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Coal Gas Resource Potential of
Cretaceous and Paleogene Coals

of the Gulf of Mexico Coastal Plain
(including a review of the activity in the
Appalachian and Warrior basins)*

By Peter D. Warwick?®, F. Clayton Breland, Jr.*>, M. Edward Ratchford®, and Paul C. Hackley”

Abstract

The primary focus of this presentation is on the coal gas resource potential of Lower Cretaceous and
Wilcox Group (Paleocene-Eocene) coals of the Gulf Coastal Plain. In addition, a brief review of the coalbed
methane exploration activity and resources of the Appalachian and Black Warrior basin is provided.

Recent investigations conducted by Federal, State, and industry organizations suggest that significant
coalbed gas resources may exist in the lower Trinity Group and Hosston Formation (both Lower Cretaceous),
Midway Group (Paleocene), and Wilcox Group (Paleocene-Eocene) of the Gulf of Mexico Coastal Plain. Drill
records from Arkansas and Louisiana indicate that there are Cretaceous coal beds greater than 10 ft thick at depths
of 1,500- 6,000 ft suitable for coalbed gas development. Vitrinite reflectance obtained from Cretaceous coal
cuttings at these depths indicates that Roma, equals up to 0.53%. Available data from conventional oil and gas wells
in Louisianaindicate that upper, middle, and lower Wilcox Group coal zones have potential for coalbed gas
accumulations and similar data from Texas, Arkansas, Mississippi, and Alabama indicate that gas may be present in
coal beds of the lower and middle sections of the Wilcox. In addition, gas accumulations may occur in the coal beds
of the upper part of the Midway Group in Mississippi and Alabama. Public data from several wells completed in
Wilcox Group coal zonesin north-central Louisianaindicate that initial production ranges from 7 to 122 thousand
cubic feet (MCF) of gas per day and that production of saline water ranges from 0 to 550 barrels (bbls) per day.

In Louisiana, the depth to the targeted Wilcox coal beds ranges from 1,500 to 5,000 ft, and individual coal
beds have a maximum thickness of about 20 ft. The thickest coal beds tend to be in the lower Wilcox coal zone and
cumulative coal thickness can exceed 100 ft. Although geochemical and petrographic data from Wilcox Group
coals from across the region indicate that the coal beds are lignite in rank at depths less than 350 ft, they reach arank

! Modified from Warwick and others (2004); and unpublished short course notes from Short Course 8: Advancesin
coal bed methane exploration and development: A review of coalbed methane potential and opportunitiesin North
America, American Association of Petroleum Geologists Annual Meeting, Dallas, TX, April 18, 2004; and Coalbed
methane resources in the Southeast, Petroleum Technology Transfer Council, Central Gulf Region, Short Course,
Lafayette, LA, June 8, 2004

2U.S. Geological Survey, Reston, VA

% Louisiana Geological Survey, Baton Rouge, LA

* Arkansas Geological Commission, Little Rock, AR



of subbituminous B, or greater, at depths of approximately 5,000 ft. Preliminary gas isotope data indicate that
Wilcox coal gas originated from the microbial reduction of CO2 and that in some places, these gases may be mixed
with migrated thermal gases. Proximity to salt dome structures or buried L ate Cretaceous igneous intrusions and
associated geothermal heat flow may be important exploration tools for finding coa beds with elevated rank and
potentially increased gas content. More data are needed to better characterize and assess the coalbed gas potential
for the Cretaceous coal bedsin thisregion.

Current coal gas production in the Black Warrior basin is primarily located in Tuscal oosa, Jefferson, and
Walker counties, Alabama. More than 1.5 trillion cubic feet (Tcf) of coal gas has been produced from the Black
Warrior basin. Inthe Appalachian basin, current coal gas production is primarily located in southwestern Virginia
and the adjacent part of southern West Virginia, and in northern West Virginia and adjacent parts of southwestern
Pennsylvania. Cumulative coa gas production from the Appalachian basin is approximately 0.5 Tcf.
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Outline

e Subsurface Cretaceous coals of AR-LA
- unrecognized coal and CBM potential

e An update on the CBM activity in
Tertiary Wilcox coals of north LA and
coal gas potential for other areas

- Stratigraphy
- Hydrogeology
- Exploration/Production
- Gas Chemistry
e A review of coal gas activity and resources
in the Appalachian and Warrior basins

Outline of presentation. CBM = coalbed methane.



=USGS General Rank of Coal for Major
Coalbed Methane Areas

Powder River basin
Avg. well prod. ~ 100 Mcfg/d
~ 175 bbls w/d

(ARI, 2002)
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General rank of coal for major coalbed methane areas in the United States. Note that the rank of Gulf Coast coals increase with depth to sub-bituminous or greater. For later
comparison to the Gulf Coast area, average coa gas and water production data are provided for the Powder River basin (Advanced Resources International [ARI], 2002).

