
 
 

 
 

                                           

Extending Beowulf Clusters 
 
 
 
 
 
By Daniel R. Steinwand,1 Brian Maddox,2 Tim Beckmann,1 
and George Hamer3 
 
 
 
 
 
 

 

Open-File Report 03-208 
 
 
 
 
 

 
1 USGS, EROS Data Center, SAIC, Sioux Falls, SD 57198-0001.  Work 
performed under U.S. Geological Survey contract 03CRCN0001. 
2 Mid-Continent Mapping Center, Rolla, MO  65401 
3 South Dakota State University, Brookings, SD  57007 
 
 

U.S. Department of the Interior 
U.S. Geological Survey 

9/11/2003  1 



 
 

Contents 
 

Key Words……………………………………………………………………         3 
 
Abstract………………………………………………………………..………         3 
 
Introduction……………………………………………………………………             4 
 
MOSIX Research …………………………………………………..…..……         4 
 
Condor Research ……………………………………………………………         9 
 
Internet Supercomputing Research………………………………………..         11 
 
 
References……………………………………………………………….…..       18 
 
Important Web Sites………………………………………………………….       18 

 
 
 
 

Illustration  
 
 
Figure 1.  MOSIX runtimes ……………………………………………………         8 
 
  

9/11/2003  2 



Abstract 
 
Beowulf clusters can provide a cost-effective way to compute numerical models 
and process large amounts of remote sensing image data.  Usually a Beowulf 
cluster is designed to accomplish a specific set of processing goals, and 
processing is very efficient when the problem remains inside the constraints of 
the original design.  There are cases, however, when one might wish to compute 
a problem that is beyond the capacity of the local Beowulf system.  In these 
cases, spreading the problem to multiple clusters or to other machines on the 
network may provide a cost-effective solution4. 

 
 
 

Key Words 
 

Parallel Processing, Beowulf Clusters, High-Performance Computing, Remote 
Sensing, Image Processing 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

                                            
4 Any use of trade, product, or firm names is for descriptive purposes only and 
does not imply endorsement by the U.S. Government. 

9/11/2003  3 



Introduction 

The project described in this paper is a continuation of work that commenced in 
fiscal year (FY) 2000 with the identification of individuals at U.S. Geological 
Survey (USGS) Mapping Centers interested in building an information science 
research infrastructure within the National Mapping Division (NMD) (now called 
the Geography Discipline).  At that time, employees at USGS sites (the EROS 
Data Center (EDC) in Sioux Falls, South Dakota, the EDC/Alaska Field Office 
(AFO) in Anchorage, Alaska, the Mid-Continent Mapping Center (MCMC) in 
Rolla, Missouri, and the Rocky Mountain Mapping Center (RMMC) in Denver, 
Colorado) prepared and submitted a research proposal to begin investigations 
into high-performance computing.  Approval of follow-on proposals for continued 
funding in FY 2001 and again in FY 2002 has enabled the Centers to enhance 
performance and communication on their existing clusters and to test various 
applications on these systems. 
 
This part of the project focused on looking beyond what a single Beowulf cluster 
in the USGS system could compute.  Three specific topics were addressed, and 
each is described in detail in this report.  First, researchers at MCMC looked at 
and modified the Multicomputer Operating System for UnIX (MOSIX) as a way to 
dynamically allocate cluster nodes.  Second, at EDC, and at South Dakota State 
University (SDSU), researchers looked at Condor as a way to link two or more 
clusters, as well as individual desktop computers, on a network.  Finally, 
researchers at EDC did an experiment with “Internet supercomputing” as an 
alternative to the cluster approach. 
 

MOSIX Research 
 
One of the biggest problems with distributed processing is that applications must 
be specially written to run in a distributed environment.  For older software, this 
generally requires redesign and reimplementation, which can make it cost 
prohibitive to move to a distributed processing scheme.  Writing software 
explicitly for distributed processing also reduces the portability of that software, 
as it is then tied to some form of specialized cluster environment. 
 
