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Introduction

The Lower Silurian regional oil and gas accumulation was named by Ryder and
Zagorski (2003) for a 400-mi-long by 200-mi-wide hydrocarbon accumulation in the
central Appalachian basin of the eastern United States and Ontario, Canada (Figure 1).
The dominant reservoirs in this regional accumulation are the “Clinton” sandstone,
Medina Group sandstones, and Tuscarora Sandstone of Early Silurian age (Figure 2).
The basin-center gas (continuous) part of this regional Silurian accumulation contains an
estimated 30 trillion cubic feet (TCF) of recoverable gas and covers an area that extends
across western Pennsylvania, eastern Ohio, and western West Virginia (Gautier and
others, 1995; Ryder, 1998). This part of the accumulation occurs in rocks of low
permeability, usually 0.1 millidarcies (md) or less, downdip of more permeable, water-
saturated rocks. A conventional part of the accumulation with hybrid features of a basin-
center accumulation lies updip from the basin-center gas (Ryder, 1998; Ryder and
Zagorski, 2003). This hybrid-conventional part of the regional accumulation follows a
pre-1980s production trend that extends from Ontario, Canada, through western New
York, northwestern Pennsylvania, and central Ohio (Figure 1).

In the basin-center part of the regional accumulation, individual wells ultimately
produce on the order of 50 to 450 million cubic feet (MMCEF) of natural gas. In addition
to gas, many wells produce variable amounts of brine and crude oil. The gas-to-fluid
ratio is variable but generally high, on the order of 50,000 to 500,000 standard cubic feet
(SCF) of gas per barrel of oil or brine. The amount of oil and brine produced affects the

economics of individual wells because of the cost incurred to dispose of the brine or the



value added through the sale of oil. In general, the best gas producers are those wells that
produce the least oil and brine.

We are investigating the geochemistry of the gas and co-produced oil to better
understand the origin of the hydrocarbons within the Lower Silurian regional
accumulation. This report documents 12 gas samples and 11 oil samples from 14 wells
producing from the “Clinton” sandstone and Grimsby/Whirlpool Sandstones in
northeastern Ohio and northwestern Pennsylvania. The samples from Ohio were
collected in Geauga and Trumbull Counties and those from Pennsylvania were collected
in Butler and Mercer Counties. This investigation supplements a previous data set of 10
oil samples and 3 gas samples collected from the “Clinton” sandstone in Trumbull
County (Barton, Burruss, and Ryder, 1998; Burruss and Ryder, 1998).

Other published analyses of crude oils and natural gases from Silurian-age
reservoirs in the Appalachian basin include those by Barker and Pollock (1984), Cole,
Drozd, and others (1987), Drozd and Cole (1994), Jenden, Drazan, and Kaplan (1993),
Laughrey and Baldassare (1998), Obermajer, Fowler, and Snowdon (1998), and Powell,
Macqueen, and others (1984). Cole, Drozd, and others (1987) recognized two groups of
oils in Silurian reservoirs in Ohio. One group of oil, they suggested, was generated from
marine black shale of Devonian age and the other group was generated from marine
black shale of Ordovician age. Most likely, oil in the Lower Silurian “Clinton” sandstone
was generated from the Ordovician black shale (Drozd and Cole, 1994; Ryder, Burruss,
and Hatch, 1998). Devonian black shale is a less likely source for the “Clinton” oils
because the 700-to-1,000-ft-thick Upper Silurian Salina Group, with evaporite beds, is

located between them (Figure 1). Molecular and isotopic data on natural gas from



Silurian reservoirs in western and central Pennsylvania (Laughrey and Baldassare, 1998)
and western New York (Jenden, Drazan, and Kaplan, 1993) are less diagnostic for

identifying source rock than geochemical parameters measured in oil samples. However,
the general conclusion of work to date on “Clinton”/Medina/ Tuscarora gases is that they
were derived from thermally mature, marine organic matter, probably in strata older than

the Silurian.

