300 hoffset = 3.00 travel-time file: F:\LIN\LINP TT

hoffset	= 3.0	0 trav	zel-time	file: F:\l	LIN\L	INP.TT				_						
							nlayers	5 = 3								
d(m)	d(ft)	tsl(s)	tvrt(s)	vavg(m/s)	sig	rsdl(sec)	dtb(m)	thk (m)	v(m/s)	vl(m/s)	vu(m/s)	dtb(ft)	thk(ft)	v(ft/s)	vl(ft/s)	vu(ft/s)
2.5	8.2	0.0110	0.0068	368	1	0.0004	3.0	3.0	368	358	378	9.8	9.8	1207	1175	1241
5.0	16.4	0.0126	0.0111	450	1	-0.0002	22.0	19.0	675	666	684	72.2	62.3	2213	2184	2243
7.5	24.6	0.0162	0.0148	506	1	0.0003	29.7	7.7	753	722	787	97.4	25.3	2470	2367	2582
10.0	32.8	0.0190	0.0185	540	1	-0.0003										
12.5	41.0	0.0226	0.0222	562	1	-0.0002										
15.0	49.2	0.0260	0.0259	578	1	-0.0004										
17.5	57.4	0.0296	0.0296	591	1	-0.0004										
20.0	65.6	0.0336	0.0333	600	1	-0.0001			Explanat							
22.5	73.8	0.0378	0.0370	609	1	0.0005			d(m)	-	th in met					
25.0	82.0	0.0412	0.0403	621	1	0.0006			d(ft)	-	th in fee					
27.5	90.2	0.0440	0.0436	631	1	0.0001			tsl(s)			ival time				
29.7	97.4	0.0464	0.0465	638	1	-0.0003						along a	_			
												n the S-w		,		
												icks from				mer
												ing in di				
									tvrt(s)			vel time	-			_
									vavg(m)		-	city from avg vel =			each dept	п,
									sig			avg_ver = ard deviat			to the	
									319	-	•	aru uevra. iation of			co che	
									red1/e			served -	-		mal in s	0.05
									dtb(m)			tom of la			me/, 111 s	ecs
									thk(m)	-		laver in	-			
									v(m/s)			layer in		er secon	d	
									vl(m/s)		-	of veloci	_			
									,-,-,			r explanat	-	•		
									vu(m/s)			of velocit				
									dtb(ft)			tom of la	-	-		
									thk(ft)			layer in				
									v(ft/s)) = vel	ocity of	layer in	feet per	second		
									vl(ft/s	s) = low	er limit	of veloci	ty in fe	et per s	econd	
									vu(ft/s	s) = upp	er limit	of veloci	ty in fe	et per s	econd	

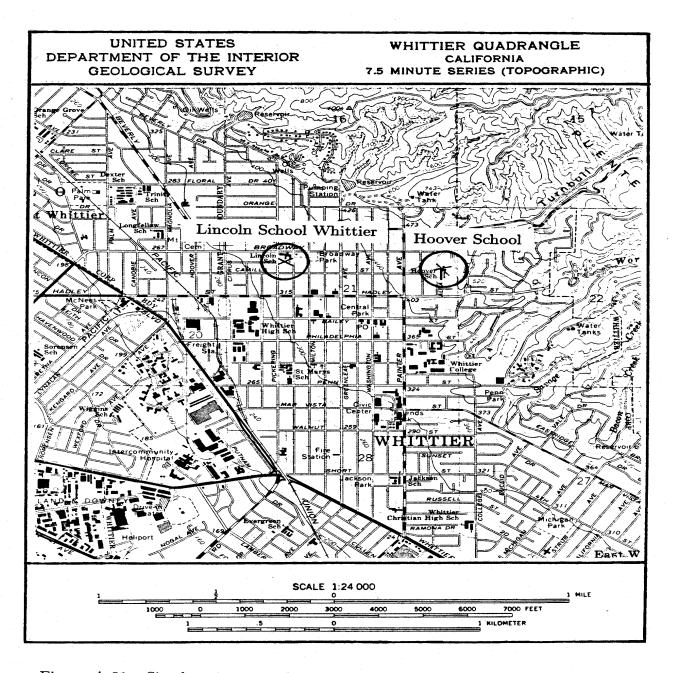


Figure A-31. Site location map for the borehole at Lincoln School Whittier.

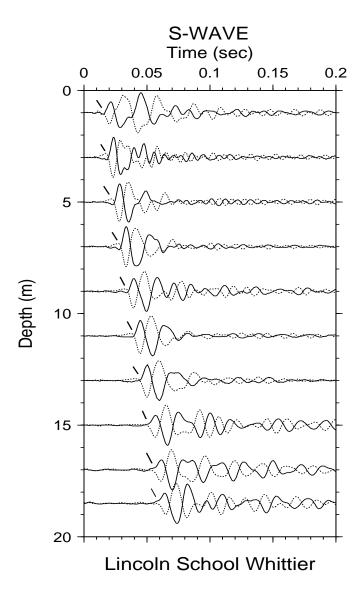


Figure A-32. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

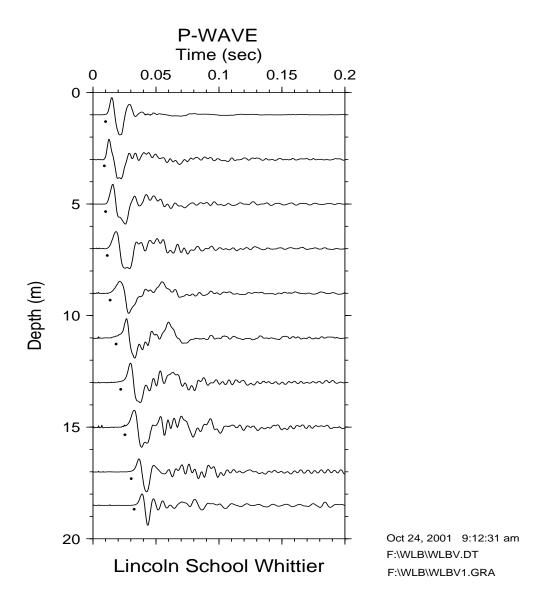


Figure A-33. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

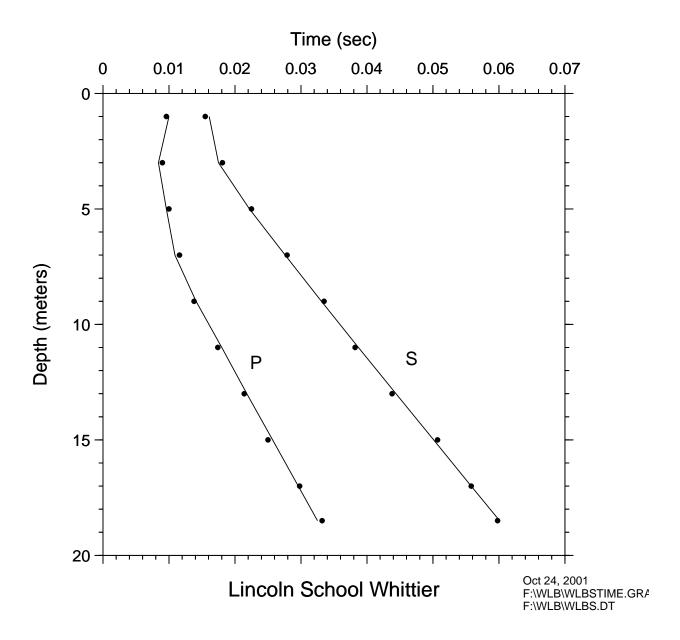


Figure A-34. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

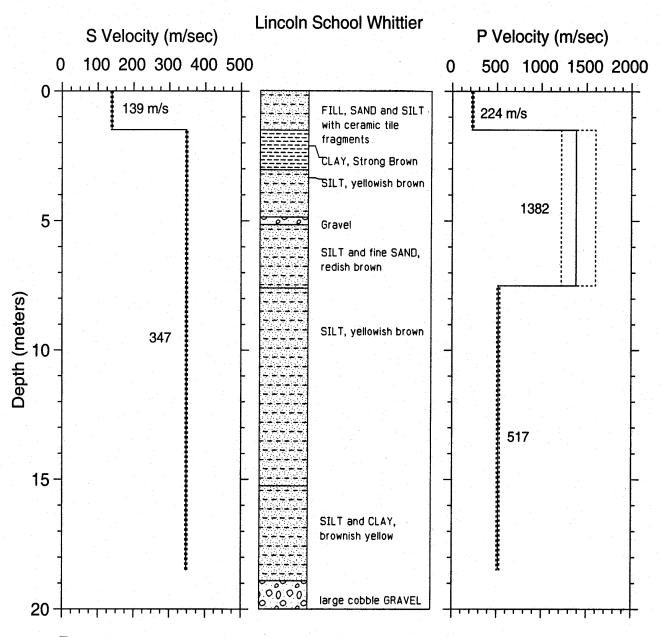


Figure A-35. S- and P-wave velocity profiles. Dashed lines represent one standard deviation. Lithology is shown for correlation with velocities.

ABLE A-13. S-wave arrival times and velocity summaries.

Location: Lincoln School - Whittier: S Coordinates: 33.98535 -118.04060 Hole_Code: 301 hoffset = 2.00 travel-time file: F:\WLB\WLBS.TT

nlayers = 2

d(m)	d(ft)	tsl(s)	tvrt(s)	vavg(m/s)	sig	rsdl(sec)
1.0	3.3	0.0155	0.0072	139	1	-0.0006
3.0	9.8	0.0181	0.0151	198	1	0.0006
5.0	16.4	0.0225	0.0209	239	1	0.0003
7.0	23.0	0.0279	0.0266	263	1	0.0003
9.0	29.5	0.0335	0.0324	278	1	0.0004
11.0	36.1	0.0382	0.0382	288	1	-0.0005
13.0	42.7	0.0438	0.0439	296	1	-0.0006
15.0	49.2	0.0507	0.0497	302	1	0.0007
17.0	55.8	0.0558	0.0555	307	1	0.0000
18.5	60.7	0.0598	0.0598	309	1	-0.0002

Explanation:

dtb(m) thk(m) v(m/s) vl(m/s) vu(m/s)

1.5 1.5 139

18.5 17.0 347

d(m) = depth in meters
d(ft) = depth in feet

135

344 351

142

tsl(s) = observed arrival time in seconds (from source to receiver, along a slant path). For the arrival times used in the S-wave model, the times are the average of picks from traces obtained from hammer blows differing in direction by 180 degrees.

4.9 4.9

60.7 55.8 1140

dtb(ft) thk(ft) v(ft/s) vl(ft/s) vu(ft/s)

455

1130

1150

sig = sigma, standard deviation normalized to the standard deviation of best picks

rsdl(sec) = residual (observed - fitted travel time), in secs

dtb(m) = depth to bottom of layer in meters

thk(m) = thickness of layer in meters

v(m/s) = velocity of layer in meters per second

vu(m/s) = upper limit of velocity in meters per second

dtb(ft) = depth to bottom of layer in feet

thk(ft) = thickness of layer in feet

v(ft/s) = velocity of layer in feet per second

vl(ft/s) = lower limit of velocity in feet per second

vu(ft/s) = upper limit of velocity in feet per second

ABLE A-14. S-wave arrival times and velocity summaries.

Location: Lincoln School Whittier: P Coordinates: 33.98535 -118.04060 Hole Code: 301 hoffset = 2.00 travel-time file: F:\WLB\WLBVERT.TT

nlayers = 3

d(m)	d(ft)	tsl(s)	tvrt(s)	vavg(m/s)	sig	rsdl(sec)	dtb(m)	thk(m)	v(m/s)	vl(m/s)	vu(m/s	:)
1.0	3.3	0.0096	0.0045	224	1	-0.0004	1.5	1.5	224	212	238	3
3.0	9.8	0.0090	0.0078	386	1	0.0006	7.5	6.0	1382	1217	1599	,
5.0	16.4	0.0100	0.0092	542	1	0.0004	18.5	11.0	517	501	533	3
7.0	23.0	0.0116	0.0107	656	1	0.0007						
9.0	29.5	0.0138	0.0139	646	1	-0.0003						
11.0	36.1	0.0174	0.0178	618	1	-0.0006						
13.0	42.7	0.0214	0.0217	600	1	-0.0004						
15.0	49.2	0.0250	0.0255	587	1	-0.0007			Explanat	cion:		
17.0	55.8	0.0298	0.0294	578	1	0.0002			d(m)	= dep	th in m	uet
18.5	60.7	0.0332	0.0323	572	1	0.0007			d(ft)	= dep	th in f	fee
									tsl(s)	= obs	erved s	arr

anation:

= depth in meters

t) = depth in feet

(s) = observed arrival time in seconds (from source to receiver, along a slant path). For the arrival times used in the S-wave model, the times are the average of picks from traces obtained from hammer blows differing in direction by 180 degrees.