A solution to this problem may well be the use of MOSIX.  MOSIX was developed 
by a team led by Professor Amnon Barak of The Hebrew University in Jerusalem 
(Barak and others, 1999).  MOSIX differs from a traditional distributed processing 
cluster in that it makes every machine in the cluster appear as part of one large 
parallel computer.  It does this by migrating processes between nodes in a 
cluster, so that a process running on a heavily loaded node can be migrated to 
one with resources available.  The interesting thing about this process migration 
is that it is done transparently to the process that is migrated.  MOSIX leaves a 

9/11/2003  4 



small “stub” program on the original node that is used for communication 
purposes, while the process itself can be moved around the cluster.  This stub 
process enables the main process to communicate with the originating computer 
as if it were still running on that computer.  The advantage of this technique is 
that programs do not have to be explicitly written to run on a MOSIX cluster.  
Older software need only be compiled to run under Linux to take advantage of 
the process migration. 
 
MOSIX also offers options for parallel I/O operations over a cluster.  The Direct 
File System Access (DFSA) mechanism is “a re-routing mechanism that reduces 
the extra overhead of executing I/O oriented system calls of a migrated process” 
(Amar, 2002).  It does this by redirecting requests so that they run on the node 
the process is currently running on and are not sent to the stub on the originating 
node.  The MOSIX DFSA mechanism can also migrate a process to the node 
where most of its I/O operations take place.  This can help, for example, when a 
process may be reading a large amount of data from a traditional NFS file-
serving node.  DFSA can move the process to that node so that reading takes 
place locally instead of over the network. 
 
The ability to migrate processes transparently is the main characteristic of 
MOSIX.  As previously mentioned, MOSIX leaves a small stub process on the 
originating node when that process is migrated.  MOSIX will then redirect 
communications to and from the stub.  The interesting aspect of this is that the 
process need not know it has been migrated.  It is so transparent that 
applications that interact with a user can be migrated to another node, and the 
user will be unaware that the migration has happened.  This stub is critical 
because it allows processes to run remotely even if they have not been 
specifically written to use MOSIX.  This is beneficial since older programs can be 
run under MOSIX and take advantage of the dynamic load balancing over a 
cluster. 
 
The process migration transparency also enables MOSIX to function alongside 
traditional Beowulf processing environments.  For example, implementations of 
the Message Passing Interface (MPI) standard can be run alongside MOSIX.  
MOSIX can provide better load balancing than typical MPI implementations 
provide, and DFSA can in theory help to balance I/O requests over the cluster. 
 
MOSIX is not without problems, however.  MOSIX is implemented as a series of 
patches to the Linux kernel.  These patches are quite extensive, and therefore 
make it harder to apply any other patches alongside MOSIX.  The monitoring 
utilities that are available through a download also do not fully implement certain 
functionalities, such as easily determining where a specific process is currently 
running on the cluster.  For this, a small application was developed at MCMC to 
check each node to see if a specific process had been migrated there.  The 
reference utilities available through a download only provide a simplistic graph of 

9/11/2003  5 



system load per machine in a MOSIX cluster.  Better management utilities may 
be available only in commercial versions of the software. 
 
The OpenMOSIX (Bar, 2002) version was initially used for testing. OpenMOSIX 
is derived from Barak’s original MOSIX version.  OpenMOSIX is also fully placed 
under the General Public License (GPL), along with the necessary user utilities.  
The choice of OpenMOSIX was made owing to the personal convictions of the 
MCMC project lead about the use of truly open software.  However, the choice of 
OpenMOSIX proved problematic as it presented numerous difficulties.  The first 
problem noticed was that the user utilities provided with OpenMOSIX were more 
primitive than those with mainline MOSIX.  The OpenMOSIX kernel itself also 
experienced numerous crashes that could not be explained. 
 
The biggest difficulty with OpenMOSIX, however, was that it had serious 
problems when the number of processes started on a given node passed a 
certain threshold.  For example, an image reprojection application was initially 
modified so that it would simply start all MPI tasks on the master node and let 
OpenMOSIX migrate them to the various nodes around the cluster.  This worked 
up to a certain point, but past this point the originating node would either lock up 
for a period of time or crash.  Numerous attempts were made to diagnose this 
problem.  The only determination made was that there appeared to be a process 
threshold, but it was not fully consistent.  The results of the threshold, system 
crash or temporary lock up, also were not consistent. 
 
In the end, these difficulties forced researchers to abandon OpenMOSIX in favor 
of the mainline MOSIX version.  There were several immediate benefits to this.  
MOSIX had an automatic installer script that took care of many operations that 
had to be done by hand with OpenMOSIX.  MOSIX also was more sophisticated, 
both in stability and in user utilities. 
 