Sample Locations

The wells sampled for this investigation follow a northwest-southeast trend that is
subparallel to the dip of the basin and crosses the approximate boundary between basin-
center and hybrid-conventional parts of the Lower Silurian regional accumulation
(Figures 1, 3). In general, those wells east of Mosquito Creek Lake in central Trumbull
County are located in the basin-center part of the Lower Silurian regional accumulation
whereas those wells west of Mosquito Creek Lake are located in the hybrid-conventional
part (Figure 3). All wells sampled are within 5 miles of cross section D-D’ that shows
the stratigraphic and depositional character of the “Clinton” sandstone and Medina Group
(Keighin, 1998) (Figure 3). Cross section A-A’ (Ryder, 2000), which connects with
cross section D-D’ in Mercer County, is located 5 to 10 miles from the wells sampled in
southeastern Mercer and northwestern Butler Counties (Figure 3). Also located in Figure
3 are 10 wells in Trumbull County for which oil and gas analyses have been reported by
Burruss and Ryder (1998). Selected information on the wells sampled for this

investigation is listed in Table 1.



Sampling and Analytical Methods

Most oil and gas samples were obtained, with the assistance of operating
company field personnel, from the wellhead or the oil and gas separator of individual
wells. One oil sample was taken from the stock tank at the well site. Gas was sampled at
the pressure gauge port on the production tubing using evacuated stainless steel cylinders
supplied by Isotech Laboratories, Inc. Oil was sampled, where possible, at the drain for
the fluid-level sightglass on the oil and gas separator. The oil is initially saturated with
gas at the separator pressure and foams from exsolution of the gas as it exits the
sightglass drain. One oil sample was bailed from the stock tank.

All samples were analyzed by standard methods. Natural gas samples were
analyzed at Isotech Laboratories, Inc., Champaign, Illinois, for molecular composition by
gas chromatography and for stable isotopic composition by isotope ratio mass
spectrometry. Carbon isotopic composition was determined for methane (C;), ethane
(C,), propane (Cs), and iso-butane (C4). Also, hydrogen isotopic composition was
determined for methane and nitrogen isotopic composition was determined for molecular
nitrogen. Carbon isotope ratios are reported in standard per mil deviation relative to the
Peedee belemnite standard (PBS), and hydrogen isotope ratios are reported relative to
standard mean ocean water (SMOW) for both gases and oils. Nitrogen isotope ratios are
reported relative to atmospheric nitrogen.

Crude oils were analyzed by the U.S. Geological Survey (Denver, Colorado).
API gravity of the oils was determined gravimetrically. Oils were fractionated by
dilution in n-heptane to remove asphaltenes. A concentrate of the solution was further

fractionated by column chromatography on silica gel by selective elution with heptane,



benzene, and benzene-methanol (1:1 v/v) to collect the saturated hydrocarbon, aromatic
hydrocarbon, and resin (nitrogen-, sulfur-, and oxygen- [NSO] compounds) fractions,
respectively. The carbon stable isotope composition of an aliquot of the saturated and
aromatic hydrocarbon fractions was determined on a Micromass Optima isotope ratio
mass spectrometry system.

Gas chromatography of the whole oil, and the saturated and aromatic hydrocarbon
fractions, was performed with a Hewlett/Packard Model 6890 (HP6890) gas
chromatograph with a 60 m x 0.32 mm x 0.25 um DB-1 fused silica capillary column and
a FID detector. The oven was programmed from 50 to 330°C at 4.5°C/min and held
isothermal at 330°C for 15 min with helium carrier gas flow at 35 cm/sec. Gas
chromatography-mass spectrometry (GCMS) of the saturated hydrocarbon fraction of one
oil was performed with a HP6890-JEOL GCMate system in selective ion monitoring

mode to identify steranes and terpanes in the fraction.



Results

Natural gases: The molecular and isotopic composition of natural gas from twelve wells
is presented in Tables 2A and 2B. All twelve gases are rich in methane, between 76 and
90 mole %, with low concentrations of hydrocarbons that have more than four carbon
atoms. All samples contain a trace of helium and 2.01 to 4.55 mole % nitrogen. Eight of
the twelve wells contain a trace of hydrogen. These gas compositions are consistent with
gas compositions reported for the “Clinton” sandstone in Ohio by the U.S. Bureau of
Mines (Moore, 1982).

