USES Canister Desorption Equipment

By
Charles E. Barker USGS, Denver

A pressure tight canister and manometer for gas volume measurement

Manometer made of nested 500 ml graduated cylinder in a 1000 ml gratuated cylinder. The material we use hecause of its clarity is clear polymethylpentene [PMP] plastic . The manometer is constructed so that the inverted [lase up] inner sliding cylinder rests on the bottom of the outside cylinder. The spout and base stand of a 500 ml cylinder is sawn off to allow this smaller diamoter graduated cylinder, when inverted, to slide in side of a larger diameter 1000 ml cylinder. To zero the manometer, the hose is removed from the quickconneet and water is added to the outer cylinder. Water fills both cylinders to a marked zero point. A free space of 50 ml is left at the top to keep water out of the tube and to assure that the inner cylinder rests on the hottom. After each measurement the hose is opened to allow the inner cylinder to settie to the hottom and automatically rezero the manometer.

Manometer design as used by River Gas Company

The USGS Can -- a coal core desorption canister

Pressure tight plug for insertion into canister end

Immediately after the coal core is retrieved, it is broken into 12 inch [30 cmu pieces to fit the 13 inch [33 cm] working canister length [14 inch, 35.5 cm overall J and closed in the canister by the yellow and black pressure tight plug.

Shown is a 3 inch [7.5 cm] Cherne ${ }^{\circledR}$ pressure test plug.
Part \# 270237 [5 psi rating]
Also used is the Sioux Chief 3 inch test plug [45 psi rating]

- Be sure that both sealing surfaces in the canister and on the pluy are clean before closing
- Some workers add hoiled water or distilled water to fill the remaining open space in the canister
- In any case, leave a 5 cm gap from the coal core to the end of the PVC pipe to allow space for the plug.
- If water is not added After sealing, the canister head space is purged with helium three times through the quick conneet valves to remove air.

Pressure plug wing nut assembly

- The coal core is inserted as soon as possible upon reaching the surface. The pressure tight pluy is then inserted in the open pipe end and is hand tightened using the wing nut only
- The time that the canister is closed should be noted. This is after helium purge has been completed if the head space purge method is used.
- The time the core was lifted off bottom and reached the surface should have been noted as well. These times are used for calculation of lost gas.

Detail of hulkhead fitting used to conneet tubing to sliding graduated eylinder

Canister top showing quick conneet, valve and thermocouple well assembly

1. Ambient atmospherie pressure is measured using a digital barometer in the field. In the Laboratory we use a mercury barometer [see parts list]

Swayelok ${ }^{\circledR}$ brand SS-QC4-D-4PM male quick conneet

Swayelok ${ }^{\circledR}$ brand SS-पC4-D4PF female quick conneet

The quick conneet system is a double end shutoff valve type so that essentially no gas is lost during connection and no other valves are needed to control gas flow.

2. The ambient temperature is measured from the manometer water using a thermocouple hooked to a digital thermometer [see accessory listl. This value is used in the PVT calculations for gas volume at STP

Thermocouple well for headspace gas temperature measurements. This temperature is one of the those needed to compute gas volume at STP. Design of well is shown in the USGS can schematic [Slide 3].

Immersion heater for canister tank

- Polyscience © model 71 Immersion heater with 1000 w heating capacity and if I/min flow.
- Used to heat tank water to in-situ coalhed temperature.
- Heating canisters to reservoir temperature allows accurate lost gas calculation.
- The water tank is deep enough to submerge the canisters to just below their top where the quick conneet is located.

Side view of heater showing

hanyer that fiits over tank wall

Abeessory List

- Electronic thermometer: Cole Palmer ${ }^{\circledR}$ Dual sensor J-T-E-K thermocouple capable thermometer
- Thermocouples: two each per thermometer: Omega ® subminiature thermocouples like Catalog \# KHIN -116G-RSC-3 [type K with molded handle and 3 inch grounded probe]
- Electronic harometer: Omega ® Model no. DPI 740
- Mercurry barometer ffor use in the laboratory, but not in the field] Prince ${ }^{\circledR}$ model no 453 or model no. 469
- Electronic balance: Acculab ${ }^{\otimes}$ HX $1210 C$. 10 Kg capacity with 1 g readability. This capacity works for the 14 inch long canisters. Larger balance capacity may be needed for longer canisters.
- Immersion heaters. We use Polyscience ${ }^{\circledR}$) model 71 . We have used Haake ${ }^{\circledR}$) model C -10 but it has proven less durable.
- Immersion tanks for heating canisters
- For low temperature operations at < about 50C polyethylene plastic tanks can be used. Rubbermade® brand storage containers [40 gallon size] have been used in a double nested configuration to inerease strength.
- Higher temperatures require polypropylene [maximum service temperature $1044^{\circ} \mathrm{C}$. We use Nalgene $®^{8}$ cat no. 14200-0050.
- The tanks should be tall enought to allow the cover to be used with the canisters in an upright position and small enough for the immersion heater to hold the tank water at reservoir temperature, about 120 liter (30 gallonl capacity works well with the Polyscience ® model 71 immersion heater.