MOSIX was also found to have the same “number of processes” problem that 
OpenMOSIX had.  However, MOSIX never actually crashed when this threshold 
was broken, and that threshold was far more predictable in MOSIX.  It was found 
that this problem in MOSIX is related to the “power” of the machine (processor 
speed, amount of memory, and so on).  With mainline MOSIX, the application 
would still finish, but the head node would become unresponsive until the number 
of processes dropped past a certain level.  To work around this problem, we 
modified the projection software so that it would spawn MPI tasks across several 
nodes and let MOSIX migrate those tasks to the rest of the cluster.  This kept the 
number of processes started on any given node below the limit. 
 
Another problem was observed with MPI tasks when run in MOSIX.  After a 
processing node is finished, its piece of the processing application exits when 
told there is no work left.  If this exit took place while the processing application 
was still migrated, the application would crash.  The solution to this problem was 

9/11/2003  6 



to modify the projection software to directly tell MOSIX to migrate it back to the 
originating node before exiting. 
 
When these changes had been made, tests were done to observe how well 
MOSIX could load balance a data-bound application.  With the projection 
software modified and the initial problems with MOSIX solved, the software was 
set to start several MPI tasks on a small number of nodes.  To see how well 
MOSIX would allow an MPI task to run on a non-MPI enabled machine, we only 
started MPI on the head node and the nodes that began the processing tasks.  
MOSIX was running on each machine in the cluster during these tests.  The tests 
were set up to run in overloaded and underloaded states.  In the overloaded 
state, there were more MPI processing tasks started than there were nodes on 
the cluster.  The underloaded case involved starting fewer processing tasks than 
nodes on the cluster. 
 
The overloaded and underloaded states were chosen to test various aspects of 
MOSIX for data-bound processing.  In the overloaded state, some machines will 
run more than one processing task at a given time.  This test was designed to 
see not only if MOSIX would intelligently select the dual processor machines to 
run multiple tasks but also how well overloading would work for processing.  The 
underloaded state was chosen to see if MOSIX would keep processes on their 
migrated nodes or if it would periodically move processes around to various 
nodes.  This test was to determine if MOSIX would act like a multiprocessor 
machine, where the operating system will sometimes move a process from 
processor to processor.  For input, a file was stored on a single node and 
traditional NFS file serving was used. 
 
Figure 1 compares processing times under MOSIX with comparable non-MOSIX 
runtimes.  As can be seen, MOSIX does suffer a performance penalty when 
performing data-bound processing.  The first and third columns compare MOSIX 
and DFSA.  DFSA is actually slower than non-DFSA for overloaded processing.  
It was observed that MOSIX kept trying to migrate processing tasks to the file 
server node, which slowed down processing because task migration consumes 
some time.  Overloaded processing with and without DFSA is slower than 
overloaded run without MOSIX using traditional MPI task spawning.  The last two 
columns show that the underloaded case was slower with MOSIX than without.  
DFSA was also turned on in the underloaded case, causing the same problems 
here as with the overloaded case. 
 
This demonstrates that although MOSIX may be able to load balance traditional 
distributed processing tasks, it is not well suited for data-bound processing where 
large amounts of data are passed through the network.  In theory, DFSA would 
help as it moves the processing jobs to the node that stores the data.  However, 
large numbers of processing tasks suffer bottleneck problems as MOSIX tries to 
move all of them to the file-serving node each time these tasks try to read data.  
Even without DFSA, MOSIX is slower owing to penalties incurred from the 

9/11/2003  7 



communication with the MPI system through the stub process on the originating 
nodes.  However, DFSA may perform better when multiple file-serving nodes are 
used.   