The carbon isotopic composition of methane, ethane, propane, and n-butane in the
samples ranges from about 7 to 12 per mil for each component. In eight of twelve wells,
the carbon isotopic composition of methane, ethane, propane, and n-butane (where
analyzed) become respectively heavier as normally expected (Chung, Gormly, and
Squires, 1988) whereas, in four wells, the carbon isotopic composition of methane,
ethane, propane, and n-butane (where analyzed) show several combinations of reversal in
the normal trend (see #5 Brown; table 2B). The variation in the hydrogen isotopic
composition of methane is about 50 per mil and the variation in the nitrogen isotopic
composition ranges is about 4 per mil. The carbon dioxide content in the samples was so
low, 0.04 mole % or less, that the carbon isotopic composition of this constituent could
not be determined.

Judging from their isotopic location on a Schoell (1983) diagram (Figure 4),
“Clinton”/Medina natural gases from this study and from Burruss and Ryder (1998) are
thermogenic in origin. The 8'°C methane and 8D methane values define a straight line

that indicates that the gases become isotopically heavier with depth of production (Figure



4). For example, 8"°C methane values range from -41.98 in the #2 Patterson well (~3,600
ft to the gas production) near the northwest end of section D-D’ to —33.97 in the #2
Mathews well (~6,570 ft) near the southeast end. Isotopic compositions of additional
Lower Silurian gases from northwestern Pennsylvania (Laughrey and Baldassare, 1998)
and Lower Silurian gases from New York (Jenden, Drazan, and Kaplan, 1993) also fit the
trend defined in Figure 4. Natural gases in the basin-center part of the regional
accumulation are differentiated from natural gases in the hybrid-conventional part based

on their position relative to the 8'°C methane = -37.0 value (Figure 4).

Crude oils: Bulk parameters and selected molecular parameters of the crude oils are
listed in Table 3. The API gravity of 8 of the 11 samples is 40° or greater. One of the 3
exceptions, the No. 6 Weber well with an API gravity of 39.9°, was bailed from the top
of the stock tank instead of being collected at the separator. The oils are uniformly high
(84 to 92 wt. %) in saturated hydrocarbons with 12% or less of aromatic hydrocarbons.
Carbon isotopic compositions of the saturated and aromatic hydrocarbon fractions show
small ranges of 0.8 per mil and 1.0 per mil, respectively.

Gas chromatograms of the whole oil, saturated hydrocarbon, and aromatic
hydrocarbon fractions for samples from the 11 wells are shown in Figures 5A, 5B, 5C,
respectively, through Figures 15A, 15B, 15C. The saturated hydrocarbon gas
chromatograms have similar characteristics to “Clinton” oils reported by Cole, Drozd,
and others (1987). Molecular parameters derived from the gas chromatograms of the
saturated hydrocarbon fractions are listed in Table 4. All whole-oil gas chromatograms

of the saturated hydrocarbon fraction, except the one from the #6 Weber well, show a full



spectrum of n-alkanes from n-C;g to N-Csg:. The whole oil chromatogram for the sample
from the #6 Weber well shows depletion in the low carbon number range (<n-C)
suggesting evaporative loss of the light ends. Two types of n-alkane distributions and
one intermediate type are recorded by the saturated fraction gas chromatograms.
Including the depleted #6 Weber sample, six of the eleven chromatograms show a broad
spectrum of n-alkanes whose peak heights progressively diminish toward the higher
carbon numbers (Figure 8B); two chromatograms have a bimodal distribution of n-
alkanes that peak at about n-C;4 and n-C,4 (Figure 6B); and three chromatograms show a
broad spectrum of n-alkanes whose peak heights progressively diminish toward the
higher carbon numbers but show a secondary peak at n- Cp4 (Figure 11B). Both types of
n-alkane distribution show a modest odd-carbon preference and the presence of
isoprenoids. The pristane/phytane (pr/ph) ratios listed in Table 4 range from 1.31 to 2.01.

