

Interpretation of Stress Orientation in the Peninsular Ranges and Coachella Valley Region of Southern California

Robert L. Wesson and William Z. Savage U.S. Geological Survey Golden, Colorado

Presentation at 5th UJNR, October 14, 2004

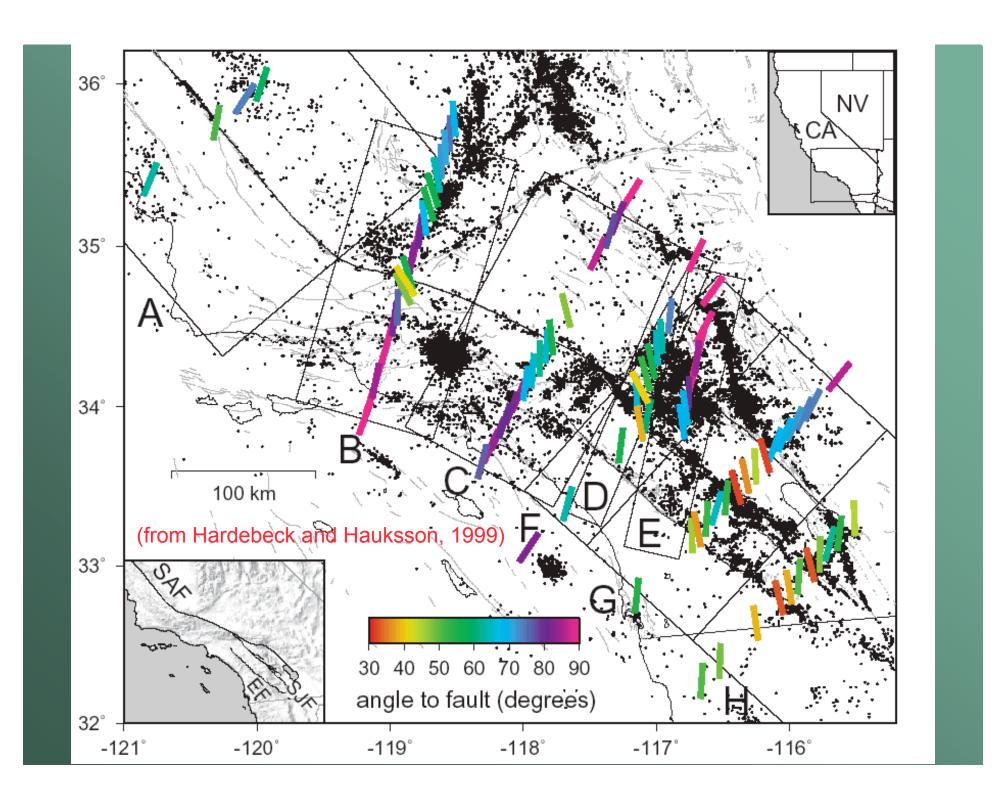
Motivation

- How to confirm basic assumptions underlying probabilistic rupture forecasts in probabilistic seismic hazard analysis (PSHA)?
- Current time-dependent, physics-based, PSHA models are largely based on estimates of accumulated slip deficit, i.e. the amount of slip accumulated since the last significant earthquake.
- Are there any geophysical observables that can be used to confirm or refine estimates of slip deficit?

Candidate

Stress Orientation

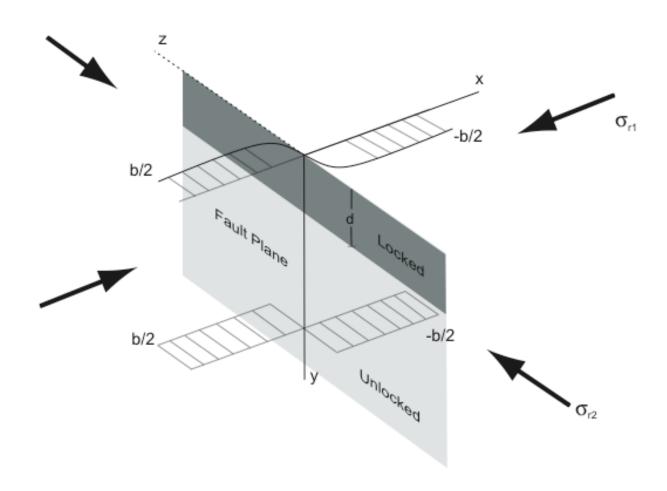
Outline of Talk


- Observations of Stress Orientation
- Simple Dislocation Models
- Observations of Changes in Stress Orientation
- Preliminary Testing of Slip Deficit Models for Stress Orientation in Southern California

