# **FINAL REPORT**

on

# **Data Acquisition and Processing**

for the

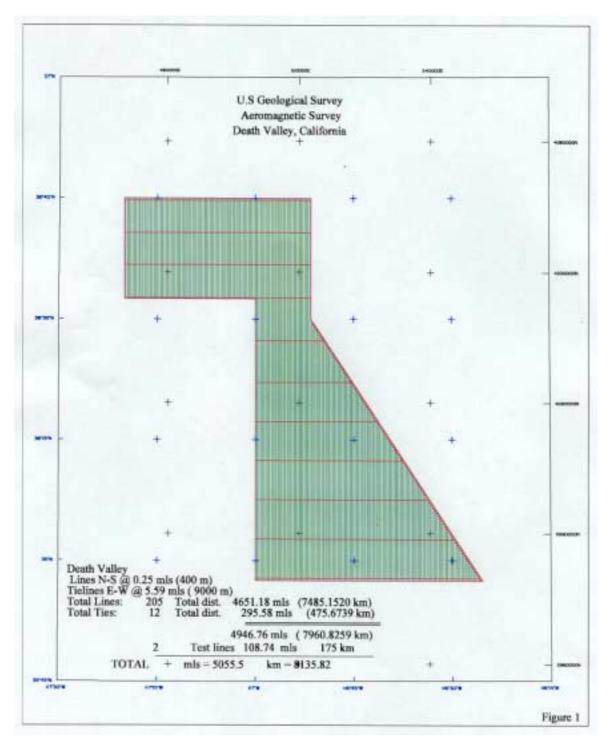
# **Airborne Magnetic Survey**

of

# Death Valley, California

on behalf of the

# **United States Geological Survey**


Brian Schacht P. Geoph. Ottawa, Ontario, Canada March, 2001

# **TABLE OF CONTENTS**

| 1.  | INTRODUCTION             |                                                                                                                                                       |                                        |  |  |  |
|-----|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|--|
| 2.  | TECH                     | TECHNICAL SPECIFICATIONS                                                                                                                              |                                        |  |  |  |
|     | 2.3                      | SURVEY LOCATION<br>FLIGHT SPECIFICATIONS<br>TOLERANCES<br>SURVEY EQUIPMENT                                                                            | 4<br>4<br>5                            |  |  |  |
| 3.  | PERS                     | SONNEL                                                                                                                                                | 6                                      |  |  |  |
| 4.  | SURV                     | /EY OPERATIONS                                                                                                                                        | 7                                      |  |  |  |
|     | 4.3                      | GENERAL<br>DIURNAL CONDITIONS<br>GENERAL WEATHER CONDITIONS<br>QUALITY CONTROL AND FIELD PROCESSING                                                   | 7<br>7<br>7<br>7                       |  |  |  |
| 5.  | 5.1<br>5.2<br>5.3<br>5.4 | BRATION AND TEST RESULTS<br>GPS BASE STATION<br>MAGNETIC LAG TEST<br>GPS LAG / ACCURACY TEST<br>FIGURE OF MERIT<br>ALTIMETER CALIBRATION              | <b>8</b><br>8<br>9<br>11<br>11         |  |  |  |
| 6.  | FINAI                    | L MAGNETIC DATA PROCESSING                                                                                                                            | 12                                     |  |  |  |
|     | 6.3                      | NOISE EDITING<br>NOISE FILTERING<br>DIURNAL SUBTRACTION<br>IGRF CORRECTION<br>UPWARD/DOWNWARD CONTINUATION<br>LEVELLING<br>GRIDDING<br>GRID LEVELLING | 12<br>12<br>12<br>12<br>13<br>13<br>13 |  |  |  |
| 7.  | DELI                     | DELIVERABLES                                                                                                                                          |                                        |  |  |  |
|     | 7.1<br>7.2<br>7.3        | MAPS<br>REPORT<br>DIGITAL ARCHIVES                                                                                                                    | 14<br>14<br>14                         |  |  |  |
| APF | PENDIX:                  | DIGITAL ARCHIVE FORMAT DESCRIPTION                                                                                                                    | 15                                     |  |  |  |

## 1. INTRODUCTION

An aeromagnetic survey was flown over Death Valley, California, as well as three conjoined areas within western Nevada. The flying was completed between December 5, 2000, and January 14, 2001, by Fugro Airborne Surveys on behalf of the United States Geological Survey (see figure 1). A 1:100,000 scale contour map and digital grid of the total magnetic field were produced, as well as a digital grid of radar altimeter (ground clearance) data.



## 2. TECHNICAL SPECIFICATIONS

This section describes in detail the guidelines followed throughout the performance of the project; tolerances and instruments are also presented here.

#### 2.1 SURVEY LOCATION

The area is bounded by the following co-ordinates (WGS84 UTM and degrees X 1,000,000):

500000.003979126.0035572348-117000000552103.003979126.0035571847-116252002512687.004039215.0036295343-116513001512646.004066946.0036445341-116513002470243.004066988.0036445340-117200003470163.004043879.0036322342-117200002500000.004043828.0036322345-11700000

#### 2.2 FLIGHT SPECIFICATIONS

| Traverse Line Direction   | E - W                                           |
|---------------------------|-------------------------------------------------|
| Traverse Line Spacing     | 400 m                                           |
| Control Line Direction    | N - S                                           |
| Control Line Spacing      | approximately 7,500 m                           |
| Terrain Clearance         | 117-1217 m+ - see section 2.3 - "Flying Height" |
| Line kilometers           | 8135.82 (5055.5 miles)                          |
| Average Sampling Interval | 7.5 m                                           |

#### 2.3 TOLERANCES

Lines (or segments of lines crossing two control lines, or segments of control lines crossing several lines) were re-flown when any of the following tolerances were exceeded:

#### Navigation

• Nominal line spacing must not be exceeded by more than 50% for a distance of more than 3.2 km.

#### Flight Height

- In order to maintain similar elevations at all traverse and control line intersections, even when climbing or descending steeply, the Fugro *ACCUDRAPE* system utilizes a pre-planned digital drape surface which the onboard computer compares with the GPS xyz to feed corrections to the pilot.
- Deviations from the pre-planned drape elevation must not exceed 100 m. The precipitous mountains flanking the survey necessitated a pre-planned drape surface with ground clearance exceeding 1217 m (4000') over the valley (the radar altimeter maximum is 1217 m). Less than 1% of the data could be flown below 183 m (600').

#### Magnetic Diurnal

• Deviations must not be greater than 2 nT from a 2 minute chord. The ground station magnetometer operated during all data acquisition.

