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INTRODUCTION

Many sediment-hosted gold deposits occur along linear trends
in northern Nevada. The distribution and genesis of these
deposits along the Battle Mountain-Eureka and Carlin gold trends
is not fully understood. In general, most models agree that
regional structures played an important role in the spatial
distribution of these deposits (e.g. Arehart and others, 1993;
Ilchik and Barton, 1997; Radtke, 1985; Shawe, 1991; Sillitoe and
Bonham, 1990; Tosdal, 1998). To investigate crustal structures
that may be related to the genesis of gold deposits along these
trends, west-east, north-south, and southwest-northeast profiles
of magnetotelluric (MT) soundings were acquired in 1999 (lines
MT6-MT6’, MT7-MT7’, and MT8-MT8’, Figure 1) across Boulder Valley
and the Humboldt River. Resistivity modeling of the MT data can
be used to infer the deep resistivity structure of the crust to
investigate possible tectonic controls on the emplacement of
mineral deposits along these linear trends that may be used to
help improve critical gold endowment estimates in the Humboldt
River Basin. The purpose of this report is to release the MT
sounding data; no interpretation of the data is included.

MAGNETOTELLURIC METHOD

The magnetotelluric (MT) method is a passive surface
geophysical technique, which uses the earth's natural
electromagnetic fields to investigate the electrical resistivity
structure of the subsurface. The resistivity of geologic units
is largely dependent upon their fluid content, porosity, degree
of fracturing, temperature, and conductive mineral content
(Keller, 1989). Saline fluids within the pore spaces and
fracture openings can reduce resistivities in a resistive rock
matrix. Also, resistivity can be lowered by the presence of
conductive clay minerals, carbon, and metallic mineralization.
It is common for altered volcanic rocks to contain authigenic
minerals that have resistivities ten times lower than those of
the surrounding rocks (Nelson and Anderson, 1992). Increased
temperatures cause higher ionic mobility and mineral activation
energy, reducing rock resistivities significantly. Unaltered,
unfractured igneous rocks are normally very resistive (typically
1,000 ohm-m or greater), whereas fault zones will show low
resistivity (less than 100 ohm-m) when they are comprised of
rocks fractured enough to have hosted fluid transport and
consequent mineralogical alteration (Eberhart-Phillips and
others, 1995). Carbonate rocks are moderately to highly
resistive (hundreds to thousands of ohm-m) dependent upon their
fluid content, porosity, fracturing, and impurities. Marine
shales, mudstones, and clay-rich alluvium are normally very
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conductive (a few ohm-m to tens of ohm-m). Unaltered,
metamorphic rocks (non-graphitic) are moderately to highly
resistive (hundreds to thousands of ohm-m). Tables of electrical
resistivity for a variety of rocks, minerals and geological
environments may be found in Keller (1987) and Palacky (1987).

The MT method can be used to probe the crust from depths of
tens of meters to depths of tens of kilometers (Vozoff, 1991).
Natural variations of the Earth's magnetic and electric field are
measured and recorded at each MT station. The primary frequency
bands used by the MT method are 10,000 Hz to 1 Hz from worldwide
lightning activity and 1 Hz to 0.0001 Hz from geomagnetic micro-
pulsations. Natural electric and magnetic fields propagate
vertically in the earth because the very large resistivity
contrast between the air and the earth causes a vertical
refraction of both fields transmitted into the earth (Vozoff,
1972).

The natural electric and magnetic fields are recorded in two
orthogonal, horizontal directions. The vertical magnetic field
(“tipper”) is also recorded. The resulting time-series signals
are used to derive the tensor apparent resistivity and phase.
First the signals are converted to complex cross-spectra using
FFT (fast-Fourier-transform) techniques. Then, least-squares,
cross-spectral analysis (Bendat and Piersol, 1971) is used to
solve for a transfer function that relates the observed electric
fields to the magnetic fields under the assumption that the Earth
consists of a two-input, two-output, linear system with the
magnetic fields as input and the electric fields as output
(Rodriguez and others, 1996). Prior to conversion to apparent
resistivity and phase, the tensor is normally rotated into
principal directions that correspond to the direction of maximum
and minimum apparent resistivity. For a two-dimensional (2-D)
Earth, the MT fields can be de-coupled into transverse electric
(TE) and transverse magnetic (TM) modes; 2-D modeling is
generally done to fit both modes. When the geology satisfies the
2-D assumption, the MT data for the TE mode is for the electric
field parallel to geologic strike, and the data for the TM mode
is for the electric field across strike. The MT method is well
suited for studying complicated geological environments because
the electric and magnetic relations are sensitive to vertical and
horizontal variations in resistivity. The method is capable of
establishing whether the electromagnetic fields are responding to
subsurface terranes of effectively 1-, 2-, or 3-dimensions. An
introduction to the MT method and references for a more advanced
understanding are contained in Dobrin and Savit (1988) and Vozoff
(1991).
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MAGNETOTELLURIC SURVEY