4.9

4.9

60.7 36.1 1695

24.6 19.7

dtb(ft) thk(ft) v(ft/s) vl(ft/s) vu(ft/s)

736

4535

3994

1644

5245

1749

tvrt(s) = vertical travel time computed from the model vavg(m/s) = average velocity from the surface to each depth,

computed as avg vel = d(m)/tvrt(s)

= sigma, standard deviation normalized to the standard deviation of best picks

rsdl(sec) = residual (observed - fitted travel time), in secs

dtb(m) = depth to bottom of layer in meters

thk(m) = thickness of layer in meters

v(m/s) = velocity of layer in meters per second

vl(m/s) = lower limit of velocity in meters per second (see text for explanation of velocity limits)

vu(m/s) = upper limit of velocity in meters per second

dtb(ft) = depth to bottom of layer in feet

thk(ft) = thickness of layer in feet

v(ft/s) = velocity of layer in feet per second

vl(ft/s) = lower limit of velocity in feet per second

vu(ft/s) = upper limit of velocity in feet per second

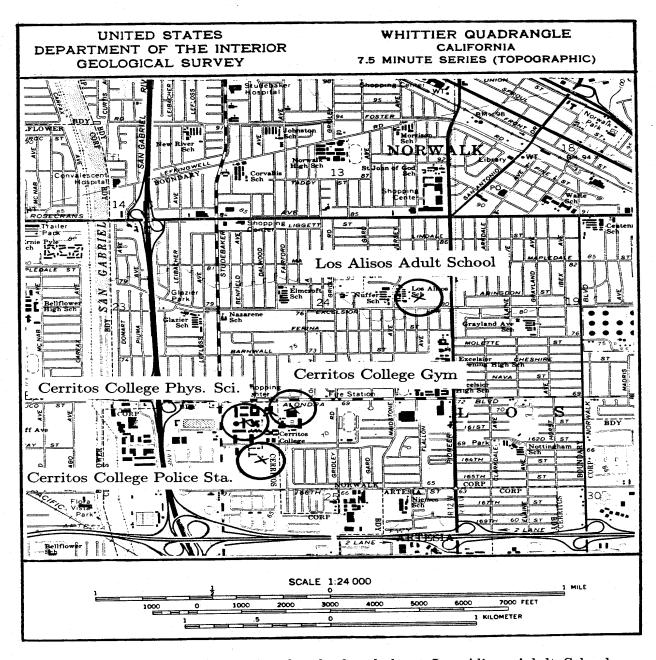


Figure A-36. Site location map for the borehole at Los Alisos Adult School.

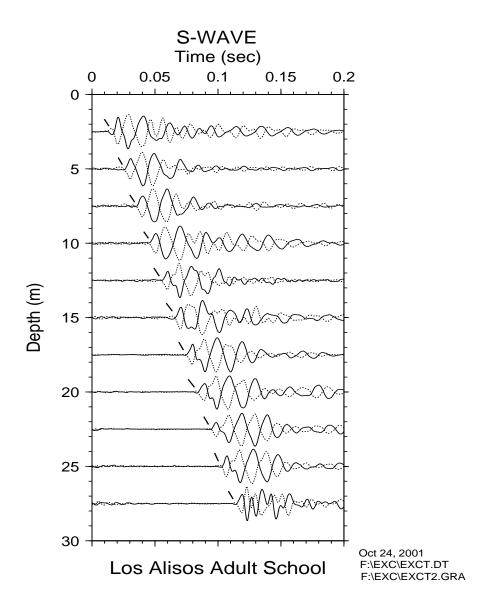


Figure A-37. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

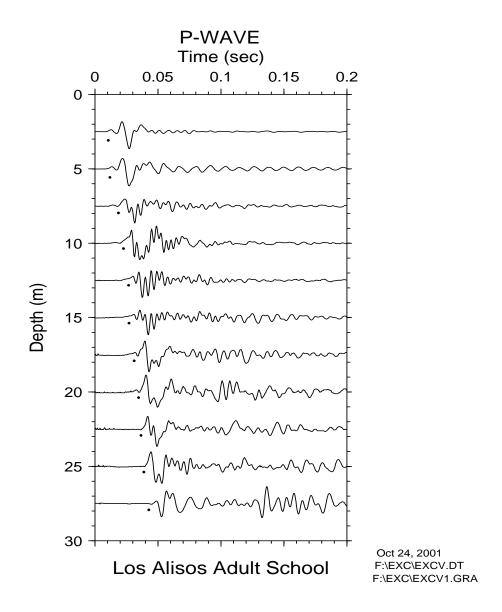


Figure A-38. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

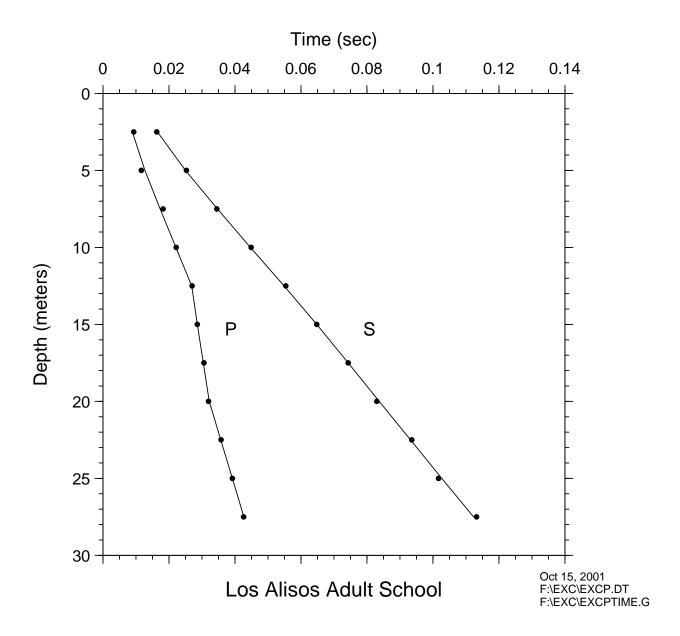


Figure A-39. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

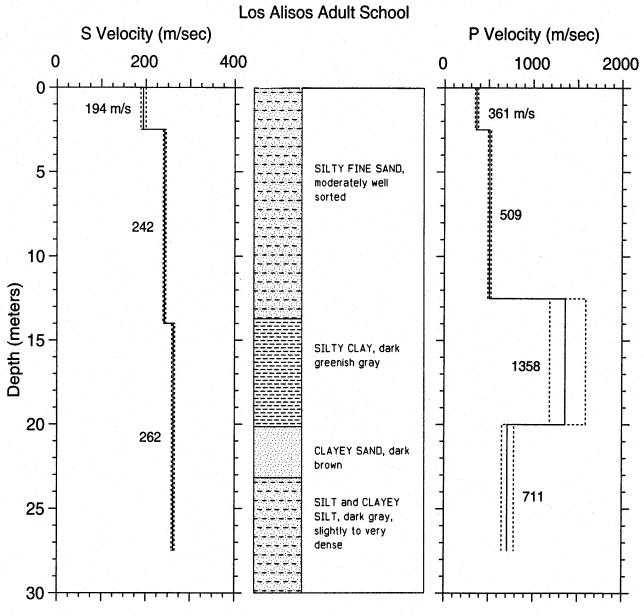


Figure A-40. S- and P-wave velocity profiles with dashed lines representing one standard deviation. Lithology is shown for correlation with velocities.

ABLE A-15. S-wave arrival times and velocity summaries.

Location: Los Alisos: S Coordinates: 33.89560 -118.08427 Hole_Code: 302 hoffset = 2.00 travel-time file: F:\RXC\RXCS TT

hoffset	= 2.0	0 tra	vel-time	file: F:\	EXC\E	XCS.TT				_						
							nlayer	5 = 3	1							
d(m)	d(ft)			vavg(m/s)	sig				v(m/s)	vl(m/s)	vu(m/s)			v(ft/s)	vl(ft/s)	vu(ft/s)
2.5	8.2			194	1	-0.0002	2.5	2.5	194	188	200	8.2	8.2	636	618	656
5.0	16.4	0.0253	0.0232	215	1	0.0003	14.0	11.5	242	239	245	45.9	37.7	794	784	804
7.5	24.6	0.0345	0.0335	224	1	-0.0003	27.5	13.5	262	259	265	90.2	44.3	859	849	870
10.0	32.8	0.0449	0.0439	228	1	0.0001										
12.5	41.0	0.0554	0.0542	231	1	0.0005										
15.0	49.2	0.0648	0.0642	234	1	0.0000										
17.5	57.4	0.0743	0.0738	237	1	0.0000										
20.0	65.6	0.0830	0.0833	240	1	-0.0007			Explanat							
22.5 25.0	73.8	0.0936 0.1017	0.0929 0.1024	242	1	0.0003 -0.0010			d(m) d(ft)	-	th in met					
27.5	82.0 90.2	0.1017		244 246	1	0.0009			tsl(s)	-	th in fee	t ival time		_ 4 _ 7 4		
27.5	90.2	0.1132	0.1119	246	1	0.0009			CSI(S)			along a				irrol
												n the S-w				
												icks from		•		
												ing in di				
									tvrt(s)			vel time				
												city from	•			h,
										COM	puted as	avg vel =	d(m)/tv	rt(s)	-	•
									sig	= sig	ma, stand	ard deviat	tion nor	malized	to the	
										sta	ndard dev	iation of	best pi	cks		
									rsdl(se	ec)= res	idual (ob	served -	fitted t	ravel ti	me), in s	ecs
									dtb(m)	= dep	th to bot	tom of la	yer in m	eters.		
									thk(m)			layer in				
									v(m/s)		-	layer in	-			
									vl(m/s)			of veloci	-	-		
												r explanat				
									vu(m/s)			of velocit	-	-	second	
									dtb(ft)			tom of la		eet		
									thk(ft)			layer in				
									v(ft/s)		-	layer in	-			
									vl(ft/s	•		of velocit	-	-		
									vu(IC/	s) = upp	er limit	of velocit	cy in fe	et per s	econa	

ABLE A-16. P-wave arrival times and velocity summaries.

Location: Los Alisos: P Coordinates: 33.89560 -118.08427 Hole Code: 302

boffcot	1. 103 - 2 O	niisos. O tro	rol-timo	file: F:\l		ven vr	30.03300	, 110.	00427 .	more_come	. 002					
Hollsec	- 2.0	o cra	Nel-CIME	IIIe. F.(BAC (B	ACF. II	plower	5 = 4								
							Hiayers	1								
d(m)	d(ft)	tsl(s)	tvrt(s)	vavg(m/s)	sig	rsdl(sec)	dtb(m)	thk(m)	v(m/s)	vl(m/s)	vu(m/s)	dtb(ft)	thk(ft)	v(ft/s)	vl(ft/s)	vu(ft/s)
2.5	8.2	0.0093	0.0069	361	2	0.0005	2.5	2.5	361	344	380	8.2	8.2	1186	1129	1248
5.0	16.4	0.0116	0.0118	422	2	-0.0011	12.5	10.0	509	491	527	41.0	32.8	1669	1611	1730
7.5	24.6	0.0182	0.0167	448	3	0.0009	20.0	7.5	1358	1185	1590	65.6	24.6	4456	3889	5218
10.0	32.8	0.0222	0.0217	462	4	0.0001	27.5	7.5	711	650	785	90.2	24.6	2334	2133	2575
12.5	41.0	0.0270	0.0266	470	3	0.0001										
15.0	49.2	0.0286	0.0284	528	3	-0.0001										
17.5	57.4	0.0306	0.0303	578	3	0.0002										
20.0	65.6	0.0320	0.0321	623	3	-0.0003										
22.5	73.8	0.0358	0.0356	632	2	0.0001			Explanat	cion:						
25.0		0.0392		639	2	0.0000			d(m)	-	th in met					
27.5	90.2	0.0426	0.0426	645	4	-0.0001			d(ft)		th in fee					
									tsl(s)			ival time				
												_	•		r the arr	
															imes are	
															from ham	mer
												ing in di				
												vel time				
									vavg(m,			city from avg vel =			each dept	h,
									sig			ard deviat			to the	
									_	sta	ndard dev	iation of	best pi	cks		
									rsdl(se	ec)= res:	idual (ob	served -	fitted t	ravel ti	me), in s	ecs
									dtb(m)	= dept	th to bot	tom of la	yer in m	eters		
									$\operatorname{thk}(m)$	= thi	ckness of	layer in	meters			
									v(m/s)	= vel	ocity of	layer in	meters p	er secon	d	
									vl(m/s)	•		of velocit	-			
										(se	e text fo	r explanat	ion of	velocity	limits)	
									vu(m/s)			of veloci	-		second	
									dtb(ft)			tom of la	-	eet		
									thk(ft)			layer in				
									v(ft/s)			layer in				
												of velocit	-	-		
									vu(ft/s	s) = upp	er limit	of veloci	ty in fe	et per s	econd	

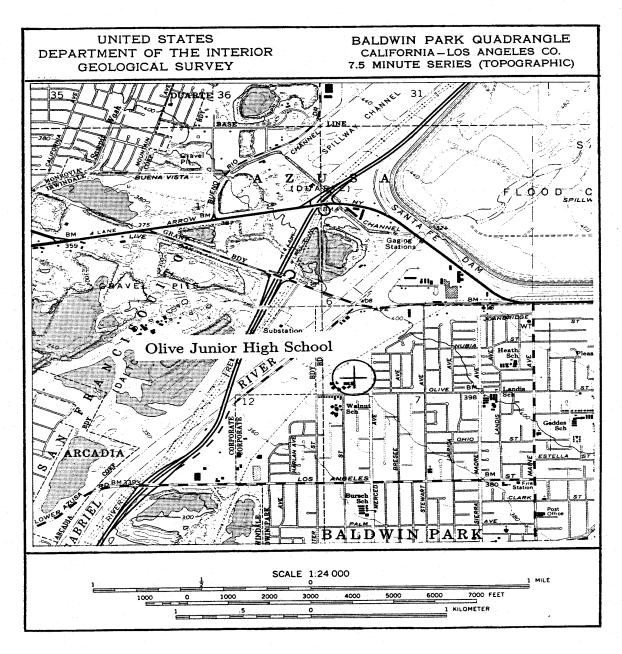


Figure A-41. Site location map for the borehole at Olive Junior High School. The accelerograph is located approximately 46 meters from the borehole.