#### Airborne Magnetometer Noise

"Maneuver" noise must not exceed an envelope of  $\pm 0.1$  nT over more than 10% of

high-pass filter.

- A standard Figure of Merit must be less than 1.5 nT.
- Heading errors must be within 1 nT between reciprocal headings.

## 2.4 SURVEY EQUIPMENT

| Table 2.4.a lists maj | ior characteristics | of the fixed-wing | survey aircraft. |
|-----------------------|---------------------|-------------------|------------------|
|                       |                     |                   |                  |

| Registration | Endurance | Engines      | Manufacturer | Туре        | No. of<br>Seats | Average<br>Speed |
|--------------|-----------|--------------|--------------|-------------|-----------------|------------------|
| C-FZLK       | 6.5 hours | 1<br>Turbine | Cessna       | Caravan 208 | 3               | 75 m/sec         |

#### Table 2.4.a Survey Aircraft

Table 2.4.b lists the geophysical equipment installed in C-FZLK throughout the survey.

| EQUIPMENT                  | MANUFACTURER              | MODEL     | ТҮРЕ                                                                         |
|----------------------------|---------------------------|-----------|------------------------------------------------------------------------------|
| Data Acquisition<br>System | Fugro Airborne<br>Surveys | GeoDAS    | Pentium computer based, real-time, data synchronization and recording        |
| Magnetometer               | Scintrex                  | CS-2      | Cesium Vapour,10 Hz Sampling,<br>0.005 nT Sensitivity,0.001 nT<br>Resolution |
| Compensator                | RMS                       | AADC      | 27 Term                                                                      |
| Digital Backup             | Iomega                    | Zip Drive | 100 Mb removable hard drive                                                  |
| Analogue Recorder          | RMS                       | GR-33a-1  | Dot Matrix                                                                   |
| Radar Altimeter            | TRT                       | AVH-8     | 10 Hz Sampling, Accuracy ±2%                                                 |
| Barometric Altimeter       | Rosemount                 | 1241M     | 10 Hz Sampling, Accuracy ±5 m                                                |
| Omnistar Receiver          | Trimble                   |           | Real-time differential GPS correction                                        |
| GPS Receiver               | Sercel                    | NR103     | 10 Channel                                                                   |
| Video Camera               | Panasonic                 | WVC 1302  | Colour                                                                       |
| Video Cassette<br>Recorder | Panasonic                 | AG2400    | NTSC                                                                         |

#### Table 2.4.b Airborne Geophysical Equipment

Table 2.4.c lists the components of the ground-based reference station.

| EQUIPMENT    | MANUFACTURER | MODEL  | ТҮРЕ                                                                      |
|--------------|--------------|--------|---------------------------------------------------------------------------|
| Magnetometer | Scintrex     | CS-2   | Cesium Vapour, 2 Hz Sampling,<br>0.005 nT Sensitivity, 0.01 nT Resolution |
| GPS Receiver | Sercel       | NR-103 | 10 Channel                                                                |

## Table 2.4.c Ground Reference Station

The ground magnetometer was mounted in a magnetically quiet area; its clock was synchronized with the GPS time signal. The GPS data logger records all of the raw range data stream. The *Trajecto* differential correction software matches the output from the airborne GPS system and the ground GPS system during the data reduction process.

| EQUIPMENT                    | MANUFACTURE<br>R       | MODEL         | ТҮРЕ            |
|------------------------------|------------------------|---------------|-----------------|
| РС                           | Dell                   | Inspiron 7500 | 800 MHz Pentium |
| Printer                      | НР НР950С              |               | A4 Colour       |
| Data Processing Software     | Fugro Airborne Surveys | Gmaps         | DOS & Windows   |
| Image Processing<br>Software | ERMapper               | Version 5.5   | Windows 95/98   |
| GPS Processing Software      | Sercel                 | Trajecto      | DOS             |

Table 2.4.d lists the equipment and software used to perform the field processing.

## Table 2.4.d Field Processing System

## 3. PERSONNEL

| NAME            | TITLE                  | <b>PROJECT POSITION</b> |  |
|-----------------|------------------------|-------------------------|--|
| Robb, Jeff      | Aircraft Maintenance   | Aircraft Maintenance    |  |
| Lamirande, Ken  | Electronics Technician | Electronics Operator    |  |
| Reed, Travis    | Electronics Technician | Electronics Operator    |  |
| Lyall, Ron      | Operations Manager     | Processor, Logistics    |  |
| Williston, Mark | Pilot                  | Survey Pilot            |  |
| Thomas, Jeff    | Pilot                  | Survey Pilot            |  |

Table 3Field Project Personnel

## 4. SURVEY OPERATIONS

## 4.1 GENERAL

The production phase of the project began in Bishop, California, on December  $5^{th}$ , 2000, and the final production flight was made on January  $14^{th}$ , 2001. The Comfort Inn provided crew accommodation and space for the field processing office.

## 4.2 DIURNAL CONDITIONS

Magnetic diurnal variation was exceptionally quiet. Deviations never reached the specification limit.

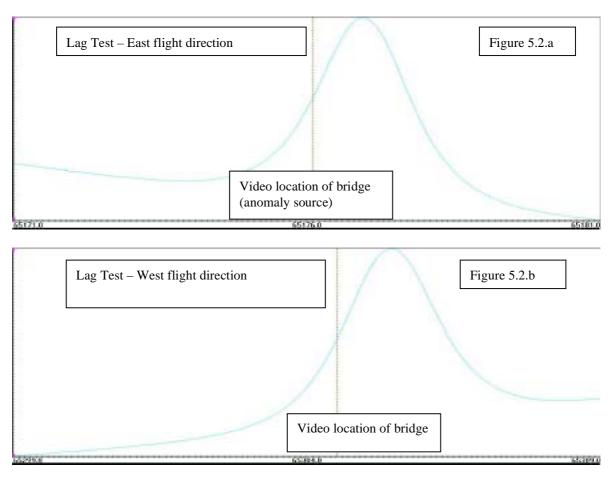
## 4.3 GENERAL WEATHER CONDITIONS

Weather conditions were frequently unfavourable for survey flying due to high turbulence or cloud cover in the mountains. Ten days were lost.