Mosix Projection Runtimes

0

100

200

300

400

500

600

700

800

900

Overloaded With Mosix Overloaded Without DFSA Overloaded Without Mosix Underloaded With Mosix Underloaded Without Mosix

Ti
m

e 
in

 S
ec

on
ds

 
 
MOSIX also demonstrated tha
processes randomly between 
processes around between sim
node overloaded and not mov
However, this is not necessari
load balancing is an incredibly
been successfully solved.  Thi
processor computers where a
between processors instead o
running on the same node for 
 
This experimentation with MO
used to implement massively p
MOSIX can be easily enabled
and leave a MOSIX system at
node that is either rebooting o
to note here is that a machine
system without negatively affe
 

9/11/2003 
Figure 1.   MOSIX runtimes.
t its load balancing algorithms attempt to move 
nodes.  It was observed that MOSIX would move 
ilarly loaded nodes instead of just leaving a single 

e it around to other equally overloaded nodes.  
ly a problem specific to MOSIX because distributed 
 difficult computer science problem that still has not 
s is similar to what happens in dual or multi-
n operating system may periodically switch a task 
f exercising processor affinity (leaving the process 
the duration of the process). 

SIX did lead to some ideas about how it could be 
arallel processing clusters within an organization.  

 or disabled.  This means that a node can enter 
 any time.  MOSIX will also migrate processes off a 
r voluntarily leaving the MOSIX system.  The point 
 can easily enter or leave a MOSIX processing 
cting the rest of the system. 

 8 



These capabilities of MOSIX can lead to a model where an organization can 
install MOSIX on large numbers of desktop machines and control when the 
machines are processing for the desktop user or when they are part of a MOSIX 
cluster.  A machine, for example, can join a MOSIX cluster after the user has 
gone home and leave the cluster when the user arrives at work.  For batch 
processing tasks, such as traditional data processing activities, this means that 
an organization can utilize machines when they are normally idle, especially 
during nonwork hours when most desktops are unused.  The data-bound 
processing problems previously noted may not affect this type of system as much 
because these traditional data processing activities usually consist of a large 
number of tasks instead of a single distributed task.  Data could also be served 
from of multiple file servers and DFSA turned off for this type of system. 
 
Additionally, users of the Windows operating system would not be excluded from 
contributing to these types of organizational processing.  Products such as 
VMware can allow a virtual machine to run on a host system.  This emulation, for 
example, enables a Linux machine to run a Windows operating system virtually.  
It can be set to full-screen mode and shield most users from ever knowing that 
they are running a virtual form of the Windows operating system.  In this case, 
MOSIX could run on the desktop and contribute to processing during idle times, 
or it could be set to enter and leave the processing cluster automatically.   
 
Because MOSIX will allow things such as MPI tasks to run on non-MPI 
machines, processing tasks would not necessarily have to be concerned about 
executing on machines that contain all of the necessary software libraries and 
other support applications.  This can help administration tasks, since machines 
may not necessarily be configured just for a given application.  Instead, they 
would only need standard system libraries installed. 
 
The organizational cluster concept could allow any group to contribute massive 
amounts of computer power to processing tasks.  When computers do not have 
to be dedicated, it may be easier to take advantage of distributed processing, 
since the nodes that process are preexisting desktop nodes.  Implications to 
consider would include the reinstallation of operating systems on the machines 
and the configuration of VMware (or something similar to it) to fulfill any Windows 
requirements. 
 
 

Condor Research 
 
Extending the Beowulf Cluster to the Desktop 
 
Existing Beowulf clusters are normally constrained by the number of compute 
nodes physically connected to the cluster’s network switch. To extend the size of 
the cluster requires adding new compute nodes to the switch. At some point, the 
capacity of the switch will become the limiting factor in cluster size. For example, 

9/11/2003  9 



a 48-port switch can house no more than 48 compute nodes.  When this point is 
reached, an additional switch will be needed to increase the size of the cluster.  
This increases the cost of the cluster more than just the cost of an additional 
compute node. 
 
Many work sites have computers that are underutilized a high percentage of the 
time.  After normal working hours, this represents a tremendous computing 
resource that goes largely untapped.  Exploiting this idle resource by making 
these underutilized machines part-time cluster nodes makes sense as a way to 
increase the computing power in a cluster. Idle computers—still in their native 
office environments on their office networks—can be polled by the cluster’s 
master node and incorporated into the cluster if the candidate machine’s load 
conditions warrant. 
 
There are many methods that can be used to extend clusters.  One method is to 
use Parallel Virtual Machine (PVM) to add hosts beyond the cluster.  A more 
complex method is to use the Globus Toolkit to create a compute grid. The 
Condor system from the University of Wisconsin is a middle-ground solution that 
uses the office network and offers scheduling and authentication services. Using 
PVM places most of the work on the programmer to allocate and deallocate 
compute nodes, whereas the Globus Toolkit allows the grid designer to hide this 
complexity. 
 