Crude oils from “Clinton”/Medina reservoirs in this study and in Burruss and
Ryder (1998) are characterized by pr/n-C;7 and ph/n-C,s values that vary broadly with
their depth of production (Figure 16). Major exceptions are sample 14 (#6 Weber) that is
grouped with oils produced from much shallower depths and sample 6 (#3 Griffin) that is
grouped with oils produced from much greater depths (Figure 16). Moreover, carbon
isotopic compositions of the saturated and aromatic fractions of the oils, in general,
become heavier with depth (Figure 17). Basin-center and hybrid-conventional parts of
the regional accumulation can be largely differentiated on the basis of trends shown in
Figures 16 and 17.

Mass fragmentograms from gas chromatography-mass spectrometry (GCMS) of

the crude oil samples indicate the presence of biomarkers although many are barely



visible because of their low signal-to-noise ratio. Surprisingly, the best fragmentograms
are from the depleted oil in the #6 Weber well. Terpane (m/z 191) and sterane (m/z 217)

fragmentograms of this oil are shown in Figures 18A and 18B, respectively.

Preliminary Conclusions
Natural gases: The striking distribution of 8'°C methane vs. 3D methane compositions is
clearly a function of the thermal maturity of the gases (Figure 4). In addition, given the
orderly increase toward heavier isotopes with depth, there appears to have been very little
mixing of the gases in the “Clinton”’/Medina reservoirs after entrapment. Also, these data
imply a common source rock for the gases. Several explanations are possible for the
isotopic distributions shown in Figure 4. First, gases may have been introduced to
Lower Silurian reservoirs from a distant source, became trapped, and then thermally
modified, in situ, as the reservoirs gradually achieved maximum burial. Secondly, gases
may have been introduced from a local source rock and then trapped before it was
allowed to migrate laterally. In these two models, the gases had minimal mobility during
late-stage basin uplift. A third model suggests that the isotopic character of the gases is a
late-stage, leakage/fractionation phenomenon whereby the volume of the escaped gas is
directly related to the thickness of overburden. Therefore, isotopic compositions would
be heaviest in gases having the greatest overburden thickness.

Furthermore, conodont alteration index (CAI) isograds for Middle Ordovician
carbonate rocks (Repetski and others, 2002; J.E. Repetski and R.T. Ryder, unpubl. data)
show a consistently lower thermal maturity value, for a given locality, than that of the gas

(Jenden, Drazan, and Kaplan, 1993) (Figure 4). Figure 4 suggests that gases in the



“Clinton”/Medina were derived from source rocks having thermal maturity values about
1 to 1.5 vitrinite reflectance equivalence (VRE) (N6th, 1991) greater than the thermal
maturity of the underlying Middle Ordovician strata based on CAl isograds. A similar
discrepancy occurs when the thermal maturity of the gases are compared with the thermal
maturity of the overlying Lower/Middle Devonian strata based on CAI isograds and
vitrinite reflectance (Ro%) isoreflectance lines.

The fact that these gases have a significantly higher thermal maturity than the
underlying Ordovician and overlying Devonian strata suggests that they migrated from
deeper in the basin. Moreover, a Utica Shale source rock is favored over a Devonian
shale source rock because of the shorter migration distance (25 to 50 mi vs. >100 mi) that
the Utica requires to account for the observed thermal maturity of the gases. Although
these data are most consistent with model 1 for the origin of the gases (medium-range
migration with isotopic signatures being set during maximum burial), model 3 (medium-
range migration with isotopic signatures being set during late-stage uplift and erosion of
the basin) cannot be rejected. Methane §"°C > ethane 5"°C values observed in several
natural gases in this study (Table 2B) may have resulted from the mixing of mature and
post-mature gases (Jenden, Drazan, and Kaplan, 1993; Laughrey and Baldassare, 1998);
however, diffusive leakage of gas through overburden rock (as permitted in model 3)

may be an alternate explanation (Laughrey and Baldassare, 1998).
Crude oils: The majority of n-alkane distributions for whole-oil gas chromatograms in
this investigation (Figures 6A-13A and 15A) show: 1) a broad spectrum of n-alkanes

ranging from n-C, through n-Css, 2) modest odd-carbon preference in the n-C;s through
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n-C,¢ range, and 3) the presence of isoprenoids pristane and phytane. The major
exception to the rule is the oil from the #6 Weber well (Figure 13A) which has an
incomplete spectrum of n-alkanes (n-C,o and n-C;; are nearly depleted) and lacks odd-
carbon predominance in the n-C;s through n-C;9 range. As noted earlier, the
characteristics of the #6 Weber oil were probably caused by evaporative loss during
sampling and storage.