## 4.4 QUALITY CONTROL AND FIELD PROCESSING

- To check the data for adherence to contract specifications and move the data closer to the final stage, the following procedures were followed for each flight (details in section 6):
- downloading and verification of aircraft data;
- downloading and verification of GPS and magnetic base station data;
- post-processing of GPS data using SERCEL TRAJECTOGRAPHY software;
- merging of navigation data with geophysical data including transformation of coordinates from WGS84 latitude/longitude to UTM x, y coordinates in the local spheroid;
- creation of flight path plots and evaluation of compliance with contract specifications;
- spike and null value location and removal from the magnetic and altimeter data;
- computing of a drape surface quality control field for evaluation of compliance with the contract specifications;
- computing of magnetic noise channel for evaluation of data quality and compliance with contract specifications;
- evaluation of diurnal data quality, and compliance with contract specifications;
- correction of magnetic data for I.G.R.F. gradient;
- noise filtering of magnetic and altimeter fields;
- correction of magnetic field for altitude deviations;
- backing-up of all field data.

At regular intervals, the corrected magnetic data were levelled and gridded for quality inspection including real-time shade enhancement.

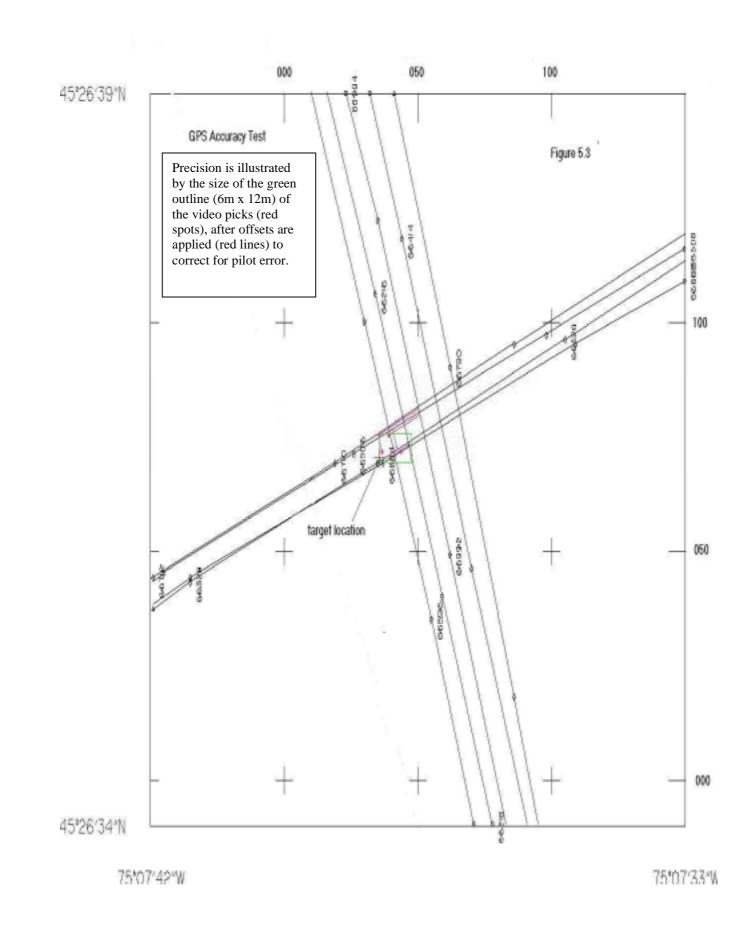

## 5. CALIBRATION AND TEST RESULTS

#### 5.1 GPS BASE STATION

To apply post-flight differential GPS corrections to the survey data, a GPS base station was installed near the crew's hotel. The location of the GPS base station antenna was determined by averaging positions over a 24 hour period. The location was 37° 22' 17.28" N latitude, 118° 22' 8.46" W longitude, elevation 1,255 m, on the WGS spheroid.

#### 5.2 MAGNETIC LAG TEST

The camera on-board the aircraft records its position, A, relative to the ground, at time t0. In fact the sensor will arrive over A at time t1 (>t0). Furthermore, because of electronic delays, the reading at time t1 will not be recorded until time t2 (>t1). The difference t2-t0 represents the lag between the actual aircraft position and the x y position tied to the magnetic reading on disk. A lag test was performed by flying the aircraft at survey altitude in opposite directions over a sharp magnetic feature. The position of the magnetic feature was referenced to a visible feature recorded by the video system, in this case a bridge, which was the anomaly source. By superimposing a plot of the east-west anomaly over the west-east anomaly, the video-picked position of the bridge can be transposed onto its counterpart; and one-half the difference between the two video-picked positions equals the magnetic system lag. The lag was 0.7 seconds, or 7 magnetic samples, for aircraft C-FZLK. These values were used to correct for magnetic system lag throughout the survey.




## 5.3 GPS LAG / ACCURACY.TEST

A cloverleaf flown over the established co-ordinates of the Canadian Geological Survey test site was used to measure the lag in the GPS positioning, with regard to the video camera position. A value of 0.2 seconds resulted in a best fit with the video position. Once the lag is applied (as in figure 5.3) the cloverleaf intersection is used to test the accuracy of the GPS positioning.

| Aircraft:     |                               | Cessna Caravan                           |                 |
|---------------|-------------------------------|------------------------------------------|-----------------|
| Registration: |                               | C-FZLK                                   |                 |
|               | Date:                         | November 25, 2000                        |                 |
| Loc           | ation:                        | Bourget, Ontario, Canada                 |                 |
| Alt           | itude:                        | 400 ft mean terrain clearance            |                 |
| DIRECTION     | FIDUCIAL CLOSEST<br>TO TARGET | OFFSET FROM TARGET DUE TO<br>PILOT ERROR | Line # on Video |
|               | (from video)                  | (estimate in metres & direction)         |                 |
| South         | 66216.56                      | 0                                        | Line 10         |
| West          | 66326.92                      | 3 N                                      | Line 11         |
| North         | 66413.50                      | 20 E                                     | Line 12         |
| East          | 66506.22                      | 5 N                                      | Line 13         |
| South         | 66595.44                      | 5 W                                      | Line 14         |
| West          | 66709.76                      | 5 N                                      | Line 15         |
| East          | 66884.10                      | 0                                        | Line 17         |
| North         | 66992.44                      | 15 E                                     | Line 18         |

TABLE 5.3 GPS LAG / ACCURACY TEST



## 5.4 FIGURE OF MERIT (FOM)

The figure of merit is the measurement of the ability of the compensation system to remove the effects of aircraft maneuvers from the total field data. During the FOM test the aircraft is flown into a quiet magnetic area and put through a series of pitches  $(\pm 5^{\circ})$ , rolls  $(\pm 10^{\circ})$  and yaws  $(\pm 5^{\circ})$  to examine the noise remaining in the signal after the 27 term automatic compensation algorithm has been applied to the data.