Note the location of the Appalachian and Black Warrior basins.
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Major structural features (outlined in blue) of the Louisianaregion of the Gulf Coast basin. Modified from Ewing and
Lopez (1991).
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Generalized Jurassic and Cretaceous stratigraphy of the northwestern part of Gulf Coastal Plain. Note the location of the
Lower Cretaceous Hosston Formation clastic wedge. Modified from Goldhammer and Johnson (2001).
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Paleogeography of Lower

Cretaceous Hosston Formation

100 mi After Schenk and others (1996);
Goldhammer and Johnson (2001) = USGS

Paleogeographic map of the Lower Cretaceous Hosston Formation clastic wedge. Adapted from Schenk and others (1996) and Goldhammer and
Johnson (2001). Note the location of the fluvial-deltaic depositional environments proposed by Goldhammer and Johnson (2001) for northern
Louisiana and southern Arkansas. These were potentially good environments for peat (coal) accumulation. The star indicates the location of the
Potlatch #1 well in southern Arkansas. The mud log from the Potlatch #1 well reported coal cuttings from intervals within and near the Hosston
Formation. There are other wellsin northern Louisiana that report the occurrence of coal cuttingsin the Lower Cretaceous section (Jim Y ork,
personal communication, 2003).
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Portion of the caliper, gammaray, density, and neutron well logs from the Potlatch #1 well (API # 03011100770000) in Bradley County,
Arkansas. The red shaded areaindicates the probable coal intervals with interpreted thicknesses. Depthsarein feet. Coal cuttings were
recovered from the following intervals 3050-3060 ft, 3060-3070 ft, and 3070-3080 ft. The mud log from this well reported other coal intervals
from 3440-3460 ft and 3470-3480 ft. Regional correlations with other well logs indicate that the Potlatch #1 coal intervals are within, or are
associated with, the Hosston Formation (or lower Trinity Group and Travis Peak Formation of Haley, 1993).
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Photomicrographs of coal cuttings from the Potlatch #1 well. Photo 14-03-04 08: Vitrinite groundmass with inertodetrinite in the upper left and
semifusinite showing remnant cell structuresin the lower right of the photomicrograph; sample from the 3050-3060 ft interval, 500X magnification

in reflected white light. Photo 14-03-04 17: Telinite showing well preserved cell structures, sample from the 3060-3070 ft interval, 500X

magnification in reflected white light. Photo 14-03-04 22: Alginite with exsudatinite filling cracks; sample from the 3070-3080 ft interval, 500X
magnification in blue light fluorescence. Photo 14-03-04 11: Alginite and resinite filling cell structures; sample from the 3060-3070 ft interval,

500X magnification in blue light fluorescence. 9
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Potlatch #1, Bradley Co., AR

¢ Three coal zones recognized in the
Trinity - Hosston Fm. (Travis Peak)

e Depths range from 3050 — 3500 ft

o About 20 ft cumulative coal with
individual beds up to 8 ft thick

e Ro,.., at 3050-3080 ft at 0.53 % (hvCb)

e Coal zone extends into northeastern LA

e Reports of Upper Cretaceous coals in MS & AL
(Brown, 1907; Monroe and others, 1946)

Summary of findings for Cretaceous age coa from Arkansas and neighboring states. hvCb = high volatile C bituminous.
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Generalized coal-bearing stratigraphy of the upper Cretaceous, Paleocene and Eocene of the Gulf Coastal Plain. From Warwick and others (2000b).
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Outcrop of Paleocene and
Cretaceous coal-bearing units
and dept of |co

7

it

300 mi

Qutcro
Wpcnx Group

I MNaheola Formation
B Olmos Formation

Outcrop of Paleocene and Cretaceous coal-bearing unitsin the Gulf Coastal Plain. The area shaded dark blue shows the area where the depth to
the top of the Wilcox Group ranges from 1000 to 6000 ft. The heavy solid red line is the line of section on the next illustration. Modified from
Barker and others (2000).
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Aquifer Systems of the Gulf Coast

Monroe Uplift

Holo.-Pleistocene

N

Holo.-Pleistocene

Sea water

Fresh water

Saline water

Confining unit

After Williamson and others, 1990

Generalized cross section showing the major Tertiary aquifers and confining unitsin the Mississippi Embayment and southern Louisiana. Note
that much of the aquifer systems are filled with saline water derived from groundwater interaction with salt diapers (Huff and Hanor, 1997).

Geopressured sediments are found at depth. Diagram modified from Williamson and others (1990). Holo. = Holocene; Mio = Miocene; L =
Lower; M = Middle; U = Upper.
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> - (2001)
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% Red Hwer L . 1 well, (2001)
Vlntage Petrnleum = L ' T £ 15 Mcf/d
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TD 3114 ft TD ~ 3000 ft
Sabine Uplift and - . b
Wilcox Group outcrop ; #:
& : ﬂp cuf
King Drilling b~ s T e
: Harvest Gas West  [pagr ) ..
1 well, (2002) -~ 14 weall 2004 | (Feliciana Fejiciang | St Helen
1 well, (2004) | AR .
55 Mecffd eured  TD 5210 ft -~ F_D-mte N e :
102 bbls wid g C Coupee
TD ~ 3600 ft 0 90 mi

Review of coa bed methane (CBM) drilling activity in northern Louisiana since 2001. Approximately 15 wells have been drilled specifically for
coal bed gas exploration or production. Boxes indicate company name, number of wells drilled or producing (prod.), year of first well (in
parentheses), initial production of gas and water (if available), and total depth (TD) of the wells. Dotted lines indicate 1,000 to 6,000 ft depth range
to the top of the Wilcox Group. Well data from Louisiana Department of Natural Resources Strategic Online Natural Resources Information System
[http://sonris-www.dnr .state.la.us'www_root/sonris_portal_1.htm].




s = USGS : -
| < King Drilling

LA PACIFIC ET AL #1
~ Sparta TD 3595 ft

4 -Cane River
| —~Carizzo Sand

>Wi|cox

Example of well log stratigraphy and coal intervals (shaded in red) in the King Drilling LA Pacific Et Al #1 well in La Salle Parish, Louisiana.
Note that there are multiple coal zonesin the Wilcox and that the thickest coal beds tend to be in the lower part of the Wilcox. Thelog on the right
is the expanded Wilcox part of the log on the left. On well logs consisting only of spontaneous potential (SP) and resistivity (Res), coal beds are
hard to distinguish from limestone beds. Well data from Louisiana Department of Natural Resources Strategic Online Natural Resources
Information System [http://sonris-www.dnr.state.la.us'www_root/sonris_portal_1.htm].
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Cane River
Carizzo Sand

> Wilcox

.