An investigation of these concepts is being conducted at the EDC in conjunction 
with SDSU.  This investigation will continue into FY 2003, but preliminary results 
are discussed here. 
 
The Beowulf cluster at SDSU was extended with machines from student 
computer labs using PVM.  Normally, the cluster is composed of 18 dedicated 
PIII 500-MHz machines, each with 128 megabytes of memory and an 8-Gigabyte 
hard drive.  Each of these nodes runs the Linux Mandrake 8.0 operating system 
running the 2.4.3-20mdk kernel. The Computer Science Department labs contain 
51 Dell Optiplex GX-240 computers, each with P4 1.8-GHz processors with 256 
megabytes of memory and 40-Gigabyte hard drives. The lab machines boot 
either Windows XP Professional or RedHat Linux version 7.3 running the 2.4.18-
10 kernel. 
 
PVM was installed and used to extend the cluster with computers from the 
computer lab, and a small test program was written to demonstrate this 
functionality.  The next step was to create a parallel version of EDC’s All Possible 
Regressions algorithm that exhibits O(2n) growth characteristics.  The current 
implementation will run for approximately 4 months with 32 variables on a single 
CPU. The goal is to reduce this to a few days (or hours) by spreading the job 
over multiple machines.  At SDSU, 100 machines have been identified that could 
be used to test this theory. Jobs could be scheduled to run during the night or 
over a weekend and will be able to use all compute nodes. 

9/11/2003  10 



 
After the parallel version is complete, the compute pool will be configured to use 
the Condor software from the University of Wisconsin. This will allow the dynamic 
scheduling of jobs and machines to the compute pool.  The current parallel 
environment—with PVM alone—requires the programmer to manually schedule 
jobs and resources.  When Condor and PVM are combined, the programmer will 
no longer have to embed the scheduling code in the applications software.  
Condor also features job rollback so that a job can be stopped in progress on 
one node, moved to another, and then restarted on the new node. This will allow 
the user to run jobs on unoccupied desktop machines during a normal working 
day.  Condor will identify idle machines and schedule jobs to run until the owner 
returns.   The Condor project is also using Windows NT computers in a Unix or 
Linux Condor configuration.   
 
Although it is beyond the scope of the current investigation, the Globus Toolkit 
could be used to create a grid of computers that exceed the boundaries of an 
organization. This could conceivably be used to tie together Beowulf clusters in 
the Geography Discipline into one computing system.  The Condor system has 
recently released a version called “Condor-G” that can tie into the Globus Toolkit. 
 
 

Internet Supercomputing Research 
 
An Investigation With Java and the Frontier API 
 
The following discussion documents the process followed to port the Biological 
Resources Division’s (BRD) Mid-continent Ecological Science Center (MESC) 
Kriging algorithm to Java and Parabon's Frontier application programmer’s 
interface (API) for providing massive computational power and describes the 
results obtained.  This task was undertaken in support of a USGS venture capital 
proposal by EDC Beowulf investigators—the same investigators who completed 
the MPI version of the Kriging algorithm.  Parabon was a partner in that proposal. 
 
Parabon's Frontier API provides access to large amounts of CPU power by 
providing access to idle CPUs on Internet connected computers.  One of the first 
efforts to use this type of computing model was the SETI project that allows 
home computer users to install a screen saver application that performs 
calculations while the screen saver runs.  Parabon has generalized this model 
and made it available through their Frontier API as a commercial product.  For 
more information on Parabon and Frontier, visit Parabon's Web site at 
http://www.parabon.com. 
 
Kriging Algorithm Background 
 
Kriging is a process that can be used to estimate the values of a surface at the 
nodes of a regular grid from an irregularly spaced set of data points.  The EDC 

9/11/2003  11 



team was asked to parallelize an implementation of the BRD/MESC Kriging 
algorithm to run on a Beowulf cluster in an attempt to reduce processing times.  
The MPI API was chosen for implementing the parallelization on the cluster.  For 
that effort, the original higher-level code was ported from FORTRAN to C; some 
of the numerical subroutines were left in FORTRAN.  The resulting port was 
successful, and the application attained a nearly linear speedup on the 12-node 
cluster available at EDC (Steinwand and others, 2003). 
 