|                | Figure         | of Merit           |                |    |
|----------------|----------------|--------------------|----------------|----|
| Λ:             |                |                    |                |    |
| Aircraft:      | 1              | Cessna Caravan     |                |    |
| Registration:  |                | C-FZLK             |                |    |
| Magnetometer:  |                | Cesium vapor, s    | tinger mounted |    |
| Sampling Rate: |                | 10 Hz              |                |    |
| Date:          |                | December 2, 2000   |                |    |
| Location:      |                | Bishop, C          | alifornia      |    |
|                |                |                    |                |    |
| HEADING        | MANOEUVER      | VALUE (nT)         | HEADING        |    |
|                |                |                    | TOTAL (nT)     |    |
| NORTH          | PITCH          | 0.18               |                |    |
|                | ROLL           | 0.08               |                |    |
|                | YAW            | 0.06               | 0.32           |    |
|                |                |                    |                |    |
| EAST           | PITCH          | 0.12               |                |    |
|                | ROLL           | 0.07               |                |    |
|                | YAW            | 0.08               | 0.27           |    |
|                |                |                    |                |    |
| SOUTH          | PITCH          | 0.08               |                |    |
|                | ROLL           | 0.06               |                |    |
|                | YAW            | 0.04               | 0.18           |    |
|                |                |                    |                |    |
| WEST           | PITCH          | 0.08               |                |    |
|                | ROLL           | 0.06               |                |    |
|                | YAW            | 0.06               | 0.20           |    |
|                |                | FOM VALUE          | 0.97           | nT |
| AVE            | ERAGE MANEUVER | R NOISE (FOM / 12) | 0.08           | nT |

## 5.5 ALTIMETER CALIBRATION

On November 24, 2000, the radar, barometric, and GPS altimeters were compared by flying at terrain clearances of 200', 300', 400', 500', 600', 800', and 1000' over a flat portion of the Ottawa river. The results reconfirmed that all altimeters aboard C-FZLK are functioning normally.

# 6. FINAL DATA PROCESSING

Final data reduction was undertaken at the Fugro Airborne Surveys processing center in Ottawa, Canada between January and February, 2001. In general, final processing consisted of the following operations:

- final levelling of the total field magnetic data;
- image and 1:100,000 scale map analysis of the total field and levelling compensations by a geophysicist for any levelling, positioning, or gridding errors;
- final gridding and micro-levelling;
- imaging and plotting of magnetic field;
- gridding of radar altimeter data
- archiving of final data.

The final projection was the Universal Transverse Mercator using the NAD83 (WGS84) spheroid, with a false easting of 500,000 m, false northing of 0 m, scale factor of 0.9996 and central meridian of  $117^{\circ}$  West.

Further details of the magnetic processing are provided below.

## 6.1 Noise Editing

An automatic editing routine, employing 4<sup>th</sup> differences of the magnetic field, removed nulls and spikes down to the noise level, and located abrupt level shifts.

## 6.2 Noise Filtering

We filtered all data in the frequency domain with a cutoff 0.061 (wavelengths per sample interval) rolloff 0.030 (wavelengths per sample interval). This filter approaches 100% removal of anomalies of wavelength 99 metres (13.2 samples x average speed of 7.5 metres/sample) or less. It approaches 0% removal of anomalies of wavelength 163 metres (21.7 samples x average speed of 7.5 metres/sample) or more. This filter should have no effect on any real, geological-source anomalies; or even the narrowest anomaly from cultural sources on the ground surface. The minimum ground clearance is about 150 metres (rarely encountered) and the minimum wavelength produced at 150 metres is roughly 2 x 150 = 300 metres. Thus all real wavelengths are a safe distance from the 163 metre limit of the filter.

## 6.3 Diurnal Subtraction

A test was made to verify the effectiveness of diurnal subtraction: Long period diurnal variations were subtracted from the air data, as they are more likely to correlate, and the residual magnetic field was leveled. As no improvement was noted in the required levelling compensations, diurnal subtraction was not employed.

## 6.4 IGRF Correction

The IGRF regional value was calculated using the 1995 model updated to the mid-survey date (2001.0) using the corrected GPS elevations. Using the actual elevations for IGRF correction has the added benefit of correcting for the magnetic effect of altitude variations within the

Earth's primary field. Corrections for vertical movements within the secondary magnetic field induced by the Earth's crust is discussed in the following section, 6.5.

## 6.5 Upward/Downward Continuation

As the terrain clearance drops, the vertical magnetic gradients can become very high; and even minor deviations from the prescribed drape surface may produce significant changes in the measured magnetic field. The Taylor Expansion<sup>1</sup> applies the required upward and downward continuations to the magnetic field to simulate measurements from the prescribed altitude. The resulting magnetic field profiles were input to the levelling process.

#### 6.6 Levelling

The lines (traverse lines) and tie-lines (control lines) of an aeromagnetic survey form a network, and the points where they cross are called intersections. At each intersection the magnetic values should be identical. In practice they differ as a result of:

- time variations of the magnetic field;
- heading effects;
- altitude differences;
- position errors;
- cultural or instrument noise.

In the levelling process, it is assumed that most of the required level adjustments will vary smoothly along each line or tie-line. The network of line minus tie-line differences at the intersections is analyzed to produce a matrix of misclosures. These misclosures were reduced to zero through an iterative process of tilting the profile baselines and moving the intersection locations. Compensation values applied at adjacent tie-lines were not allowed to differ by more than 5 nT. Intersection movements were restricted to a maximum of 4 samples (about 30 metres). These maximums were very rarely required. None of the 1,121 intersections needed manual corrections.

#### 6.7 Gridding

Gridding was done by the Akima method, using data from all lines and tie-lines. A gridding interval of 1/3 the line spacing was used (133 m).

#### 6.8 Grid Levelling

The final stage of levelling consisted of applying a grid-levelling routine to the gridded data to remove small residual errors that are not properly removed by conventional levelling of the line  $data^2$ 

<sup>&</sup>lt;sup>1</sup> Pilkington, M., and Thurston, J. B., 2001. *Draping corrections for aeromagnetic data: line versus grid based approaches*; Exploration Geophysics, in press.

<sup>&</sup>lt;sup>2</sup> Minty, B.R.S., 1991: Simple micro-levelling for aeromagnetic data; Exploration Geophysics, v.22, p. 591-592.

## 7. DELIVERABLES

## 7.1 MAPS

Two copies of the magnetic field contour map are presented at 1:100,000 scale with UTM registration plus screened flight path, in black and white, on mylar.

## 7.2 REPORT

This report covers data acquisition and processing, and is provided in two hard copies plus a digital archive in *Microsoft Word* format.

## 7.3 DIGITAL ARCHIVES

Files:raw and final processed profile data, and final magnetic and radar altitude grids;Format:The ASCII format is used for profiles, and *Geosoft* binary format is used for grids.A full format description is included in the appendix .