Rﬂ data — e i e —
J.B. Echols, per. comm., 2001 o e

Example of well log stratigraphy with coal (shaded in red) and limestone (shaded in bluge) intervalsin the Woods Oil and Gas (John B. Company), IPCO #1 well in Caldwell
Parish, Louisiana. Note that the thickest coal beds are in the lower part of the Wilcox. Thelog on theright is the expanded Wilcox part of the log on the left. On well logs that
include gammaray (GR), sconic (S), and neutron (N), coa and limestone beds are easily distinguished. Formation density curves are also very useful for coal identification.

Well data from Louisiana Department of Natural Resources Strategic Online Natural Resources Information System [http://sonris-
www.dnr.state.laus’'www_root/sonris_portal_1.htm]. SP = spontaneous potential; Rwa = apparent formation water resistivity, Rt = resistivity. Ro datafrom J.B. Echols, personal
communication, 2001.
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Louisiana-area Ro and Depth
0 A hip ;
B Liag g Data sources
1000 N + MS mine (USGS unpub. data)
€ 000 M — x MS (Price, 1991)
s 2000 N « LA (Goddard & Echols, 1995)
> ST LA mine (USGS unpub. data)
: \
£ 4000 g v LA Echols, pers. comm. (2001)
£ 5000 V- t - TX (Warwick & others, 2000)
§ 5000 * \ » TX (Mukhopadhyay, 1989)
Q o * AR Potlatch #1
7000 "
8000 IlgI 5 Isub i hvb
020 030 040 050 060
Ro %

Plot of public coa reflectance data (Ro %) against depth for the Louisiana area. Vertical dashed lines indicate approximate boundaries between
lignite (lig), subbituminous (sub), and high-volatile bituminous (hvb) coal ranks. A dashed best-fit line (exponential) is plotted that illustrates the
approximate change of rank with depth. Thetrend line is based on public and confidential data. The wide scatter in the data may reflect variable
heat flow rates and associated maturity in different parts of the basin. Sample states are indicated for each data set. Potlatch #1 data are from this
report. Unpub. = unpublished.
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Plot of the isotopic values of carbon (C) and hydrogen (D) with fields showing the origin of gases after Whiticar and others (1994). For reference, Powder River (PRB) coals
primarily plot in the biogenic fermentation field. Wilcox coal gas from north Louisiana (a) plots within the biogenic CO, reduction field, whereas gas collected from
conventional Wilcox sandstone reservoirs (b) falls within (near) the transition zone between biogenic and mature thermogenic gases. Coal gas collected from a shallow (380 ft)
well in northeast Texas also (c) plots within the transition zone indicating that these gases may have originated from mixing of mature gases and gases with a biogenic, CO,
reduction origin. The red arrow indicates the proposed migration direction and mixing pathway of thermal gas. Sources of datafor the PRB = Gorody (1999); North Louisiana
Wilcox coal = Harry Spooner, written communication, 2001; north Louisiana Wilcox conventional sandstone (SS) reservoir gas = unpublished (unpub.) Louisiana Geological
Survey (LGS) data; Texas Wilcox coal = Warwick and others (2000b). PDB = Pee Dee Belemnite; SMOW = standard mean ocean water.
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Photograph of coal fractures and cleats in the Oxbow Lignite mine in northwestern Louisiana.
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Diagram from Warwick and others (2002) which indicates potential coalbed methane prospects and plays (boxes). Based on the current coal gas
exploration efforts in north Louisiana and the occurrence of bituminous Cretaceous coal in southern Arkansas, the potential exploration areas have
been expanded asindicated by the heavy blue lines. Red shaded areas illustrate the depth to the top of the Wilcox Group, and ranges from 500 ft
(light red) to 6000 ft (dark red). Outcrop of the Wilcox isindicated by the orange color and yellow indicates the location of other coal-bearing
basins. Base map after Barker and others (2002).
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ZUSGS Alabama Coal Fields, Showing Cumulative

Production by County, 2000
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Map of Alabama coal fields and coalbed gas production areas. Cumulative gas production (CBM) by county is indicated by color fill. For an
estimate of the remaining coal gas resources of the Black Warrior basin see Hatch and others (2003). Illustration from Milici, written
communication, 2004.
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USGS coal gas (CBM) assessment map of northern and central Appalachian basin coal fields and coalbed gas production fields. For an estimate of the
remaining coal gas resources of the Appalachian basin see Milici and others (2003). MPS = Minimum Petroleum System; AU = Assessment Unit.

[ustration from Milici, written communication, 2004.
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Conclusions

. of the northern Gulf Coastal plain
should be evaluated for their CBM potential

e Wilcox coals contain ; initial gas isotope
data indicates that Wilcox coal gas originated from
» coal rank increases to
with depth

. data from Wilcox coals indicate that
there is a potential resource of coal-bed gas underlying
a large area in the Gulf Coastal Plain

e There is potential for enhanced coal-bed methane
production and in the Gulf Region. This
may includes the possibility of from
reduction of introduced CO,

Conclusions. CBM = coalbed methane; hvCb = high volatile C bituminous.
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Coalbed Methane Potential in Louisiana®

By F. Clayton Breland, Jr.?