Candidate: Stress Orientation

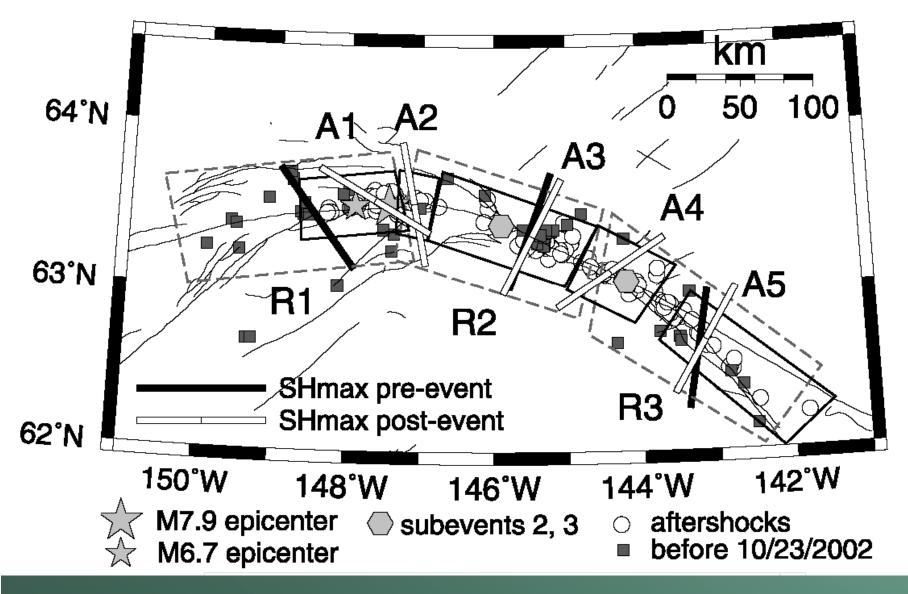
- Stress Orientation
 - Orientation of the principal horizontal stresses (S_{Hmax}) relative to fault plane
- Observations of stress orientation inferred from earthquake focal mechanisms are increasingly available and reliable
- Issues about spatial sampling largely resolved

Stress Orientation: Challenges


- Requires occurrence of small earthquakes
- Continue to improve reliability, spatial sampling
- Requires model for interpretation in terms of slip deficit

Dislocation Model

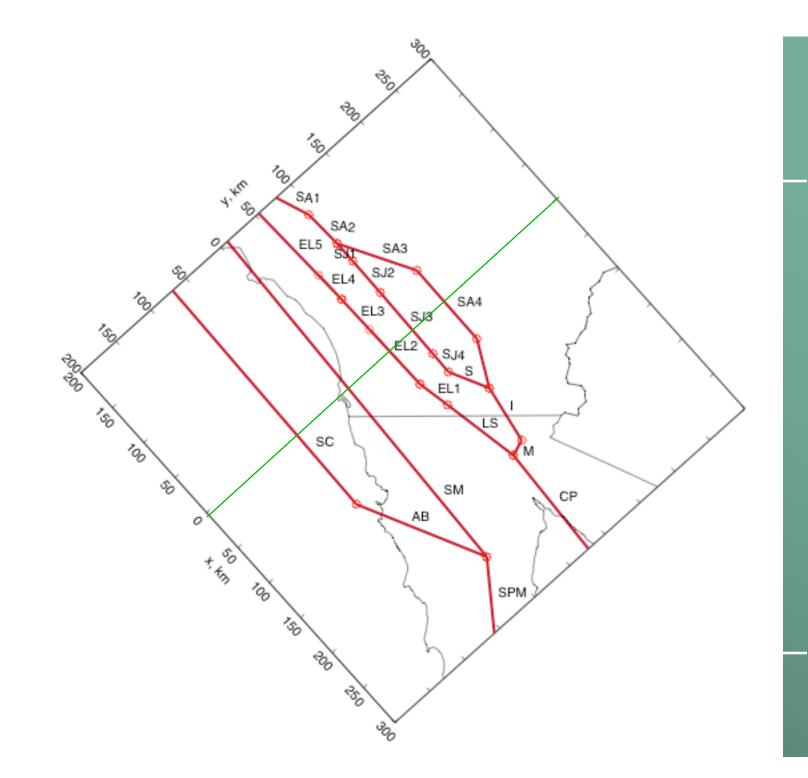
- Dislocation model of constant slip rate at depth below seismogenic zone extremely well supported by geodetic observations
- Implicit basis for both empirical and physicsbased probabilistic seismic hazard analysis (PSHA)