Media: CD-ROM. Copies: two

We trust this survey will assist your mapping program; and we remain available for questions at any time.

Respectfully Submitted,

Brian Schacht P. Geoph.

# APPENDIX

# DIGITAL ARCHIVE FORMAT DESCRIPTOR

#### DIGITAL ARCHIVE DESCRIPTION OF PROFILE DATA

#### **DEATH VALLEY, CALIFORNIA**

```
Digital Archive is Ascii.
Ascii filename: california.profile
250 bytes I 10 format
       1-10 Line number X 100 + part number
      11-20 Flight number
      21-30 Latitude
                       NAD27 (decimal degrees)
      31-40 Longitude
      41-50 UTM metres NAD27 (CM 117 degrees west)
      51-60 UTM metres
      61-70 Latitude WGS84 (decimal degrees)
      71-80 Longitude
      81-90 UTM metres WGS84 (CM 117 degrees west)
     91-100 UTM metres
    101-110 Fiducial (seconds UTC X 10 increments by 1)
    111-120 Date (ddmmyy)
    121-130 Radar (m X 100)
    131-140 Baro (m X 100)
    141-150 GPS elevation (m X 100)
    151-160 Diurnal (.001 nT)
    161-170 Raw Magnetics (.001 nT) edited, lag applied.
    171-180 Filtered Magnetics (.001 nT)
    181-190 Filtered Magnetics - I.G.R.F. (.001 nT)
    191-200 I.G.R.F. (2000.9)
    201-210 Differential Up/Down corr. Magnetics (.001 nT)
    211-220 Levelled Magnetics (.001 nT)
    221-230 Final Magnetics (.001 nT)
    231-240 Compensation (.001 nT) from TL levelling
    241-250 Compensation (.001 nT) from micro levelling
```

Fugro Airborne Survey's direction codes are as follows:

- 1: Northbound
- 2: Eastbound
- 3: Southbound
- 4: Westbound

The archive file contains the following lines:

ARCHIVE FILE: california.archive

\_\_\_\_\_

| LINE-ID | DIR | FST-FID | LST-FID | TAPE | BLOCK | REC | SAMPLES |
|---------|-----|---------|---------|------|-------|-----|---------|
|         |     | (X10)   | (X10)   |      |       |     |         |
| 10101   | 3   | 56599   | 56919   | 1    | 1     | 1   | 3201    |
| 10201   | 1   | 57317   | 57633   | 1    | 3202  | 1   | 3161    |
| 10301   | 3   | 57805   | 58137   | 1    | 6363  | 1   | 3321    |

| 10401 | 1 | 58333 | 58680 | 1 | 9684   | 1 | 3471 |
|-------|---|-------|-------|---|--------|---|------|
| 10501 | 3 | 58827 | 59175 | 1 | 13155  | 1 | 3481 |
| 10601 | 1 | 59378 | 59711 | 1 | 16636  | 1 | 3331 |
| 10701 | 3 | 59874 | 60216 | 1 | 19967  | 1 | 3421 |
| 10801 | 1 | 60372 | 60692 | 1 | 23388  | 1 | 3201 |
| 10901 | 3 | 60863 | 61204 | 1 | 26589  | 1 | 3411 |
| 11001 | 1 | 61368 | 61712 | 1 | 30000  | 1 | 3441 |
| 11101 | 3 | 62470 | 62805 | 1 | 33441  | 1 | 3351 |
| 11201 | 1 | 62997 | 63320 | 1 | 36792  | 1 | 3231 |
| 11301 | 3 | 63483 | 63825 | 1 | 40023  | 1 | 3421 |
| 11401 | 1 | 63981 | 64318 | 1 | 43444  | 1 | 3371 |
| 11501 | 3 | 64468 | 64806 | 1 | 46815  | 1 | 3381 |
| 11601 | 1 | 64970 | 65316 | 1 | 50196  | 1 | 3461 |
| 11701 | 3 | 65484 | 65815 | 1 | 53657  | 1 | 3311 |
| 11801 | 1 | 65965 | 66298 | 1 | 56968  | 1 | 3331 |
| 11901 | 3 | 66858 | 67223 | 1 | 60299  | 1 | 3651 |
| 12001 | 1 | 67385 | 67721 | 1 | 63950  | 1 | 3361 |
| 12101 | 3 | 68016 | 68355 | 1 | 67311  | 1 | 3391 |
| 12201 | 1 | 68523 | 68861 | 1 | 70702  | 1 | 3381 |
| 12301 | 3 | 69021 | 69365 | 1 | 74083  | 1 | 3441 |
| 12401 | 1 | 69526 | 69861 | 1 | 77524  | 1 | 3351 |
| 12501 | 3 | 70035 | 70369 | 1 | 80875  | 1 | 3341 |
| 12601 | 1 | 70565 | 70909 | 1 | 84216  | 1 | 3441 |
| 12701 | 3 | 71675 | 72011 | 1 | 87657  | 1 | 3361 |
| 12801 | 1 | 72199 | 72524 | 1 | 91018  | 1 | 3251 |
| 12901 | 3 | 72693 | 73040 | 1 | 94269  | 1 | 3471 |
| 13001 | 1 | 73211 | 73544 | 1 | 97740  | 1 | 3331 |
| 13101 | 3 | 56169 | 56532 | 1 | 101071 | 1 | 3631 |
|       |   |       |       |   |        |   |      |