Introduction and discussion

Recent reports indicate that while gas resource numbers may be increasing, domestic production has not
kept pace with domestic demand (Duval and Chabrelle, 2001). Alternative sources of gas including unconventional
accumulations such as coalbed methane (CBM) must be explored and developed domestically to offset increasing
demand for natural gas. Most recent estimates of CBM resources of 1,777 trillion cubic feet (Tcf) Gas-In-Place
(GIP) compared to 1,431 Tcf of U.S. conventional natural gas are indeed impressive (Scott, 2001). Presently, CBM
supplies more than 7% of total domestic natural gas production and is projected to increase as a percentage of
domestic production as more producing wells come on linein CBM basins nationally (Scott, 2001).

CBM production has been established in a number of basinsin the U.S., notably from Paleozoic coalsin
the east and from younger, thicker coalsin the west. However, very limited drilling activity has been conducted in
the Gulf Coast Tertiary basin to define the CBM resource specifically. The age, thickness, and quality of the Gulf
Coast coals have generally been considered a negative contributing factor in the potential development of the
resource. With the success of CBM in the Tertiary-aged coals of the Powder River basin, a closer look at the CBM
potential of the Gulf Coast coalsiswarranted. By way of comparison, according to the Gas Technology Institute
(2001), the Powder River basin contains 1,300 billion short tons (bst) estimated in-place coal with 39 Tcf estimated
coalbed GIP and 24 Tcf recoverable gas, and the Gulf Coast Coal Region has 400 bst estimated in-place coa with 8
Tcf estimated coa bed gas-in-place.

Initial evaluation of the coal resource in Louisiana was conducted by the Louisiana Geological Survey
(LGS) (Meager and Aycock, 1942; Roland and others,1976) and focused on the distribution of surface and near-
surface coals. Coals are mined at the surface in central northwestern Louisiana, in and around the Dolet Hills
vicinity in De Soto Parish where the Wilcox Group (Paleocene-Eocene) crops out. The coals are generally confined
to the lower Tertiary Wilcox Group and to alesser extent to the overlying Eocene Claiborne and Jackson Groups.
The coals appear to be widely distributed and some deposits are as thick as 10 ft. The coals are classified aslignites
based on an average calorific value of 7,480 Btu per pound. Sulfur content islow, averaging 0.91 weight percent as
received (ar) (Williamson, 1986).

Coates (1979) and Coates and others (1980) conducted research on the distribution and depositional
environment of Wilcox lignites in the west-central Louisiana subsurface using well logs. These studies indicated
that in the study area, the Lower Wilcox is a progradational delta complex to the east and a marginal deltaplain to
the west. They also noted that the Lower Wilcox is the major lignite-bearing interval containing as many as 35 coal
seams (fig. 2). In an adjacent area with abundant subsurface datato the east, L GS has recognized the presence of
numerous coal bedsin the Lower Wilcox, with total coal thickness of alittle more than 100 ft (fig. 3).

Warwick and others (2000) drilled two CBM test wells in Panola County, Texas, near Dolet Hills and
reported calorific values above 8,300 Btu/lb, the boundary between lignite and subbituminous coal from shallow
samples collected from 350 ft to 370 ft. Sulfur content averaged 0.52 percent (ar). Desorption analysis of the

! Modified from unpublished short course notes from Short Course #4, Coalbed methane potential in the U.S. and
Mexican Gulf Coast, Gulf Coast Association of Geological SocietiesGulf Coast Section SEPM — 52" Annual
Convention, Austin, TX, October 30, 2002.

? Louisiana Geological Survey, Baton Rouge, LA



samples yielded an average gas content of 11 scf/ton dry-ash free (daf). Published adsorption values (Pratt and
others, 1999) from the Powder River basin have similar adsorption values as those obtained from samples from the
Texas wells. Isotope work on the Texas gas samples indicated a transitional biogenic/thermogenic mixed origin for
the coal gases. Echols (1995) reported that analysis of gas samples from Paleocene-Eocene Wilcox conventional gas
reservoirsin Winn Parish, Louisiana, believed to be sourced by CBM, were 99.94 percent methane and biogenic in
origin.

Drilling in central North Louisianain the prolific conventional Paleocene-Eocene Wilcox trend established
the presence of numerous coal beds (fig. 4). Investigations by LGS initially defined a Central Louisiana Coalbed
Methane basin (CELCOM), from detailed study of Caldwell and LaSalle, Parishes, Louisiana (Echols, 2000). There
is every indication, based on previous work, (such as Coates and others, 1980; Rogers, 1983), that CELCOM
extends to the southwest and northeast portions of North Louisiana (fig. 2). In fact, the name CELCOM was used for
reference purposes only and is actually only asmall portion of the entirety of the Gulf Coast Tertiary Coal bed
Methane Basin which covers parts of seven southeastern states.

Thefirst CBM production in Louisiana (and the Gulf Coast Tertiary CBM basin) was established in the
Russell coa bed in April 1989 in Section 21, T14N, R4E, Caldwell Parish with the Torch Operating Co. #3 Greer
well (figs. 2 and 5). The Torch #3 Greer came in flowing at 50 thousand cubic feet of gas per day (Mcfg/d) and 65
barrels of water per day (bblw/d) but was plugged and abandoned in 1989. More recently and in the same coal, the
Woods Oil and Gas Co. IPCO #1 (completed 3/9/01) in Section 5, T11N, R3E, produced 15 Mcfg/d and almost no
water (figs. 2 and 6). In an effort to stimulate gas flow, the IPCO #1 was water fraced approximately five months
after completion. The procedure had the opposite effect of reducing gas flow and the well was later plugged and
abandoned. In the area of detailed study in Caldwell and LaSalle Parishes, LGS has determined that the Russell coal
is generally between 12 and 15 ft thick and calculated (using 13.5 ft as average thickness, coal specific gravity of
1.30, and 115 standard cubic ft of gas per ton of coal) an estimate of 63.3 billion cubic ft of coalbed methane gas
GIP for the Russell coal in T1IN-R3E. Based on other coalbed studies in east Texas (Griffiths and Pilcher, 2000),
this GIP may be relatively low. More knowledge gained from tests and production from coalbed methane wellsin
the North-Central Louisiana should, however, provide more reliable estimates.
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The Pennsylvania Anthracite District —
a Frontier Area for the Development of
Coalbed Methane?’