Porting to Java 
 
When the MPI Beowulf implementation was complete, the same application was 
ported to the Frontier API.  Frontier is implemented in Java, so the first step in 
this effort was to port the entire application to Java.  The part of the code that had 
previously been converted to C was easy to port.  The part that remained in 
FORTRAN was more difficult, because of the structure of the original 
implementation.  After the conversion to Java, testing revealed a bug in the 
original FORTRAN version in which a sort routine was sometimes giving 
incorrect results.  The two versions produced very similar results; differences that 
exist appear to be due to floating-point roundoff and the now fixed sorting bug. 
 
When the Java port was completed, a small amount of performance testing was 
done to determine how the single-processor speed of the Java implementation 
compared with the single-processor speed of the C/FORTRAN compiled version.  
The Java version performed approximately 35 percent slower than the 
C/FORTRAN compiled version.  (This, however, contained an unnecessary 
square root operation that was removed from the Java version but remained in 
the compiled version.  Without that change, the Java version was approximately 
50 percent slower.) 
 
Porting to the Frontier API 
 
The Frontier API differs from the MPI API.  A typical MPI application has a 
master node that assigns work to slave nodes.  The application can choose 
between assigning each slave node a large chunk of work at once or it can 
dynamically assign work on the basis of how quickly each slave node completes 
its work.  The slave nodes can communicate with each other or the master node 
at any time with relatively small latencies.   
 
Frontier limits the communication that can take place.  The application must split 
all the work for a job into separate tasks at the start of the job, and all the 
individual tasks are submitted to the server.  The server schedules and runs the 
tasks on the nodes available.  The tasks are not allowed to communicate with 
each other during execution.  They also are not allowed to communicate with the 
submitting application, except for returning intermediate or final results.  These 
limits are understandable owing to the computing resources used to perform the 
computing tasks.  Some flexibility is given up in exchange for cheap computing 

9/11/2003  12 



cycles.  However, the limits do eliminate the Frontier API from being used on 
some classes of problems.  Another limit that needs to be considered is that 
much of the communication to computing nodes probably takes place over 
relatively slow Internet connections, so the amount of data that need to be 
transmitted should be relatively low compared with the computing power 
required. 
 
Parabon has prepared an excellent white paper on the capabilities of the Frontier 
API, as well as example code and tutorials in the developer section of its Web 
site. 
 
The Kriging application is not a perfect fit for the Frontier API.  For each location 
in the output grid that is calculated, a 4-byte floating-point result needs to be 
returned.  The Java implementation running on a single 733-MHz processor is 
capable of producing results at a rate of nearly 10 KB per second. If compute 
nodes are connected with a relatively slow connection or a faster computer, the 
Internet connection bandwidth can easily become a limiting factor in how quickly 
results are received.   
 
Frontier requires a large amount of code to be written to create jobs and tasks, 
submit them to the server, and receive the results.  A rough estimate is that it 
requires twice as much code to interface to the Frontier API as it does to use 
MPI.  If this code were to be written from scratch, it would be a daunting task.  
Luckily, the Frontier software development kit (SDK) includes several example 
applications and most of the code can be reused with minimal changes.   
 
The “RemoteApp” demo was used from the Frontier SDK as a basis for the port.  
It was a relatively simple task to modify the code to support the different needs of 
the Kriging application.  The “RemoteApp.java” file was renamed to 
“KrigApp.java” and modified in the following ways: 
 

• Command line options were added to allow specifying input and output file 
names. 

• The input data file was packaged up and sent to the server to be used by 
the tasks. 

• The parameters passed to the defined tasks were changed to control 
which rows in the output grid a task is assigned. 

• Code was added to assign each task a different set of rows in the output 
grid. 

• The code that listens for results was modified to receive an array of results 
and write them to a binary file as they are received.  Note:  Because of the 
platform-independent way Java stores floating-point numbers, the binary 
file byte order may not match a binary file written from a C program on the 
same machine. 

• Code was added to convert the binary file to ASCII after all the results 
have been received.  Note: The binary file is needed to allow for randomly 

9/11/2003  13 



writing results for a given row to a known location in the output file since 
the order in which results are returned is essentially random.  The results 
are then converted to ASCII to match the default output format of the 
original code. 