| 13201 | 1 | 56725 | 57075 | 1 | 104702 | 1 | 3501 |
|-------|---|-------|-------|---|--------|---|------|
| 13301 | 3 | 57228 | 57588 | 1 | 108203 | 1 | 3601 |
| 13401 | 1 | 57777 | 58118 | 1 | 111804 | 1 | 3411 |
| 13501 | 3 | 58255 | 58611 | 1 | 115215 | 1 | 3561 |
| 13601 | 1 | 58801 | 59151 | 1 | 118776 | 1 | 3501 |
| 13701 | 3 | 59635 | 59979 | 1 | 122277 | 1 | 3441 |
| 13801 | 1 | 60138 | 60497 | 1 | 125718 | 1 | 3591 |
| 13901 | 3 | 60669 | 61010 | 1 | 129309 | 1 | 3411 |
| 14001 | 1 | 61179 | 61569 | 1 | 132720 | 1 | 3901 |
| 14101 | 3 | 61732 | 62077 | 1 | 136621 | 1 | 3451 |
| 14201 | 1 | 62245 | 62605 | 1 | 140072 | 1 | 3601 |
| 14301 | 3 | 62807 | 63140 | 1 | 143673 | 1 | 3331 |
| 14401 | 1 | 63306 | 63689 | 1 | 147004 | 1 | 3831 |
| 14501 | 3 | 63857 | 64203 | 1 | 150835 | 1 | 3461 |
| 14601 | 1 | 64359 | 64717 | 1 | 154296 | 1 | 3581 |
| 14701 | 3 | 65016 | 65361 | 1 | 157877 | 1 | 3451 |
| 14801 | 1 | 65532 | 65897 | 1 | 161328 | 1 | 3651 |
| 14901 | 3 | 66057 | 66398 | 1 | 164979 | 1 | 3411 |
| 15001 | 1 | 66571 | 66924 | 1 | 168390 | 1 | 3531 |
| 15101 | 3 | 67093 | 67445 | 1 | 171921 | 1 | 3521 |
| 15201 | 1 | 67618 | 67966 | 1 | 175442 | 1 | 3481 |
| 15301 | 3 | 68150 | 68498 | 1 | 178923 | 1 | 3481 |
| 15401 | 1 | 68680 | 69033 | 1 | 182404 | 1 | 3531 |
| 15501 | 1 | 70448 | 70802 | 1 | 185935 | 1 | 3541 |
| 15601 | 3 | 69954 | 70306 | 1 | 189476 | 1 | 3521 |
| 15701 | 1 | 69284 | 69641 | 1 | 192997 | 1 | 3571 |
| 15801 | 3 | 68659 | 69020 | 1 | 196568 | 1 | 3611 |
| 15901 | 3 | 67470 | 67845 | 1 | 200179 | 1 | 3751 |
|       |   |       |       |   |        |   |      |

| 16001 | 1 | 68003 | 68355 | 1 | 203930 | 1 | 3521  |
|-------|---|-------|-------|---|--------|---|-------|
| 16101 | 1 | 66832 | 67178 | 1 | 207451 | 1 | 3461  |
| 16201 | 3 | 66257 | 66622 | 1 | 210912 | 1 | 3651  |
| 16301 | 1 | 65616 | 65982 | 1 | 214563 | 1 | 3661  |
| 16401 | 3 | 65087 | 65446 | 1 | 218224 | 1 | 3591  |
| 16501 | 1 | 64482 | 64838 | 1 | 221815 | 1 | 3561  |
| 16601 | 3 | 63886 | 64249 | 1 | 225376 | 1 | 3631  |
| 16701 | 1 | 63255 | 63621 | 1 | 229007 | 1 | 3661  |
| 16801 | 3 | 62699 | 63070 | 1 | 232668 | 1 | 3711  |
| 16901 | 1 | 86129 | 86437 | 1 | 236379 | 1 | 3081  |
| 17001 | 3 | 85574 | 85871 | 1 | 239460 | 1 | 2971  |
| 17101 | 1 | 85136 | 85452 | 1 | 242431 | 1 | 3161  |
| 17201 | 3 | 84704 | 85001 | 1 | 245592 | 1 | 2971  |
| 17301 | 1 | 67006 | 67373 | 1 | 248563 | 1 | 3671  |
| 17401 | 3 | 66479 | 66822 | 1 | 252234 | 1 | 3431  |
| 17501 | 3 | 83850 | 85044 | 1 | 255665 | 1 | 11941 |
| 17601 | 1 | 85554 | 86676 | 1 | 267606 | 1 | 11221 |
| 17701 | 3 | 57132 | 58313 | 1 | 278827 | 1 | 11811 |
| 17801 | 1 | 58501 | 59921 | 1 | 290638 | 1 | 14201 |
| 17901 | 3 | 60085 | 60930 | 1 | 304839 | 1 | 8451  |
| 17902 | 3 | 61160 | 61525 | 1 | 313290 | 1 | 3651  |
| 18001 | 1 | 61709 | 63120 | 1 | 316941 | 1 | 14111 |
| 18101 | 3 | 63550 | 64737 | 1 | 331052 | 1 | 11871 |
| 18201 | 1 | 64931 | 66355 | 1 | 342923 | 1 | 14241 |
| 18301 | 3 | 73525 | 74634 | 1 | 357164 | 1 | 11091 |
| 18402 | 1 | 75260 | 76170 | 1 | 368255 | 1 | 9101  |
| 18403 | 1 | 72995 | 73260 | 1 | 377356 | 1 | 2651  |
| 18501 | 3 | 76316 | 76990 | 1 | 380007 | 1 | 6741  |
|       |   |       |       |   |        |   |       |

| 18502 | 3 | 77280 | 77614 | 1 | 386748 | 1 | 3341  |
|-------|---|-------|-------|---|--------|---|-------|
| 18503 | 1 | 73350 | 73500 | 1 | 390089 | 1 | 1501  |
| 18601 | 1 | 77781 | 78960 | 1 | 391590 | 1 | 11791 |
| 18701 | 3 | 79099 | 80190 | 1 | 403381 | 1 | 10911 |
| 18801 | 1 | 80345 | 81526 | 1 | 414292 | 1 | 11811 |
| 18901 | 3 | 81898 | 82997 | 1 | 426103 | 1 | 10991 |
| 19001 | 1 | 83388 | 84554 | 1 | 437094 | 1 | 11661 |
| 19101 | 3 | 56456 | 57802 | 1 | 448755 | 1 | 13461 |
| 19201 | 1 | 57955 | 59215 | 1 | 462216 | 1 | 12601 |
| 19301 | 3 | 59411 | 60810 | 1 | 474817 | 1 | 13991 |
| 19401 | 1 | 61151 | 62424 | 1 | 488808 | 1 | 12731 |
| 19502 | 3 | 57921 | 59149 | 1 | 501539 | 1 | 12281 |
| 19602 | 3 | 63306 | 64511 | 1 | 513820 | 1 | 12051 |
| 19701 | 3 | 58450 | 59641 | 1 | 525871 | 1 | 11911 |
| 19801 | 1 | 72673 | 74014 | 1 | 537782 | 1 | 13411 |
| 19901 | 3 | 57786 | 58990 | 1 | 551193 | 1 | 12041 |
| 20001 | 1 | 72810 | 74165 | 1 | 563234 | 1 | 13551 |
| 20101 | 1 | 71464 | 72790 | 1 | 576785 | 1 | 13261 |
| 20201 | 3 | 71588 | 72709 | 1 | 590046 | 1 | 11211 |
| 20301 | 3 | 63014 | 64235 | 1 | 601257 | 1 | 12211 |
| 20401 | 1 | 72637 | 73883 | 1 | 613468 | 1 | 12461 |
| 20501 | 1 | 72401 | 73679 | 1 | 625929 | 1 | 12781 |
| 20601 | 1 | 68737 | 70032 | 1 | 638710 | 1 | 12951 |
| 20702 | 1 | 59347 | 60283 | 1 | 651661 | 1 | 9361  |
| 20802 | 3 | 60465 | 61289 | 1 | 661022 | 1 | 8241  |
| 20902 | 1 | 61483 | 62401 | 1 | 669263 | 1 | 9181  |
| 21002 | 3 | 62706 | 63521 | 1 | 678444 | 1 | 8151  |
| 21102 | 1 | 63709 | 64590 | 1 | 686595 | 1 | 8811  |
|       |   |       |       |   |        |   |       |