By Robert C. Milici®

Abstract®

The anthracite region of eastern Pennsylvania consists of four major coal fields that are within the folded
and faulted Appalachians, in the Valley and Ridge and Appalachian Plateaus physiographic provinces. These are,
from south to north, the Southern Anthracite field, the Western Middle Anthracite field, the Eastern Middle
Anthracite field, and the Northern Anthracite field. Rank of the coal ranges from semi-anthracite to anthracite. In
general, the anthracite fields consist of Pennsylvanian strata that are complexly folded, faulted, and preserved in
structural synclines within older Paleozoic strata.

Published gas-in-place (GIP) datafor Pennsylvania anthracite range from 6.4 SCF/ton (0.2 cc/g) for the
Orchard coa bed to a high of 691.2 SCF/ton (21.6 cc/g) from a sample of the Peach Mountain coa bed that was
collected in the Southern Anthracite field at a depth of 685 feet. Thisisthe largest GIP value that the U.S. Bureau of
Mines (USBM) (Diamond et al, 1986) reported for coalbed methane (CBM) nationwide. Of the 11 CBM analyses
reported for the Southern Field by USBM, seven exceed 396 SCF/ton (12.4 cc/g) (average of 11 samples. 325.8
SCF/ton [10.2 cc/g]). In addition, adsorption isotherms for the Mammoth, Seven-Foot, and Buck Mountain coal
beds in the Southern Field indicate that these beds have a very high capacity to hold methane under pressure (Lyons
et al, 2003), with values that range from about 320 to 850 SCF/ton (10 to 27 cc/g).

In spite of the complex geologic structures, there are several areas in the Southern Anthracite field where
subhorizontal to moderately inclined coal beds may be accessed by the drill. For example, a detailed map and
sections by Wood (1972) in Schuylkill County, Pennsylvania, has defined several areas of subhorizontal to gently
inclined strata that contain 10 or more coal beds at depths of 500 to 2000 feet (150 to 600m), and with a cumulative
coal thickness of 50 feet (15m), or more.

These data suggest that the Pennsylvania anthracite district is, at least, worthy of testing for CBM, using
current desorption methodology and with coal samples collected from several coal bedsin a single core hole.

! Presented at 2004 combined annual meeting of the NE/SE Section of the Geological Society of America
2 U.S. Geological Survey, Reston, VA
% Reprinted from Milici (2004)
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Cumulative coalbed methane (CBM) production by county in the northern and central Appalachian coal fields as of
2003. MM = million; B = billion; T = trillion. See next slide for data sources.
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c |ati No. CEM
Date of first umuta _n.re Currently = Cumulative
State County . Production . .
Production Dat Producing Production
ate Wells (Mcf)
Alabhama Greene 1992 10/31,2003 0 99,565
Hale 1990 10/31/2003 0 111,543
Jefferson 1980 10/31/2003 655 184,658,319
Pickens 1990 10/31/2003 0 1,873
Shelby 1990 10/31/2003 0 3,969,067
Tuscaloosa 1981 10/31/2003 3.096 1,310,241,313
Walker 1989 10/31/2003 102 18,937,713
Alabama Subtotal 3,853 1,518,019,393 C m I at i Ve
Virginia Buchanan 1992 2002 1,492 321,535,042 u u
Dickenson 1988 2002 474 71,810,618 .
Russell 1990 2002 110 10,694,923
Tazewell 1990 2002 93 3,620,269 ro u Ctl O n O
Wise 1990 2002 80 6,577,583
Virginia Subtotal 2,249 416,238,435 -
West Virginia Logan 2002 2002 1 157 C B IVI I n
Marshall ND ND ND ND
McDowell 1995 2002 40 3,571,128
Monongalia 1992 2002 22 1,443,617 th
Raleigh 1992 2002 2 62,811 e
Wyoming 1994 2002 67 19,335,467
*Wetzel 1931 2002 2 1,328,862 .
West Virginia Subtotal 133 25,742,042 Ap p al aC h I an
Pennsylvania | Cambria 1997 2002 Confidential 166,950
Fayette 1999 2002 Confidential 199,718 -
Greene 1988 2002 Confidential 774,910 B aS I n
Indiana 1993 2002 Confidential 3,433,679
Washington 1993 2002 Confidential 1,184,125
Pennsylvania Subtotal 225 5,759,382
Kentucky Bell 1998 2002 3 7,674
Clay 1998 2002 b 56,478
Leslie 2000 2002 1
Letcher 1997 2002 1
Kentucky Subtotal 10 64,152
Appalachian Basin Total 6,470 1,965,823,404
* Big Run and new unnamed fields, only

Cumulative production of CBM from the Appalachian Basin (1999-2003 data). Source of data: Alabama State Oil and Gas Board (2004); Kentucky
Division of Gas and Oil (2004); Markowski (2004); Virginia Center for Coal and Energy Research (2004), and Avary (2004).