The oils analyzed in this investigation have the same basic composition as other
oils from the “Clinton” reservoir in Ohio (Cole, Drozd, and others, 1987; Burruss and
Ryder, 1998) and oils from Cambrian/Ordovician reservoirs in Ohio (Cole, Drozd, and
others, 1987; Ryder, Burruss, and Hatch, 1998). These basic similarities suggest a
common source rock, probably the Middle Ordovician Utica Shale, for the “Clinton” and
Cambrian/Ordovician reservoirs (Cole, Drozd, and others, 1987; Ryder, Burruss, and
Hatch, 1998). Geochemical and geological evidence are much less convincing for other
source rocks such as the Lower/Middle Devonian black shale and Silurian
shale/carbonate units (Ryder and Zagorski, 2003).

CAl isograds for Middle Ordovician carbonates gradually increase eastward
across the study area from 1.5 to 2.0 (VRE 0.5 to 1) (Repetski and others, 2002; J.E.
Repetski and R.T. Ryder, unpubl. data). These isograds are indicative of the “window”
of oil and wet gas generation and preservation and, thus, are permissive of local
derivation of the oils from the Utica Shale. Also, local oil derivation from the Utica is
suggested by the similarity of carbon isotopic distributions in Utica Shale extracts from
Coshocton County, Ohio (Figure 3) (depth = 5,600-5,700 ft) and “higher” maturity oils

from “Clinton” reservoirs (Figure 17). Moreover, the general eastward (basinward)
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increase in thermal maturity of the oils, based on pr/n-C;7 vs. pr/n-C;s (Figure 16) and
carbon isotopic distributions (Figure 17), suggests that minimal lateral migration of oil
had occurred before entrapment.

Oil from the #6 Weber well is anomalous because it is geochemically associated
with “lower” maturity oils (Figure 16) and is geologically associated with the CAI 3
isograd (VRE 2.25) (Repetski and others, 2002) that signifies the “window” of dry gas
generation and preservation. Either this oil was introduced from a lower maturity source
rock such as the overlying Devonian black shale or was locally preserved in a relatively
high thermal regime that favored the generation and preservation of dry gas. In contrast,
oil from the #3 Griffin well at a depth of about 3,900 ft is geochemically associated with
“higher” maturity oils whose depth of production is approximately 1,000 ft greater
(Figures 16 and 17). Possibly this oil migrated into the vicinity of the #3 Griffin well
from deeper in the basin, or from a more mature secondary phase of generation that
occurred beneath the well, and was trapped next to the lower maturity oil. Additional
evidence for the mixing of different several oil types — either caused by a different
source rock or thermal maturity regime — is suggested by the bimodal n-alkane
distributions noted in several oils (see Figure 6B).

The following sequence of events represents one scenario for the origin of the
oils: 1) oil generation from the Utica Shale, 2) vertical migration of the oil into the
overlying “Clinton”/Medina reservoir, 3) probable entrapment of the oil before
significant lateral migration had occurred, and 4) local mixing of oils from disparate

thermal regimes during late-stage basin uplift and erosion. This scenario suggests that
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Figure 1. Map of the lower Silurian regional oil and gas accumulation showing the
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and central Pennsylvania, showing the interval of the Lower Siurian regional and gas accumulation.
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Figure 4. Schoell (1983) diagram showing the isotopic composition of selected natural gases in the Lower
Silurian regional oil and gas accumulation. A scale devised by Jenden and others (1993) for estimating the
approximate vitrinite reflectance (%Ro) of the source rock that generated the gas is attached to the right side

of the diagram. Also shown are the CAI thermal maturity values for Middle Ordovician carbonate rocks located
near the proposed Middle Ordovician Utical Shale source rock.