| 21202 | 3 | 64741 | 65541 | 1 | 695406 | 1 | 8001 |
|-------|---|-------|-------|---|--------|---|------|
| 21302 | 1 | 65726 | 66602 | 1 | 703407 | 1 | 8761 |
| 21402 | 3 | 66868 | 67633 | 1 | 712168 | 1 | 7651 |
| 21502 | 1 | 67800 | 68634 | 1 | 719819 | 1 | 8341 |
| 21602 | 3 | 68855 | 69609 | 1 | 728160 | 1 | 7541 |
| 21702 | 1 | 64867 | 65837 | 1 | 735701 | 1 | 9701 |
| 21802 | 3 | 66112 | 66819 | 1 | 745402 | 1 | 7071 |
| 21901 | 1 | 67035 | 67947 | 1 | 752473 | 1 | 9121 |
| 22001 | 3 | 68098 | 68788 | 1 | 761594 | 1 | 6901 |
| 22101 | 1 | 59957 | 60785 | 1 | 768495 | 1 | 8281 |
| 22201 | 3 | 61284 | 61971 | 1 | 776776 | 1 | 6871 |
| 22301 | 1 | 62142 | 62900 | 1 | 783647 | 1 | 7581 |
| 22401 | 3 | 63070 | 63729 | 1 | 791228 | 1 | 6591 |
| 22501 | 1 | 63931 | 64736 | 1 | 797819 | 1 | 8051 |
| 22601 | 3 | 64902 | 65557 | 1 | 805870 | 1 | 6551 |
| 22701 | 1 | 65756 | 66504 | 1 | 812421 | 1 | 7481 |
| 22801 | 3 | 66724 | 67361 | 1 | 819902 | 1 | 6371 |
| 22901 | 1 | 67584 | 68305 | 1 | 826273 | 1 | 7211 |
| 23001 | 3 | 68466 | 69090 | 1 | 833484 | 1 | 6241 |
| 23101 | 1 | 69328 | 70002 | 1 | 839725 | 1 | 6741 |
| 23201 | 3 | 70176 | 70800 | 1 | 846466 | 1 | 6241 |
| 23301 | 1 | 70959 | 71600 | 1 | 852707 | 1 | 6411 |
| 23401 | 3 | 71799 | 72373 | 1 | 859118 | 1 | 5741 |
| 23501 | 1 | 59500 | 59991 | 1 | 864859 | 1 | 4911 |
| 23502 | 1 | 64816 | 64975 | 1 | 869770 | 1 | 1591 |
| 23601 | 3 | 60184 | 60739 | 1 | 871361 | 1 | 5551 |
| 23701 | 1 | 60894 | 61494 | 1 | 876912 | 1 | 6001 |
| 23801 | 3 | 61736 | 62291 | 1 | 882913 | 1 | 5551 |
|       |   |       |       |   |        |   |      |

| 23901 | 1 | 62467 | 63049 | 1 | 888464  | 1 | 5821 |
|-------|---|-------|-------|---|---------|---|------|
| 24001 | 3 | 63199 | 63737 | 1 | 894285  | 1 | 5381 |
| 24101 | 1 | 63900 | 64454 | 1 | 899666  | 1 | 5541 |
| 24201 | 3 | 64652 | 65177 | 1 | 905207  | 1 | 5251 |
| 24301 | 1 | 65350 | 65885 | 1 | 910458  | 1 | 5351 |
| 24401 | 3 | 66125 | 66625 | 1 | 915809  | 1 | 5001 |
| 24501 | 1 | 67102 | 67626 | 1 | 920810  | 1 | 5241 |
| 24601 | 3 | 67804 | 68297 | 1 | 926051  | 1 | 4931 |
| 24701 | 1 | 68481 | 68985 | 1 | 930982  | 1 | 5041 |
| 24801 | 3 | 69168 | 69653 | 1 | 936023  | 1 | 4851 |
| 24901 | 1 | 69811 | 70304 | 1 | 940874  | 1 | 4931 |
| 25001 | 3 | 70595 | 71066 | 1 | 945805  | 1 | 4711 |
| 25101 | 1 | 71288 | 71769 | 1 | 950516  | 1 | 4811 |
| 25201 | 3 | 71928 | 72392 | 1 | 955327  | 1 | 4641 |
| 25301 | 1 | 70020 | 70469 | 1 | 959968  | 1 | 4491 |
| 25401 | 3 | 70640 | 71087 | 1 | 964459  | 1 | 4471 |
| 25501 | 1 | 59595 | 60040 | 1 | 968930  | 1 | 4451 |
| 25601 | 3 | 60220 | 60650 | 1 | 973381  | 1 | 4301 |
| 25701 | 1 | 60824 | 61247 | 1 | 977682  | 1 | 4231 |
| 25801 | 3 | 61770 | 62192 | 1 | 981913  | 1 | 4221 |
| 25901 | 1 | 62369 | 62795 | 1 | 986134  | 1 | 4261 |
| 26001 | 3 | 62988 | 63392 | 1 | 990395  | 1 | 4041 |
| 26101 | 1 | 63595 | 63989 | 1 | 994436  | 1 | 3941 |
| 26201 | 3 | 64183 | 64558 | 1 | 998377  | 1 | 3751 |
| 26301 | 1 | 64733 | 65098 | 1 | 1002128 | 1 | 3651 |
| 26401 | 3 | 65258 | 65615 | 1 | 1005779 | 1 | 3571 |
| 26501 | 1 | 65790 | 66143 | 1 | 1009350 | 1 | 3531 |
| 26601 | 3 | 66666 | 67019 | 1 | 1012881 | 1 | 3531 |
|       |   |       |       |   |         |   |      |