Generalized boundary, %Ro >= 0.8
States
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/\/ Appalachian Thrust Faults

Methane Gas in Place (SCHTon, Diamond and others,1986)
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In-place gas values by county in cubic feet per ton (Diamond and others, 1986; in CF/TON). N = number of samples in the
county; the values presented are the largest for each county represented. USBM = U.S. Bureau of Mines. Vitrinite reflectance
line of 0.8 %R0 separates relatively immature region on the west from mature region on the east, similar to thermal maturation
patterns in Alabama (Pashin and Hinkle, 1997).
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Location and vitrinite reflectance values (%Ro) for coal samples studied courtesy of Leslie Ruppert, USGS. lllustration shows the
minimum petroleum system boundaries for the Dunkard (Northern Appalachian) and Pocahontas basins, the folded and unfolded
parts of the Dunkard basin, and a generalized boundary between thermally mature and immature coal beds. C. = Central, N. =
Northern, App. = Appalachian, MPS = Minimum Petroleum System.
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omparison of Pocan
Basin and Anthracit

I‘

Pocahontas Basin

Anthracite Region

Geologic Structure/
por osity/ per meability

Deep basin; bedding-
parallel faulting in coa

Complex folding and faulting;
conchoidal fracturein coa

Amount of Water

Generally low

Probably moderate to high

Gas-in-Place

688 cf/ton

691 cf/ton

Coal rank

Low-volatile bituminous
to semianthracite

Bituminous to anthracite

Depth of overburden

About 2000 feet (max)

M aximum unknown,
but > 1000 feet

Coal Quality

Low ash, low sulfur,
high rank coal

Low ash, low sulfur,
high rank coal

Although there is a great deal of difference, geologically, between the Pocahontas basin and the Pennsylvania anthracite district, the
regions do exhibit some common characteristics. Gas-in-place data, the maximum for each basin (Diamond and others, 1986), in
cubic feet per ton (cf/ton) were obtained from desorbing coal core samples under ambient conditions. Max = maximum.
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Northern Appalacnian

Data from Diamond and others (1986). Gas-in-place data were measured under ambient conditions. See earlier slide for number
of samples per county.
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Gas-ln-Plac

New York

Gas-In-Place (cf/ton)
600 - 699
|

400 - 499
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]
200 - 299
[
100 - 199
3

<100
[

Appalach|an Thrust Faults

Appalachlan Coal Fields

Anthracite Region

Dunkard Basin
L]

180 Miles
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Thermal Maturation of Northern
Appalachian Coal Fields in %R0

=080 10

ﬂ ey
Pennsylvania = %

\‘Hj

180 Miles

/

f

Percent Ro Isolines

N %Ro = 5.0

New York % A
%Ro = 4.0

%Ro = 3.5
%Ro =3.0
%Ro = 2.5
/N “%Ro=20
%Ro =1.5
%Ro =1.0

/\/ %Ro=08

Appalachian thrust
faults

N

Dunkard Basin

]

Anthracite region

|

Bituminous coal fields

|

The slide shows increase of thermal maturity from west to east across the northern part of the Appalachian coalfields. %Ro
values range from about 2 on the western side of the anthracite region to 5, or more, in the Southern Anthracite Coalfield (data

from Ruppert, written communication, 2002, and Hower and others, 1993).
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Northern Anthracite |Southern Anthracite
Field Field
Total gas (cf/ton) Total gas (cf/ton)
U. New County Tunnel
70.4 585.6
54.4 482
L. New County 448
48 403.2
41.6 Peach Mountain
32 691.2
28.8 640
25.6 601.6
16 Orchard
Big Bed (Pittston) 28.8
64 6.4
54.4
44.8 Primrose
32 12.8
28.8 (2)
Clark (Ross) Seven Foot Leader
16 (2) 396.8 (2)
12.8
9.6 (2)

CBM desorption values, in ambient cubic feet per ton, obtained by the U.S. Bureau of Mines for the Northern and
Southern Anthracite fields in Pennsylvania (Diamond and others, 1986).



Southern Field
Northern .Coal bedS,
™ No. 29 Field thickness, (feet)
ol o T = TSI and gas content
6.0 Peach Mountain (70.4, 48) .
(691.2) e 5 (cflton) in the
=
o $ Northern and
o E Southern
. % anthracite fields
5.0 Orchard (28.8) w )
8.4 Primrose (12.8) ﬁ Of Pennsylvanlan
N\ o
No. 23 " th 7.0 Pittston (54.4)
|19.6 Conl Zone (From Arndt and others,
. R 6.4 Ross (16) 1968; gas data
== Ldr. (396.8) —_— from Diamond and
\Buck POTTSVILLE others, 1986).
T FORMATION
Coal thickness Coal bed name,
(feet) gas content (cu ft/ton)

Generalized stratigraphic column for the Northern and Southern Anthracite fields (adapted from Arndt and others, 1968; gas
data from Diamond and others, 1986). Coal bed names are shown generally on right of column, together with maximum tested
values for gas content; names or numbers in red are for coal beds for which there is gas-in-place data. Numbers on the left side
of columns show the average thicknesses of the coal beds.
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Part of Pennsylvania Topographic and Geologic Survey Map 11, showing the general location of the Schuylkill quadrangle (Wood,
1972) and two closely spaced USBM core holes (Trevits, and others, 1988). See earlier slide for explanation of colors.
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Corner of

o = Explanation

;"_a.“-l"!' — __.._f_’ , Faults — |:|
gt - LI Anticlinal axes Imbricates
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In this illustration, the faults are shown in red and the coal beds in black, except for Coal bed 23, which is colored blue and
yellow. Synclinal axes are shown in blue and anticlinal axes in green. The location of the cross section partly illustrated in the
following slide (Wood’s Section H) is shown by the straight blue line. The part of the section shown is indicated by the solid line.
Note that the mapped area may be divided into an imbricate thrust-faulted zone, with strata that are moderately inclined to the
southwest, and the Llewellyn syncline, which contains beds that are tightly folded. The scale of Wood’s (1972) published map is
1:12,000.
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North Gate
Ridge Fault

500
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500
-1000
Pl Pp Faults Mined Coal Beds with -
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1000
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(Wood, 1972)

One Mile

Note that the Pottsville Formation (Pp) is shown in yellow, and the Llewellyn Formation (PI) with vertical ruled lines. The
Primrose (Pr), Orchard (O), Peach Mountain (PM), and Tunnel (TU) coal beds are high-lighted in dashed green. Solid green-
colored coal beds along the surface of the section have been mined. Section G is one mile northeast of section H.
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Drilled to 1,948 feet
Peach Mountain
had 640 cu ft/ton

Drilled to 2,355 feet;
Tunnel coal 482 cu ft/ton,
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Figure 9-17.—Generalized cross section of coalbeds in anthracite region.

