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Summary

e Background

- According to even the simplest models of earthquake

triggering (e.g. ETAS), foreshocks should provide
significant short-term predictability

- In practice, however, prediction algorithms based on

foreshocks in continental regions have delivered little
probability gain

e Observation

- On mid-ocean ridge transform faults (RTFs), foreshock
occurrence rates from hydroacoustic data are
anomalously high relative to ETAS
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Summary

e Conclusions

- From a retrospective analysis, we show that even naive
prediction algorithms based on RTF foreshocks can
deliver high probability gain factors (100-1000) using
small space-time windows (15 km x 1 hr)

- The mechanism for this predictability appears to be slow
transients on RTFs (“quiet” earthquakes) that trigger
both foreshocks and mainshocks
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Properties of Mid-Ocean Ridge Transform
Faults (RTFs)

High seismic deficits
- Brune (1968)

Slow earthquakes
- Kanamori & Stewart (1976), Okal & Stewart (1978)

Compound earthquakes with slow precursors
- |Ihmlé & Jordan (1994), McGuire, Inmlé & Jordan (1996),

Multi-fault dynamics
- Bonatti et al. (1996), McGuire & Jordan (2000)

Simple (but surprising) scaling relations
- Boettcher & Jordan (2004)

Anomalous foreshock activity
- McGuire, Boettcher & Jordan (2004)
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Three Types of RTF Area

Thermal area:

A ~ 312102

Effective area:

A = ZVMN, where At = catalog length seismogenic patches
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Slow Precursor to 1994 Romanche Earthquake

o
o

Source 1
time |
function

o
N

Amplitude (10%° Nm)
o
V)

w©
oNe]
Moment rate (108 Nm/s)

D
>
<
(]
o< 20
(O]
w0
(4]
<
o

—
o
o

Frequency (mHz)

Observed time series

o
o

Amplitude

10/14/04 J. J. McGuire, P. F. Inmlé, and T. H. Jordan, Science, 274, 82-85, 1996.




Slow Precursor to 1997 Prince Edward Is. Earthquake

Northridge

7 Observed time series
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NOAA-PMEL Hydroacoustic Array

6-station array deployed by National

Oceans and Atmosphere Administration's

Pacific Marine Environmental Laboratory

(NOAA-PMEL) in 1996 East

Pacific
Rise

Data recovered and processed on annual A S A
basis

Galapagos
Spreading

Event catalog available for 5/96 - 12/01 A
Magnitude threshold M, > 2.5

- ASL = acoustic source level (dB)
- M,g =0.107 ASL - 19.6 (ISC m,, calibration)

L ocation uncertainties: NOAA-PMEL Array on

East Pacific Rise
- Orgintime £10s

- Epicenter + 2 km
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GDQ Study Area
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GDQ Seismicity Stacked on Mainshock Origin Times
(9 mainshocks, Mar 1996 - Nov 2001)
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Earthquake Clustering on EPR Faults

NOAA-PMEL Array, Aug 23, 1996



Earthquake Clustering on EPR Faults
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Null Hypothesis

Epidemic Type Aftershock Sequence (ETAS) model:

Clustering of foreshocks, mainshocks, and
aftershocks on RTFs can be described by the
same seismic triggering mechanism

Y. Ogata, J. Am. Stat. Assoc. 83, 9 (1988)

Helmstetter, D. Sornette, J. Geophys. Res. 107, 10.1029/2001JB001580
(2002)

K. Felzer, R. E. Abercrombie, G. Ekstrom, Bull. Seism. Soc. Am. 94
(2004)
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Epidemic Type Aftershock Sequence (ETAS) Model

1. All earthquake magnitudes above a lower cutoff m, are independent
samples of the Gutenberg-Richter probability distribution,

P(m) = 10~b0m=mo)
2. All earthquakes give birth to daughter events at an average rate

p(m, 1) = p(m) (1)

3. This triggering rate is assumed to increase exponentially with
magnitude,

p(m) —k loa(m—mo)

4. and to decay with time after a mother event according to the modified
Omori law,

Y(t) =0 P/ (c+ t)l+9



Aftershock Statistics
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Epidemic Type Aftershock Sequence (ETAS) Model

An appropriate analysis of the ETAS model yields the
foreshock/aftershock ratio,

Al
N

~

n( b ) 10(1)—a)Amf _1
\ph=-c lobAma _1

a

where we count events in the magnitude range (m

- Ama,f).
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Foreshock/Aftershock Statistics
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Conclusions

e Foreshock rates from the NOAA-PMEL catalogs are more
than two orders of magnitude greater than the ETAS
predictions

- Results are robust with respect to the choice of windows and
declustering procedures.

ETAS hypothesis can be rejected

- Clustering of foreshocks, mainshocks, and aftershocks on RTFs
cannot be described by the same seismic triggering mechanism

e Alternate hypothesis: large earthquakes on EPR faults are
preceded by an extended preparation process driven by
subseismic transients (silent and quiet earthquakes) that
can often be observed through foreshocks

- Consistent with the localized distribution of the foreshocks about
the mainshock in both space and time, which does not conform to

o104 the inverse-diffusive behavior expected from the ETAS model




Naive Prediction Algorithm for Ridge
Transform Faults

e The high rate of proximate foreshocks suggests a naive
scheme for short-term earthquake prediction:

- We simply assume every event is a foreshock of an
Impending large earthquake.

o Formalization into a 4-parameter prediction algorithm:

- For every RTF event with m 2 m,, we issue an alert that
an earthquake m 2 mp will occur sometime during time
window of length £, immediately following the event and
somewhere in a spatial window of radius r, about the

event’s epicenter.
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Results for GDQ Transform Faults
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Retrospective Performance of the Naive
Prediction Algorithm

Algorithm: my, = 2.5 (M, ), mp = 5.4 (M), &t =1 hr, ro = 15 km
For the GD catalog (5/96-11/01, 9 mainshocks):
6 successful predictions (66%)
3 failures-to-predict (33%)
~1400 false alarms
Alarms occupy 0.15% of space-time volume
g =450
Increasing m, to 3.4 (M,g ) improves performance:
- ~400 false alarms
- Alarms occupy 0.04% of space-time volume
- g=1500
Further optimization is clearly possible!
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M)

Failure to Predict Probability, 1 — P(F

P(M| F)= G P(M), where G = P(F | M)/ P(F) is the probability gain
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Molchan’s Error Diagram
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Conclusions

Mid-ocean ridge transform faults have many properties that are distinct from
continental transform faults: most plate motion is accommodated aseismically,
many large earthquakes are slow events enriched in low-frequency radiation,
and the seismicity shows depleted aftershock sequences and high foreshock
activity.

Because of the high ratio of foreshocks to aftershocks, RTF earthquakes
cannot be explained by standard point-process models of seismic triggering, in
which there is no fundamental distinction between foreshocks, mainshocks,
and aftershocks.

A retrospective analysis of the post-1996 NOAA-PMEL hydroacoustic
seismicity catalogs demonstrates that foreshock sequences on East Pacific
Rise transform faults can be used to achieve statistically significant short-term
prediction of large earthquakes (magnitude = 5.4) with good spatial (15-km)
and temporal (1-hr) resolution.

The predictability of EPR transform earthquakes is consistent with a model in
which slow slip transients trigger earthquakes, enrich their low-frequency
radiation, and accommodate some of the subseismic plate motion.
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