Interpretation of Stress Orientation in the Peninsular Ranges and Coachella Valley Region of Southern California Robert L. Wesson and William Z. Savage U.S. Geological Survey Golden, Colorado Presentation at 5th UJNR, October 14, 2004 #### **Motivation** - How to confirm basic assumptions underlying probabilistic rupture forecasts in probabilistic seismic hazard analysis (PSHA)? - Current time-dependent, physics-based, PSHA models are largely based on estimates of accumulated slip deficit, i.e. the amount of slip accumulated since the last significant earthquake. - Are there any geophysical observables that can be used to confirm or refine estimates of slip deficit? ### Candidate Stress Orientation #### **Outline of Talk** - Observations of Stress Orientation - Simple Dislocation Models - Observations of Changes in Stress Orientation - Preliminary Testing of Slip Deficit Models for Stress Orientation in Southern California #### **Candidate: Stress Orientation** - Stress Orientation - Orientation of the principal horizontal stresses (S_{Hmax}) relative to fault plane - Observations of stress orientation inferred from earthquake focal mechanisms are increasingly available and reliable - Issues about spatial sampling largely resolved ### **Stress Orientation: Challenges** - Requires occurrence of small earthquakes - Continue to improve reliability, spatial sampling - Requires model for interpretation in terms of slip deficit #### **Dislocation Model** - Dislocation model of constant slip rate at depth below seismogenic zone extremely well supported by geodetic observations - Implicit basis for both empirical and physicsbased probabilistic seismic hazard analysis (PSHA) #### Fault $\sigma_{r1}^* = -0.50$ $\sigma_{c}^{*} = -0.25$ $\sigma_{c1}^* = -0.25$ $\sigma_{c2}^{*} = -0.10$ $\sigma_{r_1}^* = -0.10$ $\sigma_{r_2}^* = -0.05$ +++++++XXXXXX+++++++ $\sigma_{r1}^{*} = 0.00$ $\sigma_{r2}^{*} = 0.00$ -15.00 -10.00-5.00 0.00 5.00 10.00 15.00 x/d # Observations of Change in Stress Orientation - Loma Prieta (Beroza and Zoback, 1993) - Landers (Hauksson, 1994) - Denali (Ratchkovski, 2003) - Reasonable assumption that stress is faultnormal immediately after significant event (from Ratchkovski, 2003) # Slip Deficit Model for Southern California - Simplified faults for Peninsular Ranges and Coachella Valley - Slip rates from geodetic data (Bennett et al, 1996) - Dates of last earthquakes from timedependent PSHA model of Cramer et al (2000) | | | Year of
Last | Time
Interval
Since Last | Source | Slip Rate
Parallel | Slip Rate Perpendicular (mm/yr, convergence | Locking
Depth | Source
(Slip rates, locking | Slip Deficit | Slip Deficit Perpendicular (m, convergence | |--------------------------------|---------|-----------------|--------------------------------|---------------------|-----------------------|---|------------------|--------------------------------|--------------|--| | Fault or Fault Segment | Symbo I | Event | Event | (Last event) | (mm/yr) | negative) | (km) | depth) | Parallel (m) | negative) | | San Andreas-Mojave | SA1 | 1857 | 147 | Cramer et al, 200 0 | 3 3 | -12 | 12 | Bennett et al, 1996 | 4.9 | -1.8 | | San Andreas-San Bernardino NW | SA2 | 1812 | 192 | " | 3 5 | 0 | 12 | " | 6.7 | 0.0 | | San Andreas-San Bernardino S E | SA3 | 1812 | 192 | " | 2 2 | -13 | 12 | " | 4.2 | -2.5 | | San Andreas-Coachella | SA4 | 1690 | 314 | " | 26 | 0 | 12 | " | 8.2 | 0.0 | | San Jacinto-San Bernardino | SJ1 | 1890 | 114 | " | 9 | 0 | 7.5 | " | 1.0 | 0.0 | | San Jacinto-San Jacinto Valley | SJ2 | 1918 | 8 6 | " | 9 | 0 | 7.5 | " | 0.8 | 0.0 | | San Jacinto-Anza | SJ3 | 1750 | 254 | " | 9 | 0 | 7.5 | " | 2.3 | 0.0 | | San Jacinto-Borrego Mountain | SJ4 | 1968 | 3 6 | " | 9 | 0 | 7.5 | " | 0.3 | 0.0 | | Superstition Mountains | S | 1430 | 574 | " | 8 | - 5 | 7.5 | " | 4.6 | -2.9 | | Imperia I | I | 1979 | 25 | " | 3 5 | 0 | 7.5 | " | 0.9 | 0.0 | | Brawley | В | 1981 | 23 | NEIC | 23 | 12 | 7.5 | " | 0.5 | 0.3 | | Laguna Sala da | LS | 1892 | 112 | Cramer et al, 200 0 | 6 | - 1 | 7.5 | " | 0.7 | -0.1 | | Elsinore-Coyote Mountain | EL1 | 1892 | 112 | " | 6 | 0 | 7.5 | " | 0.7 | 0.0 | | Elsinore-Julian | EL2 | 1892 | 112 | " | 6 | 0 | 7.5 | " | 0.7 | 0.0 | | Elsinore-Termecula | EL3 | 1818 | 186 | " | 6 | 0 | 7.5 | " | 1.1 | 0.0 | | Elsinore-Glen Ivy | EL4 | 1910 | 94 | " | 6 | 0 | 7.5 | " | 0.6 | 0.0 | | Elsinore-NW extensio n | EL5 | ??? | 200 | Unknown, assume | 6 | 0 | 7.5 | " | 1.2 | 0.0 | | Mexica I i | М | ??? | 200 | " | 16 | 3 1 | 6 | " | 3.2 | 6.2 | | San Migue I | SM | ??? | 200 | " | 3 | 0 | 12 | " | 0.6 | 0.0 | | San Clemente | SC | ??? | 200 | " | 4 | 0 | 12 | " | 0.8 | 0.0 | | Agua Blanca | ΑВ | ??? | 200 | " | 4 | - 2 | 12 | " | 0.8 | -0.4 | | San Pedro Martir | SPM | ??? | 200 | " | 5 | 5 | 12 | " | 1.0 | 1.0 | | Cerro Prieto | СР | ??? | 200 | " | 42 | 0 | 6 | " | 8.4 | 0.0 | ## **Examples of Estimated Slip Deficits** | Fault
Segment | Last Event | Time Interval (yr) | Slip Rate
(mm/yr) | Slip Deficit
(m) | |------------------------------|------------|--------------------|----------------------|---------------------| | San
Andreas-
Coachella | 1690 | 314 | 26 | 8.2 | | San Jacinto-
Anza | 1750 | 254 | 9 | 2.3 | | Elsinore-
Julian | 1892 | 112 | 6 | 0.7 | | San Miguel | ??? | 200??? | 3 | 0.6 | | San
Clemente | ??? | 200??? | 4 | 0.8 | #### Conclusion Stress orientation offers promise for use in estimating or confirming estimates of slip deficit