CALI - Conodont alteration index; VRE - Vitrinite reflectance equivalence based on Noth (1991); BC - Basin-center
part of the regional accumulation; HC - Hybrid-conventional part of the regional accumulation.
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8" C Aromatic hydrocarbons (%o)

Burruss and Rvder (1998)
1. #2 Krantz
2. #2 Clemens
3. #1 Governor
4. #1 Wargo
5. #l Baker
6
7
8
9

<27

#1 Rhine
#1 Gowdy
#2 Redmond

Extracts from Utica Shale
in the Redman il Co. #3 Barth well
Coshocton County, Ohio

(Rvder. Burruss. and Hatch. 1998)

. #7 Consumer
10. #3 Consumecr

Burruss and Rvder (this study)
#2 Patterson

#2 Hissa

#1 Bruno

#1 Detweiler

#2 French

#3 Griffin

#2 Grandview-Johnson
#8 Oris

9. #2 Gibson

13. #1 Bates

14. #6 Wcber

R R Rl

“Clinton’Medina oil

Burruss & Ryder (1998)

Burruss & Ryder (this report)

o)
Anomalously low maturity oil
@ for location in the regional accumulation

o
Anomalously high maturity oil
30 for location in the regional accumulation
-30 -29 -28 -27

§'? C Saturated hydrocarbons (%o)

Figure 17. Plot of §'3C distributions in the saturated and aromatic hydrocarbon fractions for "Clinton"/Medina
oils and Utica Shale bitumen extracts. BC - Basin-center part of the regional accumulation; HC - Hybrid-conventional

part of the regional accumulation.
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Sample ID Well name API Petroleum Fractions, Isotopic Composition,
gravity wt. % per mil
Sat | Aro | NSOs | Asph | Sat HC, 8"°C | Aro HC, 8"°C
HC HC
980HO01B #2 Patterson 42.8 84.46 | 10.72 | 291 1.90 -30.22 -29.74
980H02A #1 Bruno 41.4 85.21 | 12.10 | 2.58 | 0.11 -30.08 -29.40
980HO03A #2 Grandview 40.7 85.20 | 11.08 | 3.24 | 0.48 -30.16 -29.37
- Johnson
980H04A #1 Detweiler 43.8 86.85 | 9.04 | 3.55 | 0.56 -29.95 -29.01
980HO5A #2 Hissa 42.8 86.71 | 8.72 | 4.08 | 0.49 -30.17 -29.37
980HO06A #2 French 43.0 84.40 | 11.36 | 3.55 | 0.70 -30.09 -29.16
980HO07A #3 Griffin 33.8 88.03 | 9.26 | 2.43 | 0.29 -30.08 -29.23
980HO08 #1 Bates 42.9 87.36 | 8.67 | 3.24 | 0.73 -30.01 -29.17
98PA02 #6 Weber 39.9 89.39 | 2.21 1.20 | 7.21 -29.60 -28.72
98PAOSA #8 Oris 45.5 91.81 | 2.84 | 497 | 0.39 -29.60 -29.00
98PAO6A #2 Gibson 38.8 9296 | 427 | 237 | 039 -29.47 -28.80

Table 3. Properties of the whole crude oil and crude oil fractions. Sat HC: saturated hydrocarbons;
Aro HC: aromatic hydrocarbons; NSOs: Nitrogen, sulfur, oxygen-bearing organics; asph: asphaltenes.
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Saturated HC characteristics

Sample ID Well name pr/ph pr/n-Cy; | ph/n-Cig CPI % n-alk Cond.

index
980HO01B #2 Patterson 1.33 0.38 0.33 1.07 7.73 9.72
980H02A #1 Bruno 1.35 0.41 0.34 0.96 17.93 5.49
980HO03A #2 Grandview- 1.36 0.40 0.33 0.99 24.58 7.21