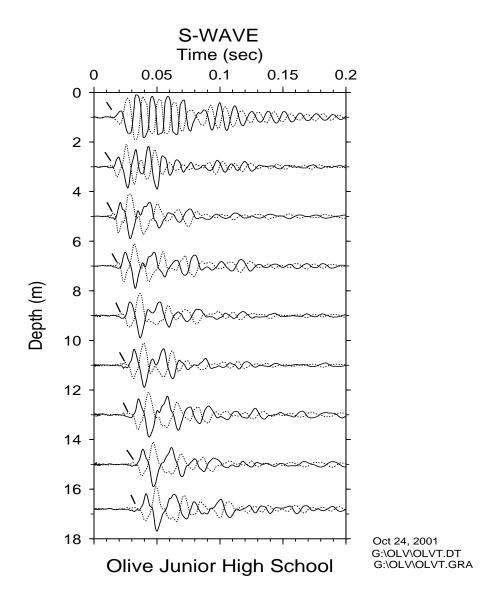


Figure A-42. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

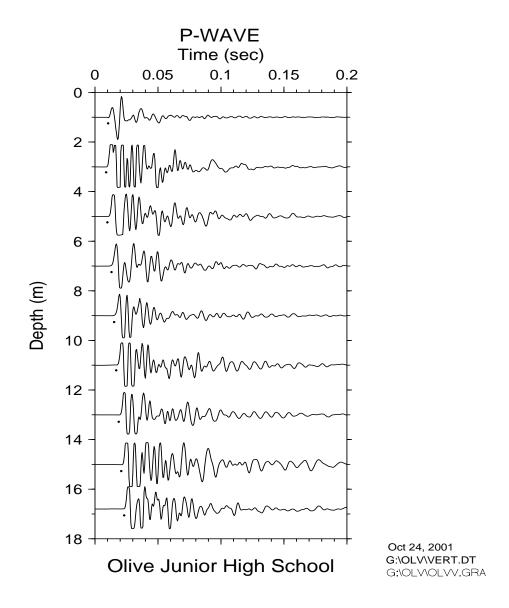


Figure A-43. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

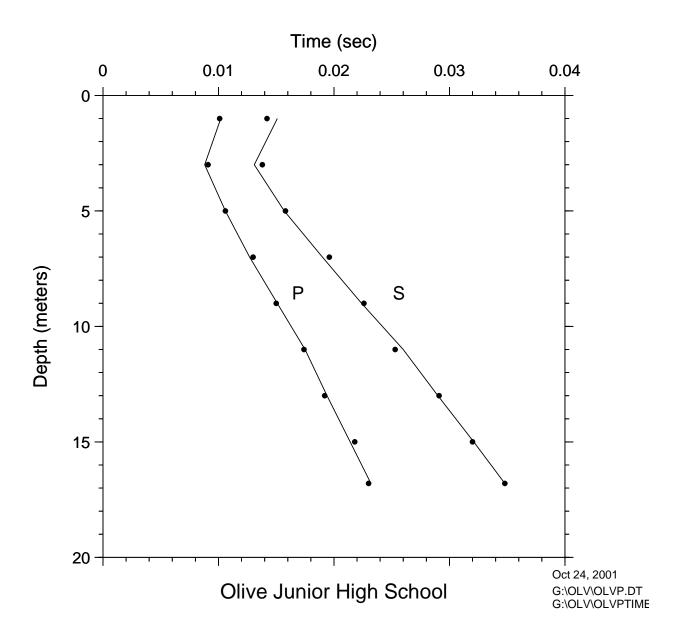


Figure A-44. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

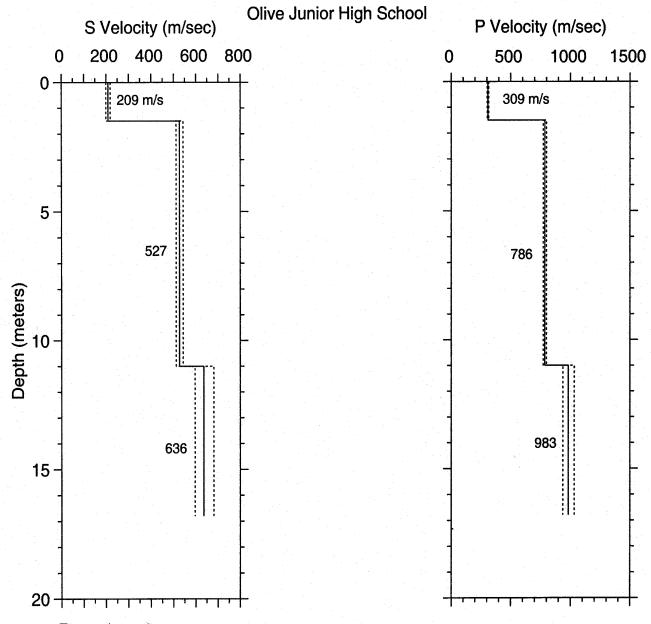


Figure A-45. S- and P-wave velocity profiles with dashed lines representing one standard deviation. Lithology is not available from this borehole.

ABLE A-17. S-wave arrival times and velocity summaries.

Location: Olive Jr. High School: S Coordinates: 34.10073 -117.97409 Hole_Code: 303 hoffset = 3.00 travel-time file: G:\OLV\OLVS.TT

nlayers = 3

d(m)	d(ft)	tsl(s)	tvrt(s)	vavg(m/s)	sig	rsdl(sec)	dtb(m)	thk(m)	v(m/s)	vl(m/s)	vu(m/s)	dtb(ft)	thk(ft)	v(ft/s)	vl(ft/s)	vu(ft/s)
1.0	3.3	0.0142	0.0048	209	2	-0.0009	1.5	1.5	209	200	219	4.9	4.9	685	655	718
3.0	9.8	0.0138	0.0100	299	1	0.0007	11.0	9.5	527	512	543	36.1	31.2	1728	1679	1781
5.0	16.4	0.0158	0.0138	362	1	0.0001	16.8	5.8	636	597	681	55.1	19.0	2087	1957	2235
7.0	23.0	0.0196	0.0176	397	1	0.0006										
9.0	29.5	0.0226	0.0214	420	1	0.0001										
11.0	36.1	0.0253	0.0252	436	1	-0.0008										
13.0	42.7	0.0291	0.0283	459	1	0.0001										
15.0	49.2	0.0320	0.0315	476	1	0.0000			Explanat	ion:						
16.8	55.1	0.0348	0.0343	489	1	0.0000			d(m)	= dept	th in meters	;				
									d(ft)	= dept	th in feet					
									tsl(s)	= obs	erved arriva	al time	in seco	nds (fro	n source	

to receiver, along a slant path). For the arrival times used in the S-wave model, the times are the average of picks from traces obtained from hammer blows differing in direction by 180 degrees.

 $\mbox{tvrt(s)} = \mbox{vertical travel time computed from the model} \\ \mbox{vavg(m/s)} = \mbox{average velocity from the surface to each depth,} \\$

computed as avg_vel = d(m)/tvrt(s)
ig = sigma, standard deviation normalized to the

sig = sigma, standard deviation normalized to the standard deviation of best picks

rsdl(sec) = residual (observed - fitted travel time), in secs

dtb(m) = depth to bottom of layer in meters

thk(m) = thickness of layer in meters

v(m/s) = velocity of layer in meters per second

vl(m/s) = lower limit of velocity in meters per second (see text for explanation of velocity limits)

vu(m/s) = upper limit of velocity in meters per second

dtb(ft) = depth to bottom of layer in feet

thk(ft) = thickness of layer in feet

v(ft/s) = velocity of layer in feet per second

vl(ft/s) = lower limit of velocity in feet per second

ABLE A-18. P-wave arrival times and velocity summaries.

Location: Olive Jr. High School: P Coordinates: 34.10073 -117.97409 Hole Code: 303 hoffset = 3.00 travel-time file: G:\OLV\OLVP.TT

nlayers = 3

d(m)	d(ft)	tsl(s)	tvrt(s)	vavg(m/s)	sig		dtb(m)	thk (m)	v(m/s)		vu(m/s)	dtb(ft)	thk(ft)	v(ft/s)	vl(ft/s)	vu(ft/s)
1.0	3.3	0.0101	0.0032	309	1	-0.0001	1.5	1.5	309	302	316	4.9	4.9	1013	990	1038
3.0	9.8	0.0091	0.0068	444	1	0.0002	11.0	9.5	786	772	800	36.1	31.2	2579	2534	2625
5.0	16.4	0.0106	0.0093	537	1	0.0000	16.8	5.8	983	937	1032	55.1	19.0	3223	3075	3386
7.0	23.0	0.0130	0.0119	591	1	0.0002										
9.0	29.5	0.0150	0.0144	625	1	-0.0001										
11.0	36.1	0.0174	0.0169	649	1	-0.0001										
13.0	42.7	0.0192	0.0190	685	1	-0.0002										
15.0	49.2	0.0218	0.0210	714	1	0.0004			Explanat	ion:						
16.8	55.1	0.0230	0.0228	736	1	-0.0002			d(m)	= dept	th in meter	s				
									d(ft)	= dept	th in feet					

tsl(s) = observed arrival time in seconds (from source to receiver, along a slant path). For the arrival times used in the S-wave model, the times are the average of picks from traces obtained from hammer blows differing in direction by 180 degrees.

tvrt(s) = vertical travel time computed from the model vavg(m/s) = average velocity from the surface to each depth,

computed as avg vel = d(m)/tvrt(s)

= sigma, standard deviation normalized to the standard deviation of best picks

rsdl(sec) = residual (observed - fitted travel time), in secs

dtb(m) = depth to bottom of layer in meters

thk(m) = thickness of layer in meters

v(m/s) = velocity of layer in meters per second

vl(m/s) = lower limit of velocity in meters per second (see text for explanation of velocity limits)

vu(m/s) = upper limit of velocity in meters per second

dtb(ft) = depth to bottom of layer in feet

thk(ft) = thickness of layer in feet

v(ft/s) = velocity of layer in feet per second

vl(ft/s) = lower limit of velocity in feet per second

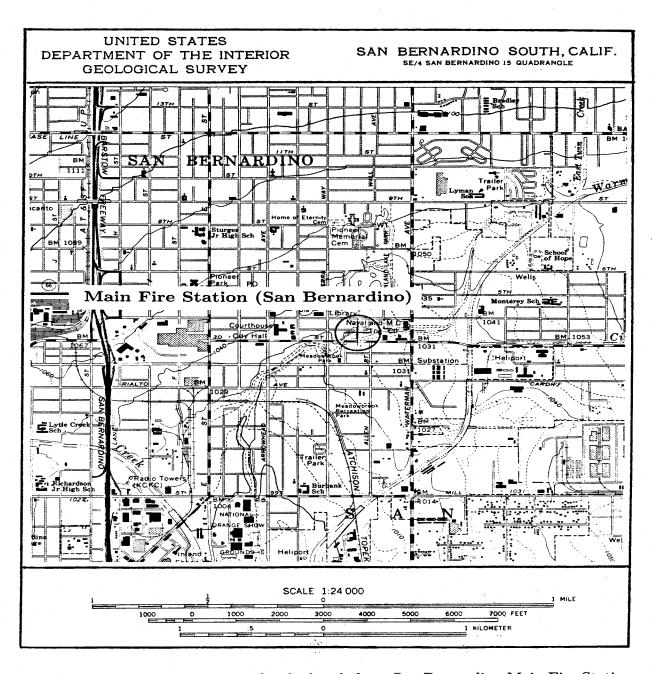
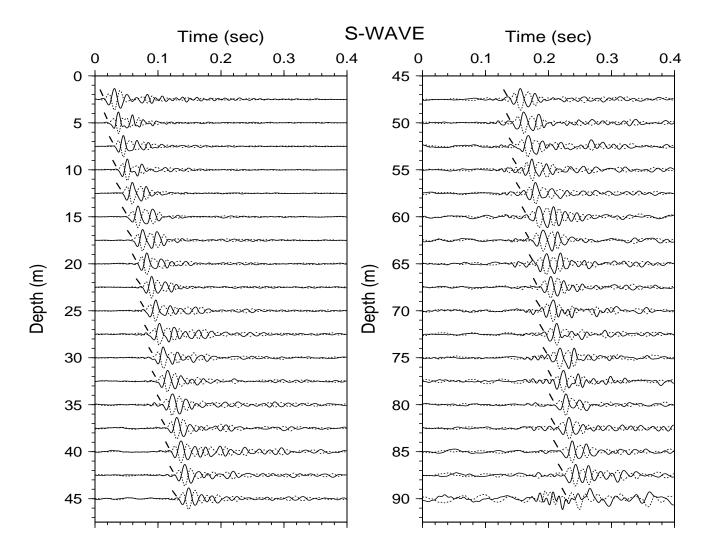



Figure A-46. Site location map for the borehole at San Bernardino Main Fire Station.

