

Mining Wastes Overview

Sharon F. Diehl and Kathleen S. Smith Billings Symposium / ASMR Annual Meeting Assessing the Toxicity Potential of Mine-Waste Piles Workshop June 1, 2003

U.S. Department of the Interior U.S. Geological Survey

Types of Mining

- > Hard-rock (metallic) mines
- Coal mines (includes coalbed methane)
- Industrial minerals (non-metallic)
- Petroleum (oil and gas)

Types of Mine Waste

	High permeability, acidic leachate
	Wind erosion before consolidation, acidic leachate
	Acidic leachate
	Low-level radiation, radon

Hard-Rock versus Coal Mining

Greater amount of rock waste

Complex mineralogy, geology, and alteration halos

A variety of mining methods (e.g. underground, open-pit, placer, solution) Lesser amount of rock waste

Less diverse mineralogy, simple stratigraphy

Underground and (or) open-pit (strip mines)

Composition of Historical Mining Wastes

Related to:

- Geology
- > Mining methods
- Milling and smelting technology
- Market demand
 - WWII vs.
 Great Depression

Governmental policy

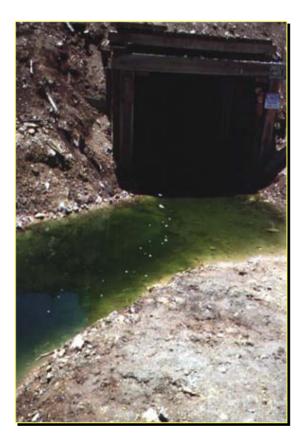
Stamp mill in Colorado

(photo from the William L. Fick Colorado Mining Collection, Western History/Genealogy Dept., Denver Public Library)

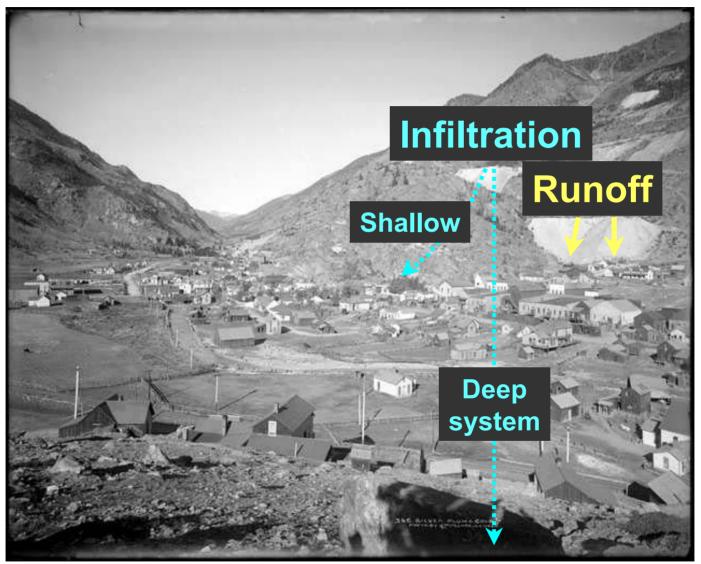
Segregation of Historical Mining Wastes

Early miners segregated mined materials

Ibex #4 ore bin in Idaho Park near Leadville, Colorado (photo from the Western History/Genealogy Dept., Denver Public Library)



Placement of Historical Mining Wastes


Effluent from draining adits frequently flows over or into waste piles

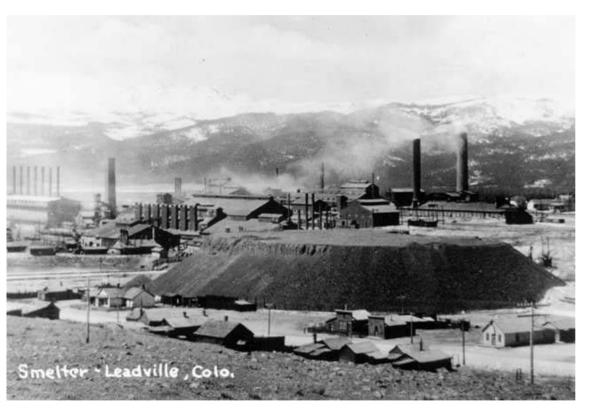
Mining Wastes and Regional Hydrology

Silver Plume, Colorado (photo from the L.C. McClure collection, Vestern History/Genealogy Dept., Denver Public Library)

Mining Wastes and Regional Hydrology

Mine workings often alter the regional hydrology

Silver Queen mine, California photo from the Western History/Genealogy Dept., Denver Public Library)


Tracer Injections

- > Determine how much metal enters a stream
 - Mass loading (concentration x discharge)
- > Determine how much metal stays in a stream
- Provide accurate discharge measurements
 - Difficult to obtain in mountain streams
- Differentiate between multiple sources
- > Monitor effectiveness of remediation efforts
- Usually combined with synoptic sampling
 - Collection of samples from many locations during a short period of time, typically a few hours

See USGS Fact Sheet FS-245-96

Mining Wastes and Airborne Transport

(photo from the Western History/Genealogy Dept., Denver Public Library

Mining wastes are often near former smelting operations

Fine-grained material from mining wastes can be transported by wind

Non-Invasive Screening Tools

MINE WASTE CHARACTERIZATION

Improved Remediation Strategies

Non-Invasive Screening Tools

> Physical Characterization

Geological Characterization

Imaging Spectroscopy

Geophysical Methods

Geological Characterization

Geologic Setting:
pH buffering capacity
Ease of subsurface transport
Routes to receptors

Mineral Deposit Type: • Which metals are present • Acid-generating capacity

Historical Mine/Mill Activities:

- Efficiency of sulfide removal
- Predict COC (e.g., Hg, cyanide)

Sampling and Geochemical Screening Tools

Bioaccessibility Tests

- Sampling Strategy
 - Leaching Tests
- > Acid/Base Accounting

Site Characterization Tools

Mineralogy

> Weathering Sequences

Metal Partitioning

Sulfur Speciation

Mineralogical Characterization

Elemental Residence Phases (from mineral separates, 4 Colorado mine-waste sites)

Jarosite [KFe₃(SO4)₂(OH)₆] Pyrite [FeS₂] Sphalerite [ZnS] Galena [PbS] Anglesite [PbSO₄]

Pb, Ag, Cu, Bi

- Cu, Bi, Ag, As
- Cd, Cu, Mn, Ag

Ag, Bi

Zn, Cd, Bi, Cu

Potential Environmental Impact

A complex function of:

Geology

- Geochemical and biogeochemical processes
- Climate
- Topography
- The mining and mineral processing methods used
- Age of wastes and reclamation history

Types of Mineral Deposits

- Conceptual models (geoenvironmental models) have been developed to predict drainage quality and potential environmental impacts
- Geoenvironmental models of mineral deposits describe pertinent earth science and engineering information about the environmental characteristics of geologically similar mineral deposits:
 - prior to mining (= Baseline conditions)
 - resulting from mining and mineral processing