Fault $\sigma_{r1}^* = -0.50$ $\sigma_{c}^{*} = -0.25$ $\sigma_{c1}^* = -0.25$ $\sigma_{c2}^{*} = -0.10$ $\sigma_{r_1}^* = -0.10$ $\sigma_{r_2}^* = -0.05$ +++++++XXXXXX+++++++ $\sigma_{r1}^{*} = 0.00$ $\sigma_{r2}^{*} = 0.00$ -15.00 -10.00-5.00 0.00 5.00 10.00 15.00 x/d

Observations of Change in Stress Orientation

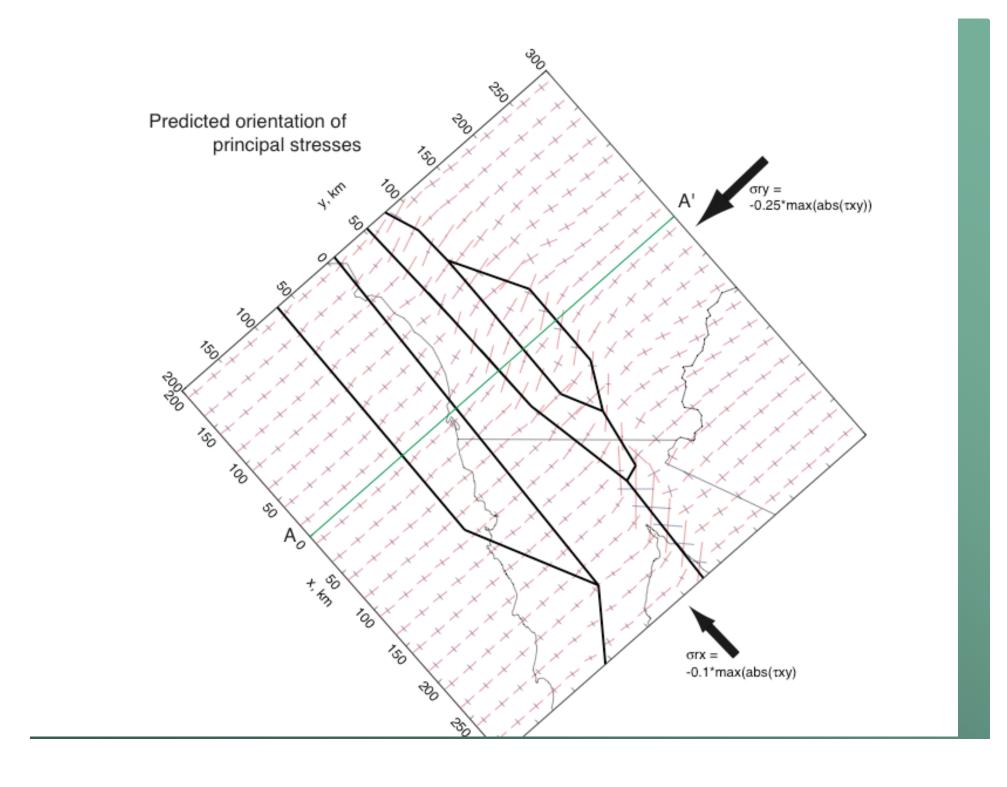
- Loma Prieta (Beroza and Zoback, 1993)
- Landers (Hauksson, 1994)
- Denali (Ratchkovski, 2003)
- Reasonable assumption that stress is faultnormal immediately after significant event