Thirteen MT soundings were located along profiles MT6-MT6’,
MT7-MT7’, and MT8-MT8’ (Figure 1) with spacing that varied from
2.9 to 8.5 kilometers. The profile orientations of MT6-MT6’ and
MT7-MT7’ are perpendicular to each other and both oblique to the
Battle Mountain-Eureka and Carlin trends, while the profile
orientation of MT8-MT8’ is roughly perpendicular to the Battle
Mountain-Eureka trend. All stations were collected with a
portable EMI MT-1 system (EMI, 1996). Horizontal electric fields
were sensed using an L-shaped, three-electrode array with dipole
lengths of 30 meters. The orthogonal, horizontal magnetic fields
in the direction of the electric-field measurement array were
sensed using permalloy-cored induction coils (Stanley and
Tinkler, 1983). Frequencies sampled ranged from 100 to 0.009 Hz
using single station recordings of both orthogonal horizontal
components of the electric and magnetic fields. The vertical
magnetic field was recorded at all stations except 72 and 70.
Sampling this frequency range in previous areas of widely varying
geology (Eberhart-Phillips and others, 1990; Stanley and others,
1991; Stanley and others, 1997; Rodriguez, 1998) has allowed us
to probe the crust from depths of hundreds of meters to depths of
tens of kilometers.

The recorded time-series data were transformed to the
frequency domain and processed to determine a two-dimensional
apparent resistivity and phase tensor at each site. Rotation of
the impedance tensor to maximum and minimum directions allows for
decoupling into the TE and TM modes. Local reference sensors to
help reduce bias in the impedance determinations due to
instrument or environmental noise (Gamble and others, 1979a;
Clarke and others, 1983) were used at all stations except
stations 73-76. Although true remote reference techniques were
not used in our survey, we did sort cross-power files to select
optimal signal-to-noise data sets (see Appendix).

The effects of near-surface resistivity anomalies cause
“static shifts” (Sternberg and others, 1988) in the data. Static
shifts of this data set ranged from 0.0 to 0.4 of a log decade.
Only stations 67, 69, and 73 had static shifts of 0.4 of a log
decade. The remainder of the stations had an average of 0.1 of a
log decade static shift.

MAGNETOTELLURIC DATA

The following table shows thirteen magnetotelluric (MT)
station locations (by profile). Coordinates are referenced to
the 1866 Clarke spheroid and North American 1927 Western United
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States datum. Longitude and latitude format below is decimal
degrees. Elevation is in meters.

Station Longitude Latitude Elev(m)
MT6

72 -116.65770 40.76352 1400
67 -116.59319 40.76856 1400
65 -116.52693 40.76426 1410
64 -116.49056 40.75211 1420

MT7
63 -116.46887 40.69744 1450
66 -116.49212 40.79785 1415
68 -116.50533 40.84150 1430
69 -116.49231 40.89135 1470
70 -116.47627 40.94122 1530

MT8
76 -116.98241 40.58591 1400
75 -116.96516 40.60841 1400
74 -116.90120 40.66956 1374
73 -116.86531 40.70358 1463

The figures in the Appendix represent the field-processed MT
data for each station after the time series data were converted
to the frequency domain and the tensor-transfer function was
rotated into principal directions as described above in the
“Magnetotelluric Method” section.

For each station, except 72 and 70, nine separate plots are
given:

1. Apparent Resistivity for the rotated maximum (x symbol) and
minimum (o symbol) modes

2. Impedance Phase for the rotated maximum (x symbol) and minimum
(o symbol) modes

3. Rotation Angle for the impedance tensor (corresponds to the
direction of maximum apparent resistivity)

4. Impedance Skew for the impedance tensor
5. Multiple Coherency for the rotated maximum (x symbol) and

minimum (o symbol) modes of the electric field
6. Impedance Polar Plots (at 12 selected frequencies)
7. Tipper Magnitude for the vertical magnetic field
8. Tipper Strike for the vertical magnetic field, and
9. HzHx (x symbol) and HzHy (o symbol) Coherency

Error bars on the Apparent Resistivity, Impedance Phase,
Skew, Tipper Magnitude, and Tipper Strike plots represent
probable errors within one standard deviation of the sample
variance (Gamble and others, 1979b).
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Apparent resistivity is a measure of the magnitude of the
electric field strength over the magnetic field strength for a
given frequency. The impedance phase is proportional to the
slope of the apparent resistivity curve on a log-log plot, but
from a baseline at -45 degrees (Vozoff, 1991). A measure of the
dimensionality for MT data is provided by the impedance skew of
the impedance tensor (Vozoff, 1972). If the effective measured
resistivity response to the geology beneath a MT station is truly
1-D or 2-D, then the skew will be zero. Both instrument and
environmental sources of noise contribute to non-zero skew
values, but are typically small (about 0.1) for relatively low
noise level recordings. Higher skews (above 0.2) are an
indication of either the resistivity response to 3-D geology or
higher levels of noise. Man-made electrical noise, such as
power lines, power generators, moving vehicles and trains can
have a negative effect on MT data quality. All these local
disturbances produce an incoherent noise mainly affecting
frequencies above 1 Hz. Other man-made electrical noise, such
as direct current electric trains and active cathodic protection
of pipelines produce coherent electromagnetic signals mainly
affecting frequencies below 1 Hz.