San Bernardino Main Fire Station

Figure A-47. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

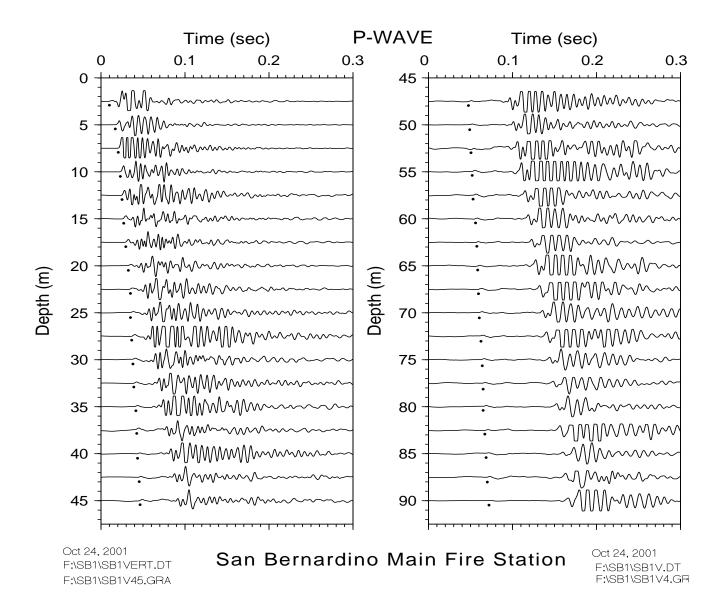
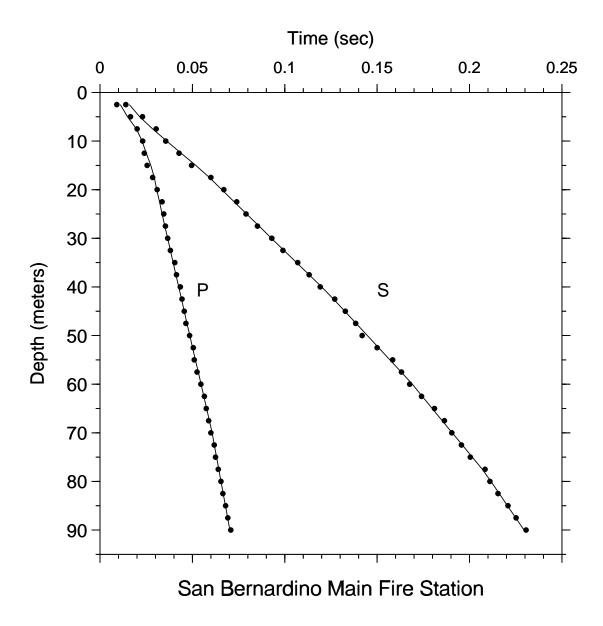



Figure A-48. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

d_obsd obs

Figure A-49. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

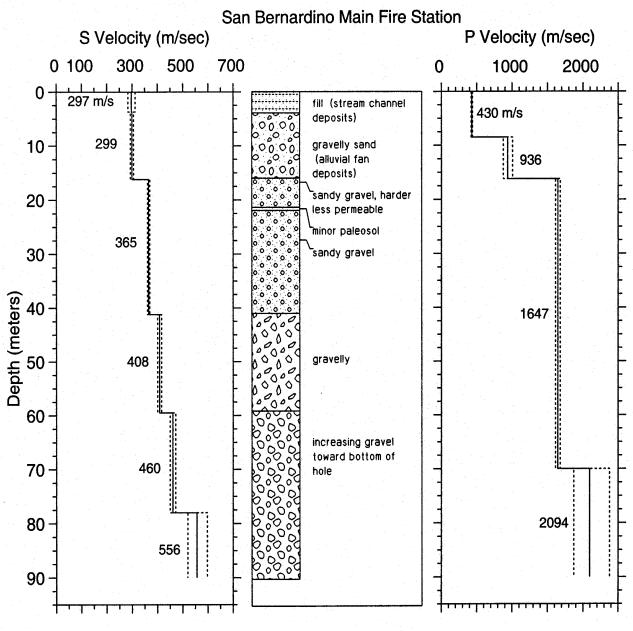


Figure A-50. S- and P-wave velocity profiles with dashed lines representing one standard deviation. Lithology is shown for correlation with velocities.

ABLE A-19. S-wave arrival times and velocity summaries.

Location: San Bernardino Fire Station: S Coordinates: 34.10534 -117.28201 Hole_Code: 305

hoffset = 4.00 travel-time file: F:\SB1\SB1S.TT

nlayers = 6

							nlayers	5 = 6								
d(m)	d(ft)	tsl(s)	tvrt(s)	vavg(m/s)	sig	rsdl(sec)	dtb(m)	thk(m)	v(m/s)	vl(m/s)	vu(m/s)	dtb(ft)	thk(ft)	v(ft/s)	vl(ft/s)	vu(ft/s)
2.5	8.2	0.0140	0.0084	297	1	-0.0019	3.7	3.7	297	284	312	12.1	12.1	976	932	1024
5.0	16.4		0.0168	298	1	0.0015	16.2	12.5	299	293	306	53.1	41.0	982	962	1004
7.5	24.6	0.0304	0.0252	298	1	0.0019	41.2	25.0	365	360	370	135.2	82.0	1197	1182	1213
10.0	32.8	0.0356	0.0335	298	1	-0.0005	59.5	18.3	408	401	416	195.2	60.0	1339	1314	1365
12.5	41.0	0.0428	0.0419	298	1	-0.0011	78.0	18.5	460	450	472	255.9	60.7	1511	1475	1548
15.0	49.2	0.0496	0.0503	299	1	-0.0024	90.0	12.0	556	520	597	295.3	39.4	1824	1706	1960
17.5	57.4		0.0578	303	1	0.0008										
20.0	65.6	0.0670	0.0647	309	1	0.0011										
22.5	73.8	0.0740	0.0715	315	1	0.0015										
25.0	82.0	0.0790	0.0784	319	1	-0.0003										
27.5	90.2	0.0852	0.0852	323	2	-0.0009			Explanat							
30.0	98.4	0.0930	0.0921	326	1	0.0002			d(m)	-	th in met					
32.5	106.6	0.0990	0.0989	329	1	-0.0006			d(ft)		th in feet					
35.0	114.8	0.1070	0.1058	331	1	0.0006			tsl(s)		erved arr:					
37.5	123.0	0.1132	0.1126	333	1	0.0000					receiver,					
40.0	131.2	0.1192	0.1195	335	1	-0.0008					es used i			,		
42.5	139.4	0.1270	0.1259	337	1	0.0005					rage of p					mer
45.0	147.6	0.1328	0.1321	341	1	0.0003					ws differ:					
47.5	155.8	0.1384	0.1382	344	1	-0.0002			tvrt(s)		tical tra					
50.0	164.0 172.2	0.1419 0.1500	0.1443	346	2	-0.0028 -0.0008			vavg(m,		rage velo				each dept	n,
52.5 55.0	180.4	0.1500	0.1505 0.1566	349 351	1	0.0015					puted as					
57.5	188.6	0.1584	0.1627	353	1	0.0013			sig	-	ma, stand: ndard dev:				to the	
57.5 60.0	196.9	0.1632	0.1627	356	1	-0.0002			wed1/e		ndard dev: idual (ob:					
62.5	205.1	0.1740	0.1741	359	1	-0.0014			dtb(m)		th to bot				me/, III S	ecs
65.0	213.3	0.1740	0.1741	362	1	0.0012			thk(m)		ch to both ckness of			ecers		
67.5	221.5	0.1864	0.1850	365	1	0.0012			v(m/s)		ocity of			er segon	a	
70.0	229.7	0.1904	0.1904	368	1	-0.0002			$v_{1(m/s)}$		er limit					
72.5	237.9	0.1956	0.1959	370	1	-0.0005			VI(M)S		e text fo					
75.0	246.1	0.2004	0.2013	373	1	-0.0011			vu(m/s)		er limit	-		-		
77.5	254.3	0.2084	0.2067	375	ī	0.0015			dtb(ft)		th to bot				Second	
80.0	262.5	0.2110	0.2114	378	1	-0.0006			thk(ft)	-	ckness of		-			
82.5	270.7	0.2154	0.2159	382	1	-0.0007			v(ft/s)		ocity of			second		
85.0	278.9	0.2208	0.2204	386	2	0.0003					er limit				econd	
87.5	287.1	0.2252	0.2249	389	1	0.0002					er limit					
90.0		0.2306	0.2294	392	3	0.0011			, , .				-,	-		

ABLE A-20. P-wave arrival times and velocity summaries.

Location: San Bernardino Fire Station: P Coordinates: 34.10534 -117.28201 Hole_Code: 305 hoffset = 4.00 travel-time file: F:\SBI\SBIP.TT

							nlayers	5 = 4								
d(m)	d(ft)		tvrt(s)	vavg(m/s)	sig	rsdl(sec)	dtb(m)	thk(m)	v(m/s)	v1(m/s)	vu(m/s)			v(ft/s)	vl(ft/s)	vu(ft/s)
2.5	8.2	0.0091	0.0058	430	1	-0.0019	8.5	8.5	430	421	441	27.9	27.9	1412	1381	1445
5.0	16.4	0.0165	0.0116	430	1	0.0016	16.2	7.7	936	876	1006	53.1	25.3	3072	2873	3301
7.5	24.6	0.0201	0.0174	430	1	0.0003	70.0	53.8	1647	1614	1680	229.7	176.5	5402	5295	5513
10.0	32.8	0.0231	0.0214	468	1	0.0002	90.0	20.0	2094	1870	2378	295.3	65.6	6870	6136	7803
12.5	41.0	0.0240	0.0240	520	1	-0.0010										
15.0	49.2	0.0255	0.0267	562	1	-0.0020										
17.5	57.4	0.0285	0.0288	608	1	-0.0008										
20.0	65.6	0.0309	0.0303	660	1	0.0002										
22.5	73.8	0.0336	0.0318	707	1	0.0015			Explanat							
25.0	82.0	0.0345	0.0333	750	1	0.0009			d(m)		th in met					
27.5	90.2	0.0354	0.0349	789	1	0.0003			d(ft)	-	th in fee					
30.0	98.4	0.0366	0.0364	825	1	0.0000			tsl(s)		erved arr					
32.5	106.6	0.0381	0.0379	858	1	0.0000					receiver,					
35.0	114.8		0.0394	888	1	0.0009					es used i			,		
37.5	123.0	0.0414	0.0409	916 942	1	0.0004 0.0009					rage of p					mer
40.0 42.5	131.2 139.4	0.0435	0.0424 0.0440	942 967	1	0.0003					ws differ:	-		-	-	
42.5 45.0	147.6	0.0444	0.0440	989	1	0.0003			tvrt(s)		tical tra rage velo		•			_
45.0 47.5	155.8	0.0456	0.0455	1011	3	-0.0006			vavg(m)		rage velo puted as				each dept.	п,
50.0	164.0	0.0485	0.0470	1031	4	-0.0000			siq		puceu as ma, stand:				+- +h-	
52.5	172.2	0.0505	0.0500	1031	3	0.0001			sig		ma, scand ndard dev				co che	
55.0	180.4	0.0510	0.0516	1067	1	-0.0006			red1/e		idual (ob		-		me) in s	005
57.5	188.6	0.0525	0.0531	1083	2	-0.0006			dtb(m)		th to bot				me,, 111 s	603
60.0	196.9	0.0546	0.0546	1003	3	0.0000			thk(m)		ch co boc ckness of			ecels		
62.5	205.1	0.0565	0.0561	1114	2	0.0003			v(m/s)		ocity of	-		er secon	đ	
65.0	213.3	0.0575	0.0576	1128	2	-0.0002			vl(m/s)		er limit					
67.5	221.5	0.0588	0.0591	1141	2	-0.0004					e text fo					
70.0	229.7	0.0600	0.0607	1154	2	-0.0007			vu(m/s)		er limit					
72.5	237.9	0.0618	0.0619	1172	2	-0.0001			dtb(ft)		th to bot					
75.0	246.1	0.0625	0.0630	1190	2	-0.0006			thk(ft)	-	ckness of		-			
77.5	254.3	0.0640	0.0642	1206	2	-0.0003			v(ft/s)		ocity of			second		
80.0	262.5	0.0655	0.0654	1223	2	0.0000			vl(ft/s	s) = low	er limit	of veloci	ty in fe	et per s	econd	
82.5	270.7	0.0665	0.0666	1238	2	-0.0002			vu(ft/s	s) = upp	er limit	of veloci	ty in fe	et per s	econd	
85.0	278.9	0.0680	0.0678	1253	2	0.0001							-	-		
87.5	287.1	0.0692	0.0690	1268	2	0.0001										
90.0	295.3	0.0708	0.0702	1282	3	0.0005										

