Ground and surface water interactions in karst terrains: Some observations from along the Cody Scarp

Jon Martin Liz Screaton, PJ Moore

Acknowledgements: NSF, DEP, SRWMD O'Leno State Park, Ichetucknee State Park Sheryl Gordon, Randy Dean, Brooke Sprouse, Jennifer Martin

- How does flow in conduits and matrix interact?
- What can be learned from chemistry of spring discharge?

Karst aquifers have two distinct ground water reservoirs:

- (1) Conduits (> 1 cm^2)
- (2) Matrix (fracture and intergranular porosity)
 - Flow unimportant in low porosity matrix, e.g. Paleozoic aquifers
 - High porosity matrix important flow path and for storage, e.g. Floridan aquifer

Study Area: Cody Scarp

Mill Pond Spring, Ichetucknee River

Santa Fe River Sink/Rise area

Travel time: Sink \rightarrow Rise

First "flood"

Second "flood"

(1) Velocity constant through conduits
 (2) Velocity depends on stage and discharge
 (3) Discharge can be used to determine conduit size
 (4) Determine residence time – chemical sampling

Discharge at sink and rise: evidence for conduit-matrix exchange

Cl⁻ concentrations vs. distance and through time following 1998 El Nino floods

Seawater Sr Isotopes Through Time

11

Mixing: Ocala Ls and seawater + radiogenic Sr?

Some wells have more Ocala Sr than others

Radiogenic Sr from Hawthorn Gp?

²²²Rn Geochemistry

²²²Rn derived from decay of ²³⁸U

226 Ra $t_{1/2} = ~1600 \text{ yrs}$ 222 Rn $t_{1/2} = 3.8 \text{ days}$ 218 Po Alkaline earth element; easily fits in clay and carbonate mineral structures.

 \Rightarrow Source of ²²²Rn to ground water.

Noble gas; non-reactive in inorganic or organic reactions.
⇒ Loss from evasion to atmosphere.
⇒ Loss from radioactive decay.

Rn input and decay

 $N = {}^{222}Rn \text{ activity}$ $N_0 = \text{initial } {}^{222}Rn \text{ activity}$ $\lambda = \text{decay constant}$ t = time

Conclusions and Questions

• Water exchanges between conduits and matrix (T, physical models, Cl concentrations)

• Several sources of recharged water from confined region (Sr and Rn isotopes)

• What roles do diffuse recharge and epikarst have in flow in conduits and matrix?