| 26701 | 1 | 67204 | 67549 | 1 | 1016412 | 1 | 3451 |
|-------|---|-------|-------|---|---------|---|------|
| 26801 | 3 | 67737 | 68070 | 1 | 1019863 | 1 | 3331 |
| 26901 | 3 | 68376 | 68711 | 1 | 1023194 | 1 | 3351 |
| 27001 | 1 | 68865 | 69178 | 1 | 1026545 | 1 | 3131 |
| 27101 | 3 | 69315 | 69634 | 1 | 1029676 | 1 | 3191 |
| 27201 | 1 | 69786 | 70086 | 1 | 1032867 | 1 | 3001 |
| 27301 | 3 | 70227 | 70524 | 1 | 1035868 | 1 | 2971 |
| 27401 | 1 | 70669 | 70961 | 1 | 1038839 | 1 | 2921 |
| 27501 | 3 | 71098 | 71380 | 1 | 1041760 | 1 | 2821 |
| 27601 | 1 | 71524 | 71795 | 1 | 1044581 | 1 | 2711 |
| 27701 | 3 | 71939 | 72193 | 1 | 1047292 | 1 | 2541 |
| 27801 | 3 | 65320 | 65554 | 1 | 1049833 | 1 | 2341 |
| 27901 | 1 | 65694 | 65945 | 1 | 1052174 | 1 | 2511 |
| 28001 | 3 | 66094 | 66302 | 1 | 1054685 | 1 | 2081 |
| 28101 | 1 | 66456 | 66683 | 1 | 1056766 | 1 | 2271 |
| 28201 | 3 | 66822 | 67024 | 1 | 1059037 | 1 | 2021 |
| 28301 | 1 | 67173 | 67378 | 1 | 1061058 | 1 | 2051 |
| 28401 | 3 | 67523 | 67710 | 1 | 1063109 | 1 | 1871 |
| 28501 | 1 | 67869 | 68052 | 1 | 1064980 | 1 | 1831 |
| 28601 | 3 | 68401 | 68573 | 1 | 1066811 | 1 | 1721 |
| 28701 | 1 | 68744 | 68932 | 1 | 1068532 | 1 | 1881 |
| 28801 | 3 | 69080 | 69242 | 1 | 1070413 | 1 | 1621 |
| 28901 | 1 | 67499 | 67657 | 1 | 1072034 | 1 | 1581 |
| 29001 | 3 | 67196 | 67341 | 1 | 1073615 | 1 | 1451 |
| 29101 | 1 | 66922 | 67069 | 1 | 1075066 | 1 | 1471 |
| 29201 | 3 | 66623 | 66757 | 1 | 1076537 | 1 | 1341 |
| 29301 | 1 | 66378 | 66502 | 1 | 1077878 | 1 | 1241 |
| 29401 | 3 | 66085 | 66198 | 1 | 1079119 | 1 | 1131 |
|       |   |       |       |   |         |   |      |

| 29501  | 1 | 65859 | 65964 | 1 | 1080250 | 1 | 1051 |
|--------|---|-------|-------|---|---------|---|------|
| 29601  | 3 | 65590 | 65688 | 1 | 1081301 | 1 | 981  |
| 29701  | 1 | 65366 | 65451 | 1 | 1082282 | 1 | 851  |
| 29801  | 3 | 65114 | 65195 | 1 | 1083133 | 1 | 811  |
| 29901  | 1 | 64875 | 64957 | 1 | 1083944 | 1 | 821  |
| 30001  | 3 | 64628 | 64714 | 1 | 1084765 | 1 | 861  |
| 30101  | 1 | 64392 | 64479 | 1 | 1085626 | 1 | 871  |
| 30201  | 3 | 64137 | 64219 | 1 | 1086497 | 1 | 821  |
| 30301  | 1 | 63912 | 63997 | 1 | 1087318 | 1 | 851  |
| 30401  | 3 | 63643 | 63726 | 1 | 1088169 | 1 | 831  |
| 30501  | 1 | 63416 | 63504 | 1 | 1089000 | 1 | 881  |
| 500101 | 2 | 69689 | 70298 | 1 | 1089881 | 1 | 6091 |
| 500201 | 4 | 70499 | 71137 | 1 | 1095972 | 1 | 6381 |
| 500301 | 2 | 71287 | 71903 | 1 | 1102353 | 1 | 6161 |
| 500401 | 4 | 72121 | 72720 | 1 | 1108514 | 1 | 5991 |
| 500501 | 2 | 58198 | 58428 | 1 | 1114505 | 1 | 2301 |
| 500601 | 4 | 58676 | 59021 | 1 | 1116806 | 1 | 3451 |
| 500701 | 2 | 59301 | 59707 | 1 | 1120257 | 1 | 4061 |
| 500801 | 4 | 59987 | 60479 | 1 | 1124318 | 1 | 4921 |
| 500901 | 2 | 60702 | 61280 | 1 | 1129239 | 1 | 5781 |
| 501001 | 4 | 61549 | 62211 | 1 | 1135020 | 1 | 6621 |
| 501101 | 2 | 62464 | 63217 | 1 | 1141641 | 1 | 7531 |
| 501201 | 1 | 70083 | 71005 | 1 | 1149172 | 1 | 9221 |
|        |   |       |       |   |         |   |      |

#### DIGITAL ARCHIVE DESCRIPTION OF GRID DATA

CLIENT NAME OF SURVEY CALIFORNIA AREA NAME CONTRACTOR JOB CODE GRID ARCHIVE NAME FORMAT CONTENT CREATION DATE NUMBER of ROWS and COLUMNS PIVOTAL POSITION (X,Y) CELL SIZE UNIT UNIT FACTOR MINIMUM VALUE (nT) MAXIMUM VALUE (nT) MEAN VALUE (nT)

> GRID ARCHIVE NAME FORMAT CONTENT CREATION DATE NUMBER of ROWS and COLUMNS PIVOTAL POSITION (X,Y) CELL SIZE UNIT UNIT FACTOR MINIMUM VALUE (m) MAXIMUM VALUE (m) MEAN VALUE (m)

PROJECTION INFORMATION :

DATUM SHEROID PROJECTION CENTRAL MERIDIEN FALSE EASTING FALSE NORTHING SCALE FACTOR

U.S.G.S AEROMAGNETIC SURVEY of DEATH VALLEY FUGRO AIRBORNE SURVEYS 655 CALIF\_TF.GRD GEOSOFT BINARY GRID TOTAL MAGNETIC INTENSITY February 15, 2001 704 640 470022 3978828 133m nT 0.001 -540.011 394.056 -101.347 CALIF RADAR.GRD GEOSOFT BINARY GRID RADAR March 7, 2001 704 640 470022 3978828 133m m 0.01 168 1217 (instrument maximum) 869

> NAD83 WGS84 UTM 117 West 500000 m 0 m 0.9996