 
In addition to the “KrigApp.java” file, a new file named “KrigTask.java” was 
created.  This code is modeled after the “RemoteTask.java” example code. An 
instance of the KrigTask class is created on the compute nodes and assigned a 
set of output grid rows to create.  The task calculates those rows and returns 
them by posting the results.  Much of this code is simply ported from the 
C/FORTRAN implementation.  The only special items that were needed to 
support the Frontier API were the following: 
 

• Supporting a stop exception so the task can be stopped easily. 
• Adding methods to allow input parameters to be passed. 
• Returning the output grid rows.  This was complicated since Frontier does 

not directly support sending an array of floating point numbers.  However, 
the development Frequently Asked Questions (FAQ) section suggested 
converting the array to a byte array and returning that as a 
“BinaryParameterValue”. This worked well. 

 
One design decision was to avoid the use of checkpoint logging for this 
application.  The large amount of checkpoint data required for this application 
would decrease throughput by a large amount.  See the Frontier API 
documentation for a description of logging checkpoints. 
 
Running the Application 
 
After the code was ported, it was run locally for testing.  The Frontier SDK allows 
jobs to be run either remotely (that is, on the Parabon system) or locally by 
emulating much of the Parabon system on the local machine.  For initial testing, 
the local mode was used to work out bugs and make sure the correct results 
were being returned.  The “remote.sh” from the RemoteApp demo was modified 
slightly to set up the environment and run in either local or remote mode. 
 
To run the application locally, the command line is as follows: 
 
    local.sh input_data_file_name output_data_file_name 
 
To run it remotely, the “local.sh” is just replaced with “remote.sh”.  These scripts 
are essentially identical; the script name used determines whether the local or 
remote mode should be used.  Note that the script is a Unix shell script.  To run 
the application on the Windows operating system, one must modify the 
“remote.bat” file from the Frontier SDK. 
 

9/11/2003  14 



Testing with the local mode allowed the developers to work out a few minor bugs 
and to check the results before attempting the remote method.  This is an 
excellent method to make sure the application works as designed.  After a job is 
submitted to run remotely, it is much more difficult to debug. 
 
After the local application was running correctly, remote tests were conducted.  
The first step was to sign up for a 30-day free trial on Parabon's system.  This 
simply involved filling in some information on a Web form and submitting it.  A 
few hours later, an e-mail was sent confirming that the account had been set up 
and was ready for use.  The free trial account provides access to 10 compute 
nodes with a low priority and is meant to allow testing applications in the remote 
mode. 
 
Running the application in remote mode is very similar to the local mode. The 
only differences are as follows: 
 

• The “remote.sh” script must be run twice.  The first time is to submit the 
job to the system, and the second time is to listen for the results.  The 
second time could be avoided, but the example code was structured this 
way, and it was deemed unnecessary to change it.  Parabon's 
documentation mentions that this allows a job to be submitted and the 
results retrieved later. 

• Each time the “remote.sh” script is run, passwords must be entered to 
authenticate the account information. 

 
The first small remote job ran to completion and produced the same results as 
the local run. 
 
Timing Results 
 
The application was run twice with different-sized datasets as shown in the 
following table: 
 

Rows         Tasks     Local runtime   Remote runtime 
  12  10          24 seconds         511 seconds 
221      12        302 seconds      1,561 seconds 

 
These results did not bode well for expecting a speedup from running a job in 
parallel.  However, these jobs were most likely too short to give a fair 
assessment of the system.   
 
Next, the full dataset was submitted.  The full dataset requests 3,401 rows in the 
output grid.  Also, for this test, Parabon allowed us to run the test on 500 nodes 
(instead of the original 10).  The additional runs are shown in the following table: 
 

9/11/2003  15 



Rows         Tasks     Local runtime   Remote runtime 
3,401     171       3,744 seconds     2,346 seconds 
3,401     500      (not run again)  1,724 seconds 
 

These last two runs show that the system can produce results more quickly.  
 