In the survey area, noise from a number of small power lines
and small moving vehicles was negligible at distances of 0.4 km
and greater from the noise source. Power line levels were
measured at each site and were typically less than 20% of the
maximum recordable signals. Noise from larger power lines, power
generators, pipelines, railroads, and steam-driven trains, mostly
near mining operations, was negligible at least 5 km from them.
Recordings were not made when noise from moving vehicles affected
the magnetic signals. Local lightning, wind, and rainstorms can
also degrade data quality, but these were avoided by not
recording during active thunderstorm periods. Wind noise was
minimized by burying the magnetic induction coils.

Predicted values of the electric field can be computed from
the measured values of the magnetic field (Vozoff, 1991). The
coherence of the predicted electric field with the measured
electric field is a measure of the signal-to-noise ratio provided
in the multiple coherency plot. Values are normalized between 0
and 1, where values at 0.5 signify signal levels equal to noise
levels. For this data set, coherencies were generally at an
acceptable level, except at times in the “dead band” (0.1 to 1
Hz) and at times in the lower frequencies (0.009 to 0.1). The
lower frequency ionospheric signals are related to sunspot
activity whose levels typically follow an 11-year cycle. The
sunspot activity was near the highest level of the cycle during
the 1999 survey.
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The figures in the Appendix represent the field-processed MT
data at each station, which includes some data scatter and poor
signal-to-noise ratios. Our only effort at removing noisy data
points was to visually inspect and select the best signal-to-
noise field data to combine into the final data plots.

The impedance polar plots provide a measure of the MT data
dimensionality (Reddy and others, 1977). For 1-D resistivity
structures, the principal impedance polar diagram (dashed line)
is a circle. For 2-D or 3-D resistivity structures, the
principal impedance polar diagram (dashed line) elongates either
parallel or perpendicular to strike direction. Over resistors,
the principal impedance polar diagram elongates perpendicular to
strike direction and over conductors, the principal impedance
polar diagram elongates parallel to strike direction. Also, for
2-D resistivity structures, the additional impedance polar
diagram (solid line) attains the shape of a symmetric clover
leaf. For 3-D resistivity structures, the additional impedance
polar diagram (solid line) elongates in one direction and its
amplitude is comparable to that of the principal impedance polar
diagram (dashed line). Sites whose polar plots indicated 3-D
character in the lower frequencies were MT stations 72, 67, 64,
63, 70, and 74 (Figure 1).

The tipper can be solved for when the vertical component of
the magnetic field is measured. The tipper magnitude is a
measure of the tipping of the magnetic field out of the
horizontal plane (Vozoff, 1991). The magnitude is zero for the
1-D case and typically increases between 0.1 to 0.5, and rarely
as great as 1, as it responds to vertical and sub-vertical
structures. The tipper strike is typically used to help resolve
the 90-degree ambiguity in the impedance rotation angle. The
vertical component of the magnetic field was measured at all
stations except 72 and 70. The tipper magnitude of these
stations was typically 0.1 to 0.4 over the lower frequencies
indicating vertical structure at depth. Stations 73 and 76 had
even larger tipper magnitudes (over 0.5) in the higher frquencies
indicating nearby vertical structure at depth. The HzHx and HzHy
coherency is a measure of the signal-to-noise ratio of the
vertical magnetic field with respect to each of the orthogonal
horizontal magnetic field directions. Values are normalized
between 0 and 1, where values at 0.5 signify signal levels equal
to noise levels. These three-component magnetic field
coherencies provide a check on the signal-to-noise ratio of the
measured values in the tipper magnitude and tipper strike plots.
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APPENDIX

MAGNETOTELLURIC DATA PLOTS

There are nine separate plots for all stations except 72 and
70, which do not have the last three Tipper plots:

1. Apparent Resistivity for the rotated maximum (x symbol) and
minimum (o symbol) modes

2. Impedance Phase for the rotated maximum (x symbol) and minimum
(o symbol) modes

3. Rotation Angle for the impedance tensor (corresponds to the
direction of maximum apparent resistivity)

4. Impedance Skew for the impedance tensor
5. Multiple Coherency for the rotated maximum (x symbol) and

minimum (o symbol) modes of the electric field
6. Impedance Polar Plots (at 12 selected frequencies)
7. Tipper Magnitude for the vertical magnetic field
8. Tipper Strike for the vertical magnetic field, and
9. HzHx (x symbol) and HzHy (o symbol) Coherency

Stations 72 and 70 have only the first six plots above,
since the vertical magnetic field data (Tipper, Hz) was not
acquired. Refer to the “Magnetotelluric Data” section in this
report for an explanation of these plots.
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Figure 1. Index map. Magnetotelluric transects (MT6-MT6’, MT7-MT7’, and
MT8-MT8’) acquired in 1999 in northeastern Nevada. Shaded zones are two
northwest-trending mineralized belts in northeastern Nevada, the well-known
Carlin trend and the Battle Mountain-Eureka trend. Base map adapted from
Struhsacker and others (1996).
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