Long-term rates of shoreline change, in units of m/yr, were calculated at each transect using linear regression applied to all four shoreline positions from the earliest (1800s) to the most recent (derived from lidar). Linear regression was selected because it has been shown to be the most statistically robust quantitative method when a limited number of shorelines are available and it is the most commonly applied statistical technique for expressing shoreline movement and estimating rates of change. Uncertainties for the long-term rates are also reported in units of m/yr and represent a 90% confidence interval for the slope of the regression line. This means with 90% statistical confidence that the true rate of shoreline change falls within the range defined by the reported value plus or minus the error value. The variability around the trend reflects both measurement and sampling errors. Short-term rates of shoreline change, in units of m/yr, were calculated using the endpoint method comparing the 1970s and most recent shoreline positions.
Neither the U.S. Government nor any agency thereof, nor any of their employees, contractors, or subcontractors, make any warranty, express or implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any data, software, information, apparatus, product, or process disclosed, nor represent that its use would not infringe on privately owned rights.
Trade, firm, or product names and other references to non-USGS products and services are provided for information only and do not constitute endorsement or warranty, express or implied, by the USGS, USDOI, or U.S. Government, as to their suitability, content, usefulness, functioning, completeness, or accuracy.