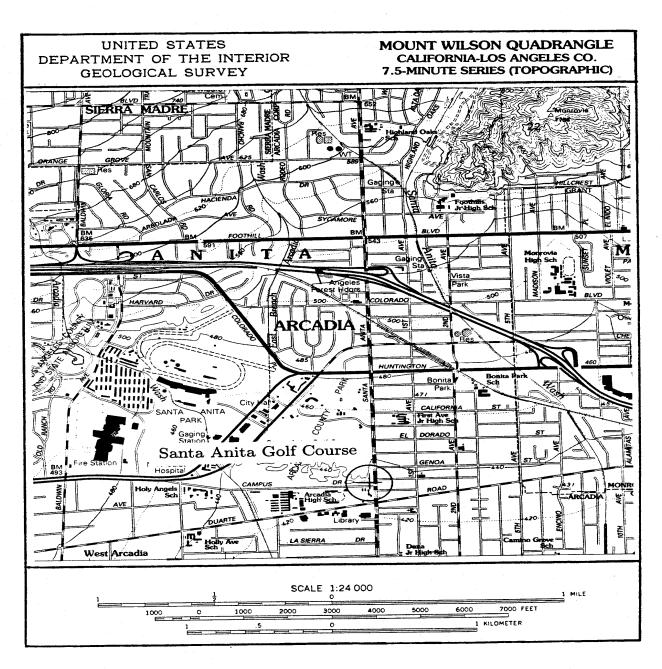


Figure A-51. Site location map for the borehole at Santa Anita Golf Course.

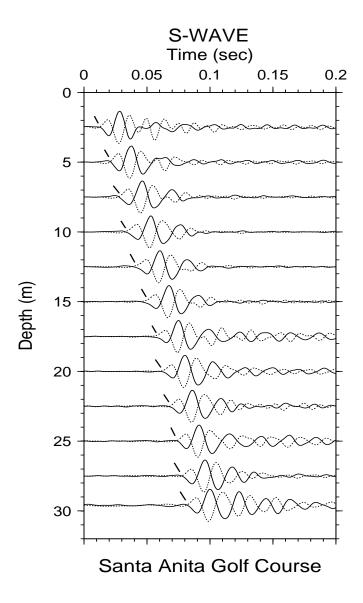


Figure A-52. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

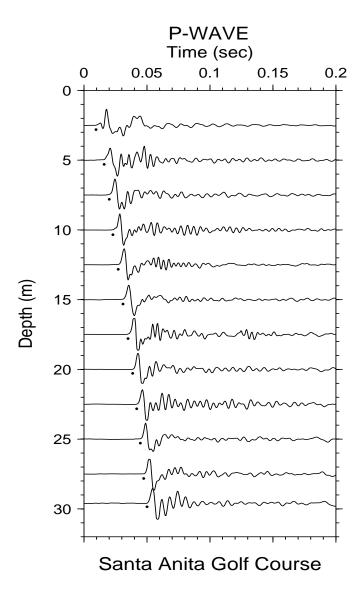


Figure A-53. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

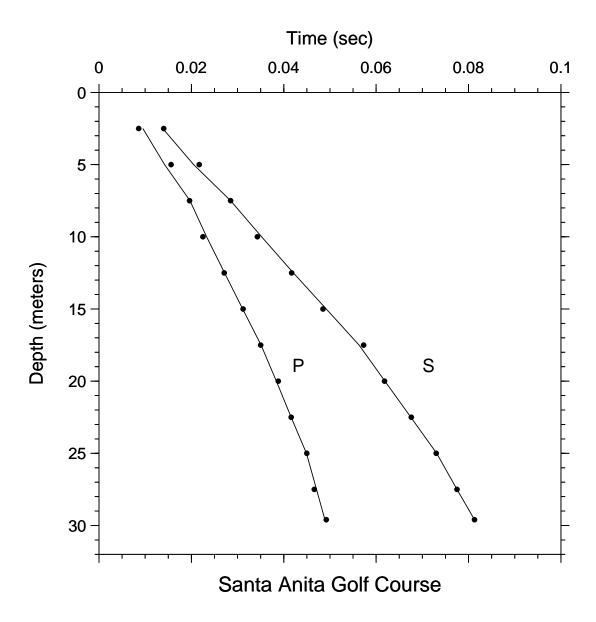


Figure A-54. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

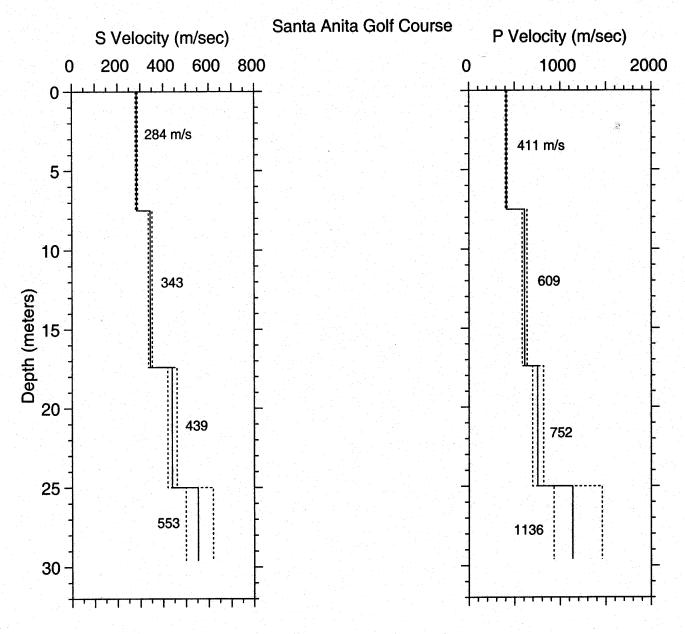


Figure A-55. S- and P-wave velocity profiles with dashed lines representing one standard deviation. Lithology is not available from this borehole.

ABLE A-21. S-wave arrival times and velocity summaries.

Location:	Santa	Anita Golf Cours	e: S	Coordinates:	34.13096	-118.03070	Hole_Code:	304
hoffset =	3.00	travel-time fi	le: F	:\SAG\SAGS RE.TT			_	

d(m)	d(ft)	tsl(s)	tvrt(s)	vavg(m/s)	sig	rsdl(sec)
2.5	8.2	0.0140	0.0088	284	1	0.0002
5.0	16.4	0.0217	0.0176	284	1	0.0012
7.5	24.6	0.0285	0.0264	284	1	0.0000
10.0	32.8	0.0343	0.0337	297	1	-0.0009
12.5	41.0	0.0417	0.0410	305	1	-0.0004
15.0	49.2	0.0485	0.0483	311	1	-0.0007
17.5	57.4	0.0573	0.0555	315	1	0.0010
20.0	65.6	0.0618	0.0612	327	1	-0.0001
22.5	73.8	0.0676	0.0669	336	1	0.0001
25.0	82.0	0.0730	0.0726	344	1	-0.0001
27.5	90.2	0.0775	0.0771	357	1	0.0000
29.6	97.1	0.0813	0.0809	366	1	0.0000

Explanation:

dtb(m) thk(m) v(m/s) vl(m/s) vu(m/s)

284

343

439

553

nlayers = 4

29.6 4.6

7.5

9.9

7.6

7.5

17.4

25.0

d(m) = depth in meters

d(ft) = depth in feet

279

335

420

500

352

460

619

tsl(s) = observed arrival time in seconds (from source to receiver, along a slant path). For the arrival times used in the S-wave model, the times are the average of picks from traces obtained from hammer blows differing in direction by 180 degrees.

24.6

57.1

24.6

32.5

82.0 24.9

97.1 15.1

dtb(ft) thk(ft) v(ft/s) vl(ft/s) vu(ft/s)

1126

1441

1814

1099

1377

1640

1154

1510

2031

blows differing in direction by 180 degrees. tvrt(s) = vertical travel time computed from the model

sig = sigma, standard deviation normalized to the standard deviation of best picks

rsdl(sec) = residual (observed - fitted travel time), in secs

dtb(m) = depth to bottom of layer in meters

thk(m) = thickness of layer in meters

v(m/s) = velocity of layer in meters per second

vl(m/s) = lower limit of velocity in meters per second (see text for explanation of velocity limits)

vu(m/s) = upper limit of velocity in meters per second

dtb(ft) = depth to bottom of layer in feet

thk(ft) = thickness of layer in feet

v(ft/s) = velocity of layer in feet per second

vl(ft/s) = lower limit of velocity in feet per second

ABLE A22. P-wave arrival times and velocity summaries.

Location: Santa Anita Golf Course: P Coordinates: 34.13096 -118.03075 Hole_Code: 304 hoffset = 3.00 travel-time file: F:\SAG\SAGP.TT

hoffset	= 3.0	0 tra	vel-time	file: F:\	SAG\S.	AGP.TT										
							nlayers	5 = 4								
d(m)	d(ft)			vavg(m/s)	sig		dtb(m)				vu(m/s)	dtb(ft)			vl(ft/s)	
2.5	8.2	0.0086	0.0061	411	1	-0.0009	7.5	7.5	411	401	421	24.6	24.6	1348	1317	1381
5.0	16.4	0.0156	0.0122	411	1	0.0014	17.4	9.9	609	584	637	57.1	32.5	1999	1915	2091
7.5	24.6	0.0196	0.0182	411	1	-0.0001	25.0	7.6	752	696	817	82.0	24.9	2466	2285	2679
10.0	32.8	0.0225	0.0224	447	1	-0.0008	29.6	4.6	1136	930	1459	97.1	15.1	3727	3052	4785
12.5	41.0	0.0271	0.0265	472	1	0.0000										
15.0	49.2	0.0312	0.0306	491	1	0.0001										
17.5	57.4	0.0350		505	1	-0.0001										
20.0	65.6	0.0388	0.0380	527	1	0.0005										
22.5	73.8	0.0416	0.0413	545	1	-0.0001			Explanat							
25.0	82.0	0.0450	0.0446	560	1	0.0001			d(m)	-	th in met					
27.5		0.0466	0.0468	587	1				d(ft)		th in fee					
29.6	97.1	0.0492	0.0487	608	1	0.0003			tsl(s)		erved arr					
											receiver,					
											es used i					
											rage of p					mer
											ws differ	-		-	~	
									tvrt(s)		tical tra		-			
									vavg(m,		rage velo puted as				each dept	h,
									siq		ma, stand				to the	
									9	-	ındard dev					
									rsdl(se		idual (ob				me), in s	ecs
									dtb(m)	= dep	th to bot	tom of la	yer in m	eters		
									thk(m)	= thi	.ckness of	layer in	meters			
									v(m/s)	= vel	ocity of	layer in	meters p	er secon	d	
									vl(m/s)	= low	er limit	of velocit	y in me	ters per	second	
										(se	e text fo	r explanat	ion of	velocity	limits)	
									vu(m/s)	= upp	er limit	of velocit	y in me	ters per	second	
									dtb(ft)	= dep	th to bot	tom of la	yer in f	eet		
									thk(ft)	= thi	.ckness of	layer in	feet			
									v(ft/s)	= vel	ocity of	layer in	feet per	second		
									vl(ft/s	s) = low	er limit	of velocit	y in fe	et per s	econd	
									vu(ft/s	s) = upp	er limit	of veloci	y in fe	et per s	econd	

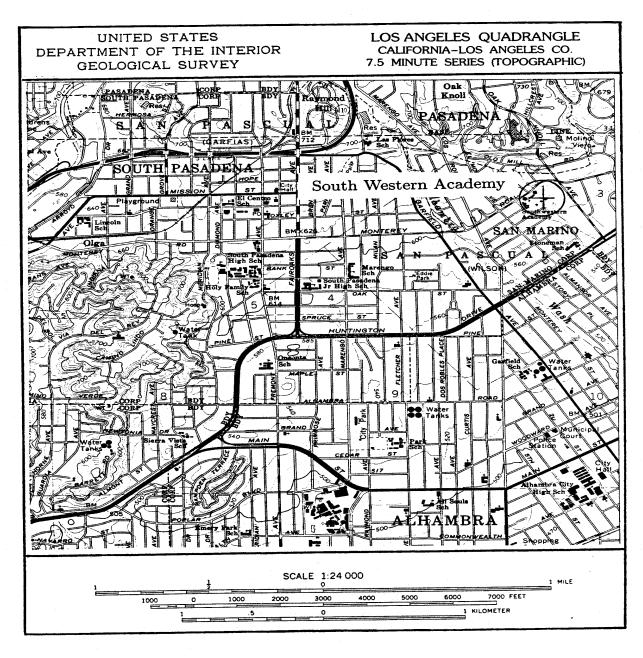


Figure A-56. Site location map for the borehole at South Western Academy. The accelerograph is located approximately 10 meters from the borehole.