Cross section from Trevits and others, 1988, Figure 9-17.
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Explosions of fire-damp (CH,)
In Anthracite coal mines 1870 to 1880

YEAR NUMBER

1879 100
1878 29
1877 71
1876 65
1875 59
1874 77
1873 74
1872 81
1871 83
1870 40

| Total 679 |

Casualties 1127; deaths 225

Data from Chance (1883).



Development

 Many surface and deep mines.

« USBM Well, Minersville quadrangle, low porosity
and permeability?

« Water disposal amounts and quality unknown.

Potential problems for CBM development.




Favorable factors for CEM
Development

 Many thick coal beds — great cumulative
coal thickness, perhaps up to 100 feet
[o]or=11\2

« Good fractures, porosity, permeability?

e Close to local markets.

Favorable factors for CBM development. GIP = Gas-in-Place.




A major question for CBM development.
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Geologic Heterogeneity and Coalbed
Methane Production — Experience from
the Black Warrior Basin®

By Jack C. Pashin®

Opening Points
Numerous geologic factors, including stratigraphy, structure, coa quality, and hydrology influence
coalbed methane production in the Black Warrior basin of Alabama.
Producing coa bed methane requires a different paradigm that is used for conventional reservoirs.

The Black Warrior basin is an operationally mature basin in which extreme geologic heterogeneity
influences gas and water production from coal .

! Modified from unpublished short course notes from Short Course #4, Coalbed methane potential in the U.S. and
Mexican Gulf Coast, Gulf Coast Association of Geological SocietiesGulf Coast Section SEPM — 52" Annual
Convention, Austin, TX, October 30, 2002.

% Geological Survey of Alabama, Tuscaloosa, AL
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Figure 1. Infrastructure associated with coalbed methane fields in the Black Warrior basin of west-central Alabama.
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Figure 1. Infrastructure associated with coalbed methane fields in the Black Warrior basin of west-central Alabama.
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GEOLOGIC CONCEPTS

Geothermics

Coal Quality / \ Hydrodynamics

Production

Y

Gas Content \ l/

Stratigraphy

Y

Figure 2. Major geologic concepts associated with coalbed methane production.

Structural Geology
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Figure 2. Major geologic concepts associated with coalbed methane production.
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Medium volatile
bituminous

Figure 3. The Blue Creek coal bed is the principal mining target in the Black Warrior basin and was the original focus of coalbed methane «
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Figure 3. The Blue Creek coal bed is the principal mining target in the Black Warrior basin and was the original focus of coalbed methane operations.
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Figure 4. Graphic log of the Duncanville core showing upper Pottsville coal zones from which coalbed gas is produced.



Jack Pashin
Figure 4. Graphic log of the Duncanville core showing upper Pottsville coal zones from which coalbed gas is produced.

Peter Warwick
65

Peter Warwick
 

Peter Warwick
 


BLACK WARRIOR BASIN
CYCLOTHEM, ALABAMA
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Prodelta

TSE - Transgressive surface of erosion
TST - Transgressive systems tract
LSE - Lowstand surface of erosion and
first transgressive surface
HST/RST - Highstand or regressive systems tract
CS - Condensed section

Figure 5. Stratigraphic model of an idealized Pottsville depositional cycle in the Black Warrior basin.
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Figure 5. Stratigraphic model of an idealized Pottsville depositional cycle in the Black Warrior basin.
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Figure 6. Cycle stacking patterns in the Pottsville Formation of the Black Warrior basin in Alabama
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Figure 6. Cycle stacking patterns in the Pottsville Formation of the Black Warrior basin in Alabama.
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FAULTING AND FRACTURING

Figure 7. Flow of water in Pottsville coalbed methane reservoirs is exclusively through natural fractures, including cleats, joints, and she
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Figure 7. Flow of water in Pottsville coalbed methane reservoirs is exclusively through natural fractures, including cleats, joints, and shear fractures.
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Figure 8. Structural contour map of the top of the Pratt coal zone in the Black Warrior coalbed methane fields. See Figure 3 for inde:
Contours relative to mean sea level.
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Figure 8. Structural contour map of the top of the Pratt coal zone in the Black Warrior coalbed methane fields. See Figure 3 for index map.
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Contours relative to mean sea level.
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A DEERLICK CREEK STRUCTURE
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Figure 9. Structural cross section of thin-skinned horst-and-graben system in Deerlick Creek Field.
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Figure 9. Structural cross section of thin-skinned horst-and-graben system in Deerlick Creek Field.
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ADSORPTION ISOTHERMS, BLACK WARRIOR BASIN
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Figure 10. Isotherms showing variable sorption performance of Pottsville coal for three gases. Isotherms run by University of British Coli 21
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Figure 10. Isotherms showing variable sorption performance of Pottsville coal for three gases. Isotherms run by University of British Columbia.
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Figure 11. Plots of gas content versus depth showing heterogeneous distribution of coalbed gas in the Black Warrior basin.
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Figure 11. Plots of gas content versus depth showing heterogeneous distribution of coalbed gas in the Black Warrior basin.
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COAL
QUALITY