However, these tests revealed additional implications.  Frontier includes a 
"jobcontroller" application that allows jobs to be monitored using a graphical user 
interface.  While watching the status of the job using the jobcontroller application, 
the tester noticed that the jobcontroller application reported all 500 tasks in the 
job had been completed a full seven minutes before the results had finished 
downloading.  It appears the initial suspicion that the Kriging application was not 
a perfect fit for the Internet computing model was correct, because of the large 
amount of data returned.  There may be ways to reduce the time required to 
obtain results, but they were not explored.  It may be possible to restructure the 
application to pull results down from more than one task at a time.  However, it is 
unknown if the Frontier API can support this concept. 
 
Also, it should be noted that the computing nodes are working on a task when 
the normal user is not actively using the machine.  So a simple time comparison 
can be skewed by a task or two out of hundreds being delayed by the available 
idle time on the compute nodes. 
 
Summary 
 
The Frontier API shows promise for a select class of problems that are 
computationally intensive.  Developers familiar with Java and distributed 
programming techniques will have no problems adjusting to the programmer’s 
interface.  It took less than 2 days to read the Frontier white paper and modify the 
Java code to make use of the Frontier interfaces, using the demo code in 
Parabon’s software development kit as a starting point.  It took significantly 
longer to port the original C/FORTRAN MPI implementation to Java. 
 
The results indicate that the Kriging application does not appear to be a good fit 
for Frontier.  It returns a relatively large amount of data as a result of the 
calculations, and the time to transmit those results quickly becomes a bottleneck.  
The phrase "does not appear to be a good fit" is used since no further 
investigation was done to see if the Frontier API provided a mechanism that 
would allow a quicker return of the results.  It might be possible that simply 
compressing the data with the Java API for data compression might result in a 
significant savings since there is quite a bit of repetition in the data returned. 
 
A decision to use Frontier and Parabon's system would need to be made on a 
case-by-case basis.  The limitations of the system quickly rule out any application 
that returns a large amount of data relative to the computation time.  However, if 
a job exists that takes weeks or months of computations, does not transmit much 

9/11/2003  16 



data, and does not need to share results part way through the calculations, 
Frontier is a good fit.  Also, if the application code is not in Java or is not easily 
portable to Java, it could rule out the use of Frontier. 
 

9/11/2003  17 



9/11/2003  18 

References 
 
Amar, Lior, Barak, and Shiloh, 2002, The MOSIX Parallel I/O System for 
Scalable Performance:  Institute of Computer Science, The Hebrew University of 
Jerusalem.   
 
Bar, Moshe, 2002, OpenMosix Internals:  presented at the Linux Kongress, 
Germany. 
 
Barak A., La'adan O. and Shiloh A., 1999, Scalable Cluster Computing with 
MOSIX for Linux:  Proc. Linux Expo '99, p. 95-100, Raleigh, N.C. 
 
Steinwand, D.R., Maddox, B., Beckmann, T., and Schmidt, G., 2003, Processing 
Large Remote Sensing Data Sets on Beowulf Clusters:  U.S. Geological Survey 
Open-File Report 03-216 
 
 
 

Important Websites 
 
 
MOSIX.  Dr. Amnon Barak.  Hebrew University.  <http://www.MOSIX.org>. 
 
MPI – The Message Passing Interface Standard.  Argonne National Laboratory. 
 <http://www-unix.mcs.anl.gov/mpi/>. 
 
OpenMOSIX, an Open Source Linux Cluster Project.  Moshe Bar. 
 <http://openMOSIX.sourceforge.net>. 
 
Licenses – GNU Project – Free Software Foundation.  Free Software 

Foundation. <http://www.gnu.org/licenses/licenses.html#TOCGPL>. 
  
Processor Affinity and Binding.  AIX Versions 3.2 and 4 Performance Tuning 

Guide. <http://usgibm.nersc.gov/doc_link/en_US/a_doc_lib/ 
aixbman/prftungd/procaffin.htm>. 

 
VMware – Virtual Machine Software.  VMware, Inc.  <http://www.vmware.com>. 
 
Condor – http://www.cs.wisc.edu/condor 
 
GLOBUS – http://www.globus.org 
 
Parabon – http://www.parabon.com 
 
SETI -- http://setiathome.ssl.berkeley.edu/ 


	Open-File Report 03-208
	
	
	
	Illustration
	Figure 1.  MOSIX runtimes ……………………………………………………         8




	MOSIX Research
	
	
	
	Condor Research



	Internet Supercomputing Research
	An Investigation With Java and the Frontier API
	References

	Important Websites