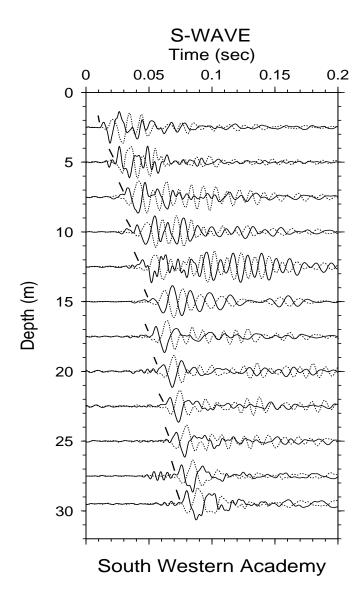


Figure A-57. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

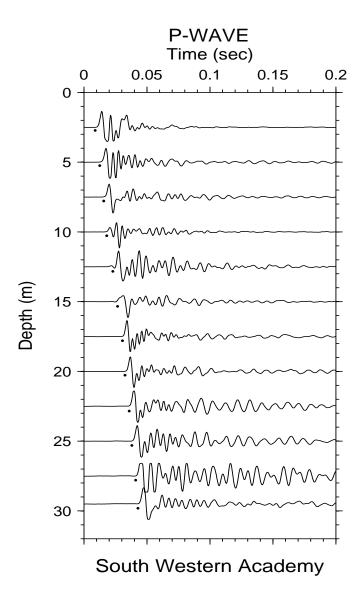


Figure A-58. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

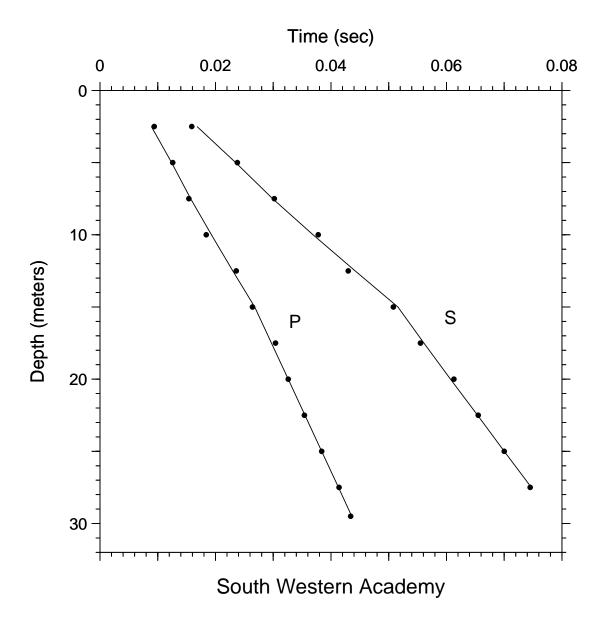


Figure A-59. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

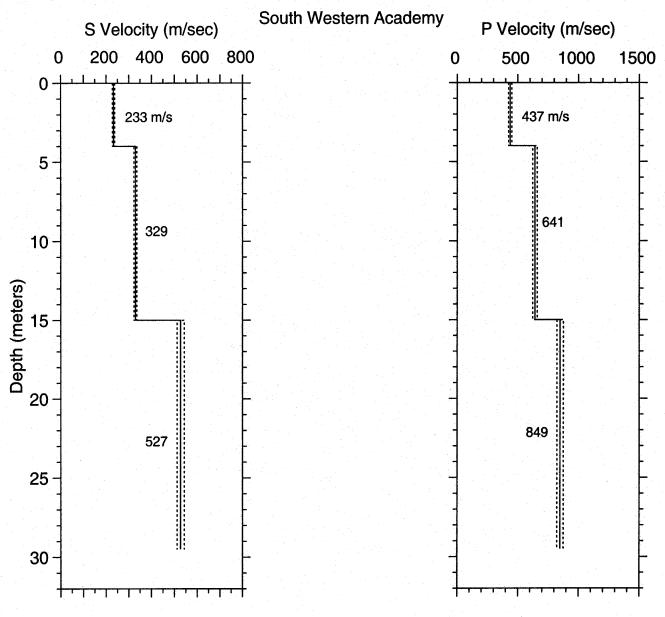


Figure A-60. S- and P-wave velocity profiles with dashed lines representing one standard deviation. Lithology is not available from this borehole.

ABLE A23. S-wave arrival times and velocity summaries.

Location:	South	Western Academy: S	Coordinates:	34.11533 -118.13050	Hole_Code:	306
hoffset =	3.00	travel-time file:	F:\SWA\SWAS_RE.TT		_	
				nlavers = 3		

d(m)	d(ft)	tsl(s)	tvrt(s)	vavg(m/s)	sig	rsdl(sec)
2.5	8.2	0.0159	0.0107	233	1	-0.0009
5.0	16.4	0.0238	0.0202	247	1	0.0003
7.5	24.6	0.0302	0.0278	270	1	0.0003
10.0	32.8	0.0378	0.0354	282	1	0.0009
12.5	41.0	0.0430	0.0430	291	3	-0.0012
15.0	49.2	0.0508	0.0506	296	1	-0.0008
17.5	57.4	0.0555	0.0553	316	2	-0.0006
20.0	65.6	0.0613	0.0601	333	1	0.0006
22.5	73.8	0.0655	0.0648	347	1	0.0001
25.0	82.0	0.0700	0.0696	359	1	0.0000
27.5	90.2	0.0745	0.0743	370	1	-0.0002

Explanation:

dtb(m) thk(m) v(m/s) vl(m/s) vu(m/s)

233

329

4.0

15.0 11.0

4.0

29.5 14.5 527

d(m) = depth in meters

227

323

511

238

336

543

d(ft) = depth in feet

tsl(s) = observed arrival time in seconds (from source to receiver, along a slant path). For the arrival times used in the S-wave model, the times are the average of picks from traces obtained from hammer blows differing in direction by 180 degrees.

13.1

13.1

96.8 47.6 1728

49.2 36.1

dtb(ft) thk(ft) v(ft/s) vl(ft/s) vu(ft/s)

763

1080

1059

1678

1102

1781

tvrt(s) = vertical travel time computed from the model vavg(m/s) = average velocity from the surface to each depth,

computed as avg vel = d(m)/tvrt(s)

sig = sigma, standard deviation normalized to the standard deviation of best picks

rsdl(sec) = residual (observed - fitted travel time), in secs

dtb(m) = depth to bottom of layer in meters

thk(m) = thickness of layer in meters

v(m/s) = velocity of layer in meters per second

vl(m/s) = lower limit of velocity in meters per second (see text for explanation of velocity limits)

vu(m/s) = upper limit of velocity in meters per second

dtb(ft) = depth to bottom of layer in feet

thk(ft) = thickness of layer in feet

v(ft/s) = velocity of layer in feet per second

vl(ft/s) = lower limit of velocity in feet per second

ABLE A-24. P-wave arrival times and velocity summaries.

Location: South Western Academy: P Coordinates: 34.11533 -118.13050 Hole_Code: 306 hoffset = 3.00 travel-time file: F:\SWA\SWAP.TT

noliset	= 3.0	u tra	ver-time	<pre>iiie: F:\;</pre>	SWA\5	WAP. II										
							nlayers	5 = 3								
d(m)	d(ft)		tvrt(s)	vavg(m/s)	sig	rsdl(sec)	dtb(m)	thk(m)	v(m/s)	vl(m/s)	vu(m/s)	dtb(ft)	thk(ft)	v(ft/s)	vl(ft/s)	vu(ft/s)
2.5	8.2	0.0094	0.0057	437	1	0.0005	4.0	4.0	437	423	451	13.1	13.1	1432	1388	1479
5.0	16.4	0.0126	0.0107	467	1	0.0002	15.0	11.0	641	623	660	49.2	36.1	2102	2042	2165
7.5	24.6	0.0154	0.0146	513	1	-0.0003	29.5	14.5	849	823	876	96.8	47.6	2785	2701	2874
10.0	32.8	0.0184	0.0185	540	1	-0.0009										
12.5	41.0	0.0236	0.0224	558	2	0.0006										
15.0	49.2	0.0264	0.0263	570	2	-0.0004										
17.5	57.4	0.0304	0.0293	598	1	0.0007										
20.0	65.6	0.0326	0.0322	621	1	0.0000			Explanat	cion:						
22.5	73.8	0.0354	0.0351	640	1	-0.0001			d(m)	= dep	th in met	ers				
25.0	82.0	0.0384	0.0381	656	1	0.0000			d(ft)	-	th in fee					
27.5	90.2	0.0414	0.0410	670	1	0.0001			tsl(s)			ival time				
29.5	96.8	0.0434	0.0434	680	1	-0.0002						along a	-			
												n the S-wa		,		
												icks from				mer
												ing in di		-	-	
									tvrt(s)			vel time				
									vavg(m,			city from avg vel =			each dept	h,
									sig			ard deviat			to the	
									-	sta	ndard dev	iation of	best pi	cks		
									rsdl(se	ec)= res	idual (ob	served -	fitted t	ravel ti	me), in s	ecs
									dtb(m)	= dep	th to bot	tom of lay	yer in m	eters		
									thk(m)	= thi	ckness of	layer in	meters			
									v(m/s)	= vel	ocity of	layer in :	meters p	er secon	d	
									vl(m/s)) = low	er limit	of velocit	ty in me	ters per	second	
										(se	e text fo	r explanat	cion of	velocity	limits)	
									vu(m/s)) = upp	er limit	of velocit	ty in me	ters per	second	
									dtb(ft)) = dep [.]	th to bot	tom of lay	yer in f	eet		
									thk(ft)) = thi	ckness of	layer in	feet			
									v(ft/s)) = vel	ocity of	layer in	feet per	second		
									1 / 64- (- 1 - 1	1224	. 4 1				

vl(ft/s) = lower limit of velocity in feet per second vu(ft/s) = upper limit of velocity in feet per second

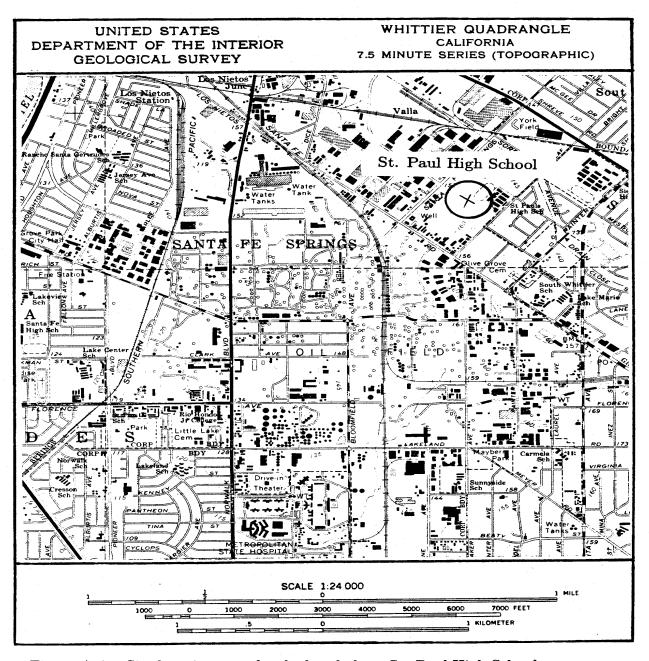


Figure A-61. Site location map for the borehole at St. Paul High School.