This may not be the
world’s best coalbed
gas reservoir

Figure 12. Intensely pyritized coal with mineralized fractures suggests that coal quality affects reservoir properties.
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Figure 12. Intensely pyritized coal with mineralized fractures suggests that coal quality affects reservoir properties.
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Figure 13. Map of coal rank in the Black Warrior coalbed methane fields.
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Figure 13. Map of coal rank in the Black Warrior coalbed methane fields.
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Figure 14. Cross sections showing coal rank in the Black Warrior basin. See Figure 15 for location.
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Figure 14. Cross sections showing coal rank in the Black Warrior basin. See Figure 15 for location.
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Figure 15. Relationship between coal rank and sorption capacity in the Black Warrior basin.
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Figure 15. Relationship between coal rank and sorption capacity in the Black Warrior basin.
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Figure 16. Maps of ash content contrasting the Mary Lee and Utley coal beds in Blue Creek Field.
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Figure 16. Maps of ash content contrasting the Mary Lee and Utley coal beds in Blue Creek Field.

Peter Warwick
77


SORPTION AND ASH

@

600

w
o
o

‘0
o
o
D
s
-]
@
2
@
O
@
| =
0
©
s
o
i
0
©
o
g~
@
2
]
Q
72

[
(==
o

10
Ash (%, as received)

Figure 17. Relationship between sorption capacity and ash content and sorption capacity of coal in the Black Warrior basin.
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Figure 17. Relationship between sorption capacity and ash content and sorption capacity of coal in the Black Warrior basin.
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Figure 18. Relationship of methane sorption to temperature in a San Juan basin coal.
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Figure 18. Relationship of methane sorption to temperature in a San Juan basin coal.
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Figure 19. Temperature-depth plot for coalbed methane wells in the Black Warrior basin showing variation of geothermal gradient.
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Figure 19. Temperature-depth plot for coalbed methane wells in the Black Warrior basin showing variation of geothermal gradient.
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Figure 20. Map of geothermal gradient in the Black Warrior coalbed methane fields. 81
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Figure 20. Map of geothermal gradient in the Black Warrior coalbed methane fields.
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Figure 21. Location of fresh-water plumes in the Mary Lee coal zone, which are fed by recharge along the upturned southeast basin mar
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Figure 21. Location of fresh-water plumes in the Mary Lee coal zone, which are fed by recharge along the upturned southeast basin margin.
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GAS COMPOSITION
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Figure 22. Comparison of composition of conventional and coalbed gas in the Black Warrior basin.
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Figure 22. Comparison of composition of conventional and coalbed gas in the Black Warrior basin.
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Figure 23. Pressure-depth plot showing bimodal pressure regime in the Black Warrior coalbed methane fields.
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Figure 23. Pressure-depth plot showing bimodal pressure regime in the Black Warrior coalbed methane fields.
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Figure 24. Map of hydrostatic pressure gradient determined from water levels in gas wells of the Black Warrior coalbed methane fields.
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Figure 24. Map of hydrostatic pressure gradient determined from water levels in gas wells of the Black Warrior coalbed methane fields.
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Figure 25. Relationship of peak and cumulative fluid production values in the Black Warrior coalbed methane fields.
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Figure 25. Relationship of peak and cumulative fluid production values in the Black Warrior coalbed methane fields.
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PEAK GAS VS. PEAK WATER PRODUCTION
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Figure 26. Scatterplot showing lack of correlation between peak and gas water production in the Black Warrior coalbed methane fields. g
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Figure 26. Scatterplot showing lack of correlation between peak and gas water production in the Black Warrior coalbed methane fields.
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PEAK GAS PRODUCTION VS. COAL THICKNESS
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Figure 27. Scatterplot showing lack of correlation between peak gas production and net completed coal thickness in the Black Warrior be g4
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Figure 27. Scatterplot showing lack of correlation between peak gas production and net completed coal thickness in the Black Warrior basin.
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OAK GROVE GAS PRODUCTION
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Figure 28. Map showing concentration of productive gas wells along a synclinal axis in Oak Grove Field. Structure contours (ft below se:

top of Mary Lee coal bed. 89
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Figure 28. Map showing concentration of productive gas wells along a synclinal axis in Oak Grove Field. Structure contours (ft below sea level) on

Jack Pashin
top of Mary Lee coal bed.
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DEERLICK CREEK GAS PRODUCTION
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Figure 29. Map showing concentration of exceptional gas-producing wells in two half grabens in Deerlick Creek Field. Structure contours
Gwin coal zone. 90
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Figure 29. Map showing concentration of exceptional gas-producing wells in two half grabens in Deerlick Creek Field. Structure contours on top of

Jack Pashin
Gwin coal zone.
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DEERLICK CREEK WATER PRODUCTION
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Figure 30. Map showing concentration of exceptional water-producing wells in two half grabens in Deerlick Creek Field. Structure contot
of Gwin coal zone. Compare with Figure 29. o1
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Figure 30. Map showing concentration of exceptional water-producing wells in two half grabens in Deerlick Creek Field. Structure contours on top of Gwin coal zone. Compare with Figure 29.
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CONMCLUDMWE TEIOUCENTS

CBM réservoirsinthe blacks Warrior basinrare
characterized by heterogeneous siratigraphys siriclure,
and coal quality.

Thistheterogeneity hasta strong eiiect on sorpiion
capacity, gas content, basin hydrology, and reservoir
periormance:

Similar factors aifect CBM potential in other
sedimentary basins, but diifering geologic factors pose
basin-specific challenges.

Figure 31. Concluding thoughts.
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Figure 31. Concluding thoughts.
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