Johnson

980H04A #1 Detweiler 1.36 0.41 0.34 1.00 10.21 9.82
980HO05A #2 Hissa 1.32 0.36 0.31 0.96 14.92 8.60
980OHO06A #2 French 1.38 0.38 0.32 1.04 17.95 10.81
980HO07A #3 Griffin 1.31 0.27 0.23
980HO08 #1 Bates 1.31 0.43 0.38 1.06 6.35 9.51
98PA02 #6 Weber 1.44 0.40 0.38 1.05 14.93 3.04
98PAO0SA #8 Oris 1.94 0.29 0.19 1.03 18.74 8.23
98PAO6A #2 Gibson 2.01 0.28 0.17 1.02 20.40 5.99

Table 4. Properties of the saturated hydrocarbon fraction of the crude oils. These properties were
calculated on the basis of peak area from analyses performed on April 1999. pr/ph: pristane/phytane;

CPI: carbon preference index; % n-alk: % of n-alkanes in total saturate fraction; Cond. Index: condensate
index defined by Lewan and Buchardt (1989), % n-C;; of n-Cy, to n-Csy. CPI, % n-alk, and cond. Index
were not calculated for the #3 Griffin oil sample.
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Table 5. Terpane and sterane compounds identified in the saturate fraction of the oil
from the #6 Weber well.

Molecular
Label Formula Compound
Tricyclic Terpanes
Cy C, Hsg C, tricyclic terpane
Cy Cy3Hyy Cy; tricyclic terpane
Cyq CyHyy Cyy4 tricyclic terpane
Cys CysHyg Cys tricyclic terpane
Cisa CysHsy Cyg [228] tricyclic terpane
Cogp CyHso Cyg [22R] tricyclic terpane
C29a C29H52 C29 [228] tricyclic terpane
Coop CyoHso Cy [22R] tricyclic terpane
Pentacyclic Triterpanes
A Cy7Hye 18a trisneonorhopane [Ts]
B Cy7Hye 17a trisneonorhopane [Tm]
D Cy9Hsg Norhopane [Cy]
E CyHsg 18a neonorhopane [Cyo]
F CsHs;, Hopane [Cs]
G C;0Hs; 17B21a moretane [Cs)
H C;1Hsy 22S homohopane [Cs]
I C;1Hsy 22R homohopane [C;;]
K Cs,Hse 228 bishomohopane [C;,]
L Cs,Hse 22R bishomohopane [C3;]
M Cj3Hsg 228 trishomohopane [Cs;]
N Cs3Hsg 22R trishomohopane [Cs;]
(@) Cs4Hgo 228 tetrakishomohopane [Cs4]
P C34Hgo 22R tetrakihomohopane [Cs4]
Steranes
1 C,7Hyg 138 170 20S diacholestane [C,/]
2 C,7Hyg 138 170 20R diacholestane [Cy7]
3 Cy7Hyg 130 17 20S diacholestane [C,]
Sa CysHs 13B 170 20S 24-methyldiacholestane [Cyg] (1)
5b CygHso 138 170 20S 24-methyldiacholestane [Cyg] (IT)
7a CygHso 138 170 20R 24-methyldiacholestane [Cyg] (I)
7b CyHso 138 170 20R 24-methyldiacholestane [Cyg] (IT)
8 CygHsg 13B 17 20S 24-methyldiacholestane [Cyg] or Sa 14a 17a 20S
cholestane [C,]
10 CygHsp Sa 14a 170. 20R cholestane [C,7] or 13a 173 20R 24-
methyldiacholestane [Cyg]
12 CysHso Sa 14a 170 20S 24- methyldiacholestane [Cyg] + Dia — Cy
13 CygHs Sa 14P 17 20R 24- methyldiacholestane [Cyg]
14 CysHsy Sa 14a 170 20R 24- methylcholestane [Cyg]
15 CyoHsp Sa 14a 170 20S 24- ethylcholestane [Cy]
16 CyoHs; Sa 14B 17 20R 24- ethylcholestane [Cy]
17 CyoHsy Sa 14B 17P 208 24- ethylcholestane [Cy]
18 CyoHs, S5a 14a 170 20R 24- ethylcholestane [Cyo]
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