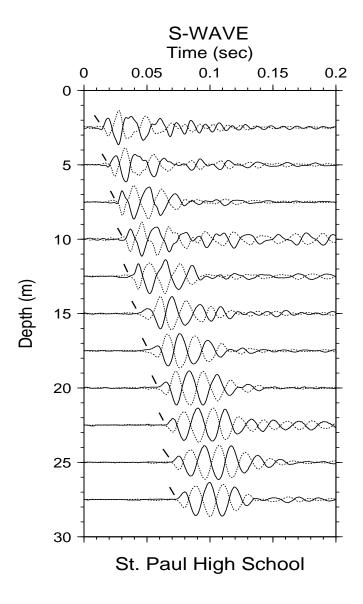


Figure A-62. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

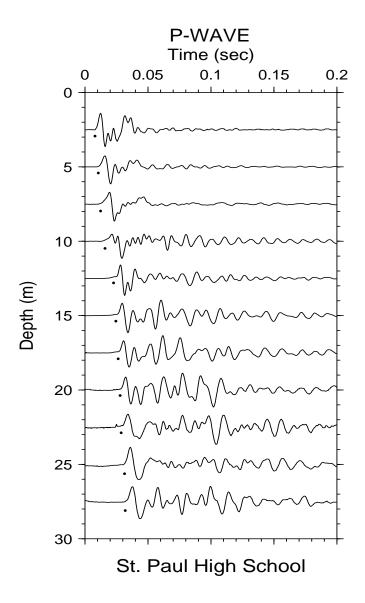


Figure A-63. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

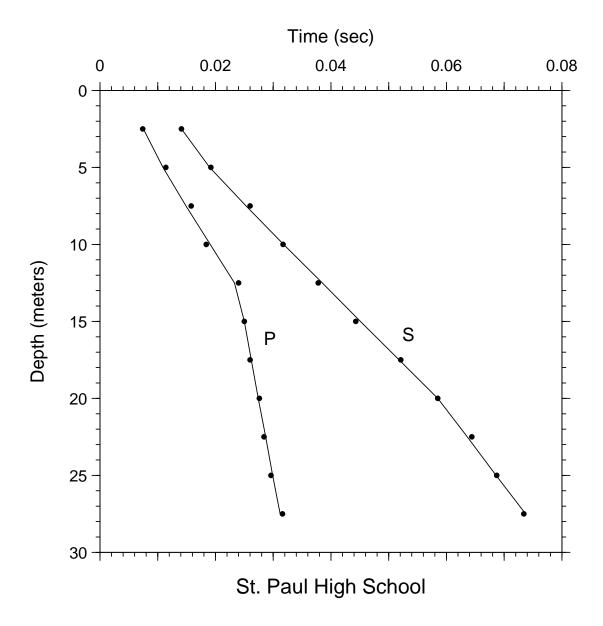


Figure A-64. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

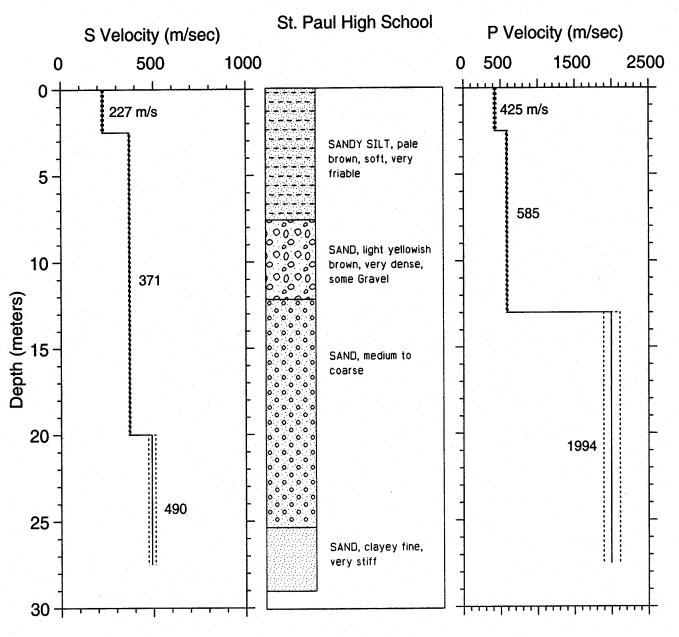


Figure A-65. S- and P-wave velocity profiles with dashed lines representing one standard deviation. Lithology is shown for correlation with velocities.

ABLE A-25. S-wave arrival times and velocity summaries.

Location: St. Paul High School: S Coordinates: 33.95158 -118.05369 Hole_Code: 307 hoffset = 2.00 travel-time file: F:\STP\STPS.TT

noiiset	= 2.0	u tra	ver-time	ille: F:\	SIPIS	IPS.II										
							nlayers	5 = 3								
d(m)	d(ft)			vavg(m/s)	sig	rsdl(sec)	dtb(m)		v(m/s)	vl(m/s)	vu(m/s)		thk(ft)	v(ft/s)	vl(ft/s)	vu(ft/s)
2.5	8.2	0.0141	0.0110	227	1	0.0000	2.5	2.5	227	221	233	8.2	8.2	744	723	766
5.0	16.4	0.0192	0.0178	282	1	0.0001	20.0	17.5	371	367	375	65.6	57.4	1216	1203	1230
7.5	24.6	0.0260	0.0245	306	1	0.0007	27.5	7.5	490	471	510	90.2	24.6	1608	1546	1674
10.0	32.8	0.0317	0.0312	320	1	-0.0001										
12.5	41.0	0.0378	0.0380	329	1	-0.0007										
15.0	49.2	0.0443	0.0447	336	1	-0.0008										
17.5	57.4	0.0521	0.0514	340	1	0.0003										
20.0	65.6	0.0585	0.0582	344	1	0.0000			Explanat	cion:						
22.5	73.8	0.0644	0.0633	356	1	0.0008			d(m)	= dept	th in met	ers				
25.0	82.0	0.0687	0.0684	366	1	0.0001			d(ft)	= dept	th in fee	t				
27.5	90.2	0.0734	0.0735	374	1	-0.0003			tsl(s)	= obs	erved arr	ival time	in seco	nds (fro	m source	
										to	receiver,	along a	slant pa	th). Fo	r the arr	ival
										time	es used i	n the S-w	ave mode	l, the t	imes are	the
										ave	rage of p	icks from	traces	obtained	from ham	mer
										blo	ws differ	ing in di	rection	by 180 d	legrees.	
									tvrt(s)) = ver	tical tra	vel time	computed	from th	e model	
									vavg(m,		-	city from avg vel =			each dept	h,
									sig			ard deviat			to the	
									-	sta	ndard dev	iation of	best pi	cks		
									rsdl(se	ec)= res:	idual (ob	served -	fitted t	ravel ti	me), in s	ecs
									dtb(m)	= dept	th to bot	tom of la	yer in m	eters		
									thk(m)	= thi	ckness of	layer in	meters			
									v(m/s)	= vel	ocity of	layer in	meters p	er secon	d	
									vl(m/s)) = low-	er limit	of velocit	ty in me	ters per	second	
										(se	e text fo	r explanat	cion of	velocity	limits)	
									vu(m/s)) = upp	er limit	of velocit	ty in me	ters per	second	
									dtb(ft)) = dept	th to bot	tom of la	yer in f	eet		
									thk(ft)) = thi	ckness of	layer in	feet			
									v(ft/s)) = vel	ocity of	layer in	feet per	second		
															_	

vl(ft/s) = lower limit of velocity in feet per second vu(ft/s) = upper limit of velocity in feet per second

ABLE A-26. P-wave arrival times and velocity summaries.

Location: St. Paul High School: P Coordinates: 33.95158 -118.05369 Hole_Code: 307 hoffset = 2.00 travel-time file: F:\STP\STPP.TT

hoffset	= 2.0	U tra	vel-time	file: F:\	STP\S	TPP.TT										
							nlayer	5 = 3								
d(m)	d(ft)	tsl(s)	tvrt(s)	vavg(m/s)	sig	rsdl(sec)	dtb(m)	thk(m)	v(m/s)	vl(m/s)	vu(m/s)	dtb(ft)	thk(ft)	v(ft/s)	vl(ft/s)	vu(ft/s)
2.5	8.2	0.0074	0.0059	425	1	-0.0001	2.5	2.5	425	408	442	8.2	8.2	1394	1340	1452
5.0	16.4	0.0114	0.0102	492	2	0.0005	13.0	10.5	585	574	597	42.7	34.4	1919	1882	1958
7.5	24.6	0.0158	0.0144	520	3	0.0009	27.5	14.5	1994	1890	2111	90.2	47.6	6543	6200	6927
10.0	32.8	0.0184	0.0187	535	3	-0.0007										
12.5	41.0	0.0240	0.0230	544	2	0.0007										
15.0	49.2	0.0250	0.0248	604	1	0.0000										
17.5	57.4	0.0260	0.0261	671	1	-0.0002										
20.0	65.6	0.0276	0.0273	731	1	0.0002			Explanat	cion:						
22.5	73.8	0.0284	0.0286	787	1	-0.0003			d(m)	•	th in met					
25.0	82.0	0.0296	0.0298	838	1	-0.0003			d(ft)	= dep	th in fee	t				
27.5	90.2	0.0316	0.0311	884	1	0.0004			tsl(s)			ival time				
												along a				
												n the S-w				
												icks from				mer
												ing in di		-	-	
									tvrt(s)			vel time	•			
									vavg(m,		-	city from			each dept	h,
												avg_vel =			_	
									sig	_	•	ard deviat			to the	
												iation of	-			
												served -			me), in s	ecs
									dtb(m)	-		tom of la	-	eters.		
									thk(m)			layer in				
									v(m/s)		-	layer in	-			
									vl(m/s)			of velocit	-	-		
												r explanat		-		
									vu(m/s)			of velocit	-	•	second	

dtb(ft) = depth to bottom of layer in feet
thk(ft) = thickness of layer in feet
v(ft/s) = velocity of layer in feet per second

vl(ft/s) = lower limit of velocity in feet per second vu(ft/s) = upper limit of velocity in feet per second

APPENDIX—B

Poisson's Ratios

Table B-1. Poisson's ratio calculated from P- and S-wave velocity models for the Cerritos College Gymnasium site.

```
P wave - d2bot, pvel, for file: CGMP.VEL
                 437.000
  6.00000
                 348.000
  10.0000
  29.4000
                 1563.00
S wave - d2bot, svel, for file: CGMS.VEL
  2.50000
                 255.000
  5.00000
                 288.000
  12.5000
                 217.000
  25.0000
                 249.000
  29.4000
                 329.000
                                                                   pssnrat
  d2bot p
             d2bot s
                          d2bot
                                     thick
                                                  pvel
                                                             svel
           2.500E+00 2.500E+00
                                 2.500E+00
6.000E+00
                                            4.370E+02
                                                        2.550E+02
                                                                      0.24
6.000E+00
           5.000E+00 5.000E+00
                                 2.500E+00
                                            4.370E+02
                                                        2.880E+02
                                                                      0.12
6.000E+00
           1.250E+01
                     6.000E+00
                                 1.000E+00
                                            4.370E+02
                                                        2.170E+02
                                                                      0.34
1.000E+01
           1.250E+01
                     1.000E+01
                                 4.000E+00
                                             3.480E+02
                                                        2.170E+02
                                                                      0.18
           1.250E+01
                      1.250E+01
                                 2.500E+00
                                            1.563E+03
                                                        2.170E+02
                                                                      0.49
2.940E+01
           2.500E+01
                      2.500E+01
                                 1.250E+01
                                             1.563E+03
                                                        2.490E+02
                                                                      0.49
2.940E+01
2.940E+01 2.940E+01 2.940E+01
                                4.400E+00 1.563E+03 3.290E+02
                                                                      0.48
```

Table B-2. Poisson's ratio calculated from P- and S-wave velocity models for the Cerritos College Physical Sciences Building site.

```
P wave - d2bot, pvel, for file: CPSP.VEL
                353.000
 2.50000
 15.0000
                517.000
                1172.00
 29.0000
S wave - d2bot, svel, for file: CPSS.VEL
 2.50000
                185.000
 15.0000
                218.000
 29.0000
                253.000
            d2bot s
                         d2bot
                                    thick
                                                          svel pssnrat
 d2bot_p
                                               pvel
2.500E+00 2.500E+00 2.500E+00 2.500E+00 3.530E+02 1.850E+02
                                                                   0.31
1.500E+01 1.500E+01 1.500E+01 1.250E+01 5.170E+02
                                                     2.180E+02
                                                                   0.39
2.900E+01 2.900E+01 2.900E+01 1.400E+01 1.172E+03 2.530E+02
                                                                   0.48
```

Table B-3. Poisson's ratio calculated from P- and S-wave velocity models for the Cerritos College Police Building site.

```
P wave - d2bot, pvel, for file: CPBP.VEL
                 359.000
  9.00000
  12.5000
                  734.000
  89.8000
                  1739.00
S wave - d2bot, svel, for file: CPBS.VEL
                 229.000
  3.00000
  9.00000
                 204.000
  23.0000
                 259.000
  32.0000
                 295.000
  46.0000
                  348.000
  78.0000
                  418.000
  89.8000
                  450.000
                                                   pvel
  d2bot p
             d2bot s
                           d2bot
                                       thick
                                                               svel
                                                                      pssnrat
9.000E+00
           3.000E+00
                       3.000E+00
                                  3.000E+00
                                              3.590E+02
                                                          2.290E+02
                                                                         0.16
           9.000E+00
                                              3.590E+02
                                                                         0.26
9.000E+00
                       9.000E+00
                                   6.000E+00
                                                          2.040E+02
           2.300E+01
                       1.250E+01
                                  3.500E+00
                                              7.340E+02
                                                          2.590E+02
                                                                        0.43
1.250E+01
8.980E+01
           2.300E+01
                       2.300E+01
                                  1.050E+01
                                              1.739E+03
                                                          2.590E+02
                                                                         0.49
                       3.200E+01
                                   9.000E+00
8.980E+01
           3.200E+01
                                              1.739E+03
                                                          2.950E+02
                                                                        0.49
8.980E+01
           4.600E+01
                       4.600E+01
                                   1.400E+01
                                              1.739E+03
                                                          3.480E+02
                                                                        0.48
8.980E+01
           7.800E+01
                       7.800E+01
                                  3.200E+01
                                              1.739E+03
                                                          4.180E+02
                                                                         0.47
8.980E+01 8.980E+01
                      8.980E+01
                                  1.180E+01
                                             1.739E+03
                                                          4.500E+02
                                                                         0.46
```

Table B-4. Poisson's ratio calculated from the P- and S-wave velocity model: for the Corps of Engineer's site.

```
P wave - d2bot, pvel, for file: NARP.VEL 6.00000 362.000
                  798.000
  12.0000
  22.0000
                  1409.00
S wave - d2bot, svel, for file: NARS.VEL
  6.00000
                 241.000
  12.0000
                  212.000
  22.0000
                 381.000
                                                                     pssnrat
  d2bot p
             d2bot s
                           d2bot
                                      thick
                                                   pvel
                                                               svel
6.000E+00
           6.000E+00
                      6.000E+00
                                  6.000E+00
                                              3.620E+02
                                                          2.410E+02
                                                                         0.10
1.200E+01
           1.200E+01 1.200E+01
                                  6.000E+00
                                             7.980E+02
                                                          2.120E+02
                                                                         0.46
2.200E+01 2.200E+01 2.200E+01
                                 1.000E+01
                                             1.409E+03 3.810E+02
                                                                         0.46
```

Table B-5. Poisson's ratio calculated from P- and S-wave velocity models for the Hoover School site.

P wave - d2bot, pvel, for file: HOOP2.VEL 7.50000 680.000

25.0000 1283.00

S wave - d2bot, svel, for file: HOOS2.VEL

7.50000 470.000 25.0000 790.000

d2bot_p d2bot_s d2bot thick pvel svel pssnrat 7.500E+00 7.500E+00 7.500E+00 7.500E+00 6.800E+02 4.700E+02 0.04 2.500E+01 2.500E+01 1.750E+01 1.283E+03 7.900E+02 0.19

Table B-6. Poisson's ratio calculated from P- and S-wave velocity models for the Lincoln School site.

```
P wave - d2bot, pvel, for file: LINP.VEL 3.00000 368.000
  22.0000
                  675.000
  29.7000
                  753.000
S wave - d2bot, svel, for file: LINS2.VEL
  3.00000
                  256.000
  22.0000
                  413.000
  29.7000
                  470.000
  d2bot p
             d2bot s
                           d2bot
                                       thick
                                                                      pssnrat
                                                    pvel
                                                                svel
3.000E+00
          3.000E+<del>0</del>0
                      3.000E+00
                                  3.000E+00
                                              3.680E+02
                                                          2.560E+02
                                                                         0.03
2.200E+01 2.200E+01 2.200E+01
                                  1.900E+01
                                              6.750E+02
                                                           4.130E+02
                                                                          0.20
2.970E+01 2.970E+01 2.970E+01 7.700E+00
                                              7.530E+02
                                                           4.700E+02
                                                                         0.18
```

Table B-7. Poisson's ratio calculated from P- and S-wave velocity models for the Lincoln School Whittier site.

```
P wave - d2bot, pvel, for file: WLBVERT.VEL 1.50000 224.000
  7.50000
                  1382.00
  18.5000
                  517.000
S wave - d2bot, svel, for file: WLBS.VEL
  1.50000
                  139.000
  18.5000
                  347.000
  d2bot p
             d2bot s
                           d2bot
                                       thick
                                                                svel pssnrat
                                                    pvel
1.500E+\overline{0}0 1.500E+\overline{0}0 1.500E+00
                                  1.500E+00 2.240E+02 1.390E+02
                                                                          0.19
7.500E+00 1.850E+01 7.500E+00 6.000E+00 1.382E+03
                                                           3.470E+02
                                                                          0.47
1.850E+01 1.850E+01 1.850E+01 1.100E+01 5.170E+02 3.470E+02
                                                                          0.09
```

Table B-8. Poisson's ratio calculated from P- and S-wave velocity models for the Los Alisos Adult School site.

```
P wave - d2bot, pvel, for file: EXCP.VEL
  2.50000
                 361.000
  12.5000
                 509.000
  20.0000
                 1358.00
  27.5000
                711.000
S wave - d2bot, svel, for file: EXCS.VEL
  2.50000
                194.000
  14.0000
                 242.000
  27.5000
                262.000
            d2bot s
                                    thick
  d2bot p
                         d2bot
                                                pvel
                                                           svel
                                                                 pssnrat
          2.500E+00 2.500E+00
                                2.500E+00
2.500E+00
                                           3.610E+02
                                                       1.940E+02
                                                                    0.30
1.250E+01 1.400E+01 1.250E+01
                                1.000E+01 5.090E+02
                                                                    0.35
                                                      2.420E+02
                                                                    0.48
2.000E+01
         1.400E+01
                     1.400E+01
                                1.500E+00
                                          1.358E+03 2.420E+02
2.000E+01 2.750E+01 2.000E+01 6.000E+00
                                                                    0.48
                                           1.358E+03 2.620E+02
2.750E+01 2.750E+01 2.750E+01 7.500E+00 7.110E+02 2.620E+02
                                                                    0.42
```

Table B-9. Poisson's ratio calculated from P- and S-wave velocity models for the Olive Junior High School site.

```
P wave - d2bot, pvel, for file: OLVP.VEL 1.50000 309.000
                 786.000
  11.0000
  16.8000
                 983.000
S wave - d2bot, svel, for file: OLVS.VEL
  1.50000
                 209.000
  11.0000
                 527.000
  16.8000
                 636.000
  d2bot p
             d2bot s
                           d2bot
                                      thick
                                                                     pssnrat
                                                   pvel
                                                               svel
1.500E+00
           1.500E+00
                      1.500E+00
                                  1.500E+00
                                             3.090E+02
                                                         2.090E+02
                                                                        0.08
1.100E+01 1.100E+01
                      1.100E+01
                                  9.500E+00
                                             7.860E+02
                                                         5.270E+02
                                                                        0.09
1.680E+01 1.680E+01 1.680E+01 5.800E+00 9.830E+02
                                                         6.360E+02
                                                                        0.14
```

Table B-10. Poisson's ratio calculated from P- and S-wave velocity models for the San Bernardino Fire Station site.

```
P wave - d2bot, pvel, for file: SB1P.VEL
                  430.000
  8.50000
  16.2000
                  936.000
  70.0000
                  1647.00
  90.0000
                  2094.00
S wave - d2bot, svel, for file: SB1S.VEL
  3.70000
                  297.000
  16.2000
                  299.000
  41.2000
                  365.000
  59.5000
                  408.000
  78.0000
                  460.000
  90.0000
                  556.000
                                                   pvel
  d2bot p
             d2bot s
                           d2bot
                                       thick
                                                               svel
                                                                     pssnrat
8.500E+00
           3.700E+00
                       3.700E+00
                                  3.700E+00
                                              4.300E+02
                                                          2.970E+02
                                                                         0.04
                                                                        0.03
8.500E+00
           1.620E+01
                      8.500E+00
                                  4.800E+00
                                              4.300E+02
                                                          2.990E+02
           1.620E+01
                                  7.700E+00
                                              9.360E+02
                                                          2.990E+02
                                                                        0.44
1.620E+01
                       1.620E+01
7.000E+01
           4.120E+01
                       4.120E+01
                                  2.500E+01
                                              1.647E+03
                                                          3.650E+02
                                                                        0.47
7.000E+01
           5.950E+01
                       5.950E+01
                                  1.830E+01
                                              1.647E+03
                                                          4.080E+02
                                                                        0.47
7.000E+01
           7.800E+01
                       7.000E+01
                                   1.050E+01
                                              1.647E+03
                                                          4.600E+02
                                                                        0.46
9.000E+01
           7.800E+01
                       7.800E+01
                                  8.000E+00
                                              2.094E+03
                                                          4.600E+02
                                                                        0.47
9.000E+01
          9.000E+01
                      9.000E+01
                                  1.200E+01 2.094E+03
                                                         5.560E+02
                                                                        0.46
```

Table B-11. Poisson's ratio calculated from the P- and S-wave velocity model for the Santa Anita Golf Course site.

```
P wave - d2bot, pvel, for file: SAGP.VEL 7.50000 411.000
  17.4000
                   609.000
  25.0000
                   752.000
  29.6000
                   1136.00
S wave - d2bot, svel, for file: SAGS_RE.VEL
                   284.000
  7.50000
  17.4000
                   343.000
  25.0000
                   439.000
  29.6000
                   553.000
  d2bot_p
                             d2bot
                                          thick
              d2bot s
                                                       pvel
                                                                    svel
                                                                           pssnrat
7.500E+00
            7.500E + \overline{0}0 7.500E + 00
                                     7.500E+00
                                                  4.110E+02
                                                                              0.04
                                                              2.840E+02
            1.740E+01 1.740E+01
                                                                              0.27
1.740E+01
                                     9.900E+00
                                                  6.090E+02
                                                              3.430E+02
2.500E+01 2.500E+01 2.500E+01 2.960E+01 2.960E+01
                                     7.600E+00
                                                              4.390E+02
                                                 7.520E+02
                                                                              0.24
                                    4.600E+00
                                                 1.136E+03
                                                              5.530E+02
                                                                              0.34
```

Table B-12. Poisson's ratio calculated from P- and S-wave velocity models for the South Western Academy site.

```
P wave - d2bot, pvel, for file: SWAP.VEL
 4.00000
                437.000
 15.0000
                641.000
 29.5000
                849.000
S wave - d2bot, svel, for file: SWAS RE.VEL
 4.00000
                233.000
 15.0000
                329.000
 29.5000
                527.000
 d2bot_p
            d2bot_s
                         d2bot
                                    thick
                                                pvel
                                                           svel pssnrat
4.000E+00 4.000E+00 4.000E+00 4.000E+00 4.370E+02 2.330E+02
                                                                    0.30
1.500E+01 1.500E+01 1.500E+01
                               1.100E+01 6.410E+02
                                                      3.290E+02
                                                                    0.32
2.950E+01 2.950E+01 2.950E+01 1.450E+01 8.490E+02 5.270E+02
                                                                    0.19
```

Table B-13. Poisson's ratio calculated from P- and S-wave velocity models for the St. Paul High School site.

```
P wave - d2bot, pvel, for file: STPP.VEL
  2.50000
                 425.000
  13.0000
                585.000
  27.5000
                1994.00
S wave - d2bot, svel, for file: STPS.VEL
  2.50000
                227.000
  20.0000
                371.000
  27.5000
                490.000
  d2bot_p
            d2bot_s
                         d2bot
                                    thick
                                                pvel
                                                                 pssnrat
                                                           svel
2.500E+00 2.500E+00 2.500E+00 2.500E+00 4.250E+02
                                                      2.270E+02
                                                                    0.30
                                                                    0.16
1.300E+01 2.000E+01
                    1.300E+01
                                1.050E+01 5.850E+02
                                                      3.710E+02
2.750E+01 2.000E+01
                    2.000E+01
                                7.000E+00
                                           1.994E+03
                                                      3.710E+02
                                                                    0.48
2.750E+01 2.750E+01 2.750E+01
                                7.500E+00
                                           1.994E+03
                                                      4.900E+02
                                                                    0.47
```