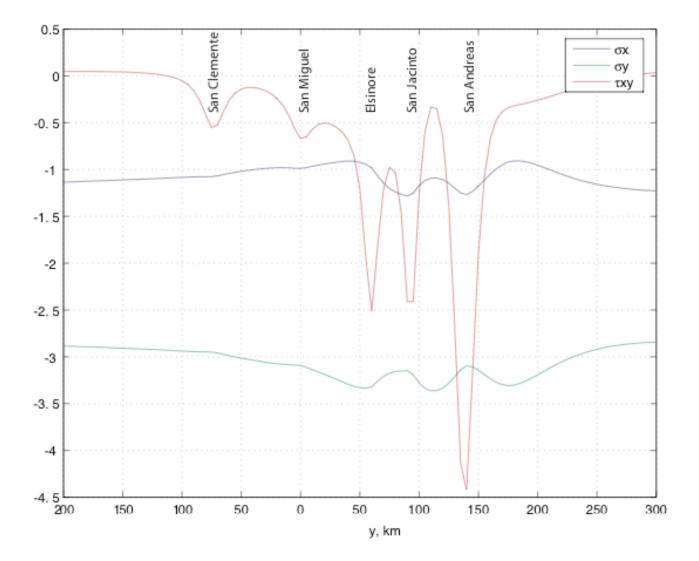


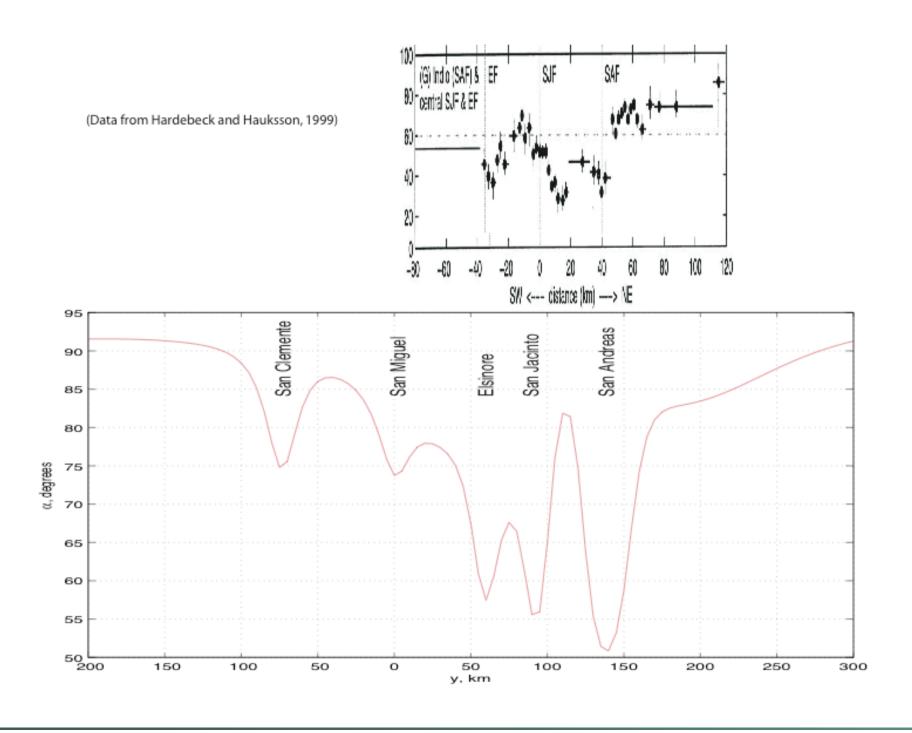
(from Ratchkovski, 2003)

Slip Deficit Model for Southern California

- Simplified faults for Peninsular Ranges and Coachella Valley
- Slip rates from geodetic data (Bennett et al, 1996)
- Dates of last earthquakes from timedependent PSHA model of Cramer et al (2000)




		Year of Last	Time Interval Since Last	Source	Slip Rate Parallel	Slip Rate Perpendicular (mm/yr, convergence	Locking Depth	Source (Slip rates, locking	Slip Deficit	Slip Deficit Perpendicular (m, convergence
Fault or Fault Segment	Symbo I	Event	Event	(Last event)	(mm/yr)	negative)	(km)	depth)	Parallel (m)	negative)
San Andreas-Mojave	SA1	1857	147	Cramer et al, 200 0	3 3	-12	12	Bennett et al, 1996	4.9	-1.8
San Andreas-San Bernardino NW	SA2	1812	192	"	3 5	0	12	"	6.7	0.0
San Andreas-San Bernardino S E	SA3	1812	192	"	2 2	-13	12	"	4.2	-2.5
San Andreas-Coachella	SA4	1690	314	"	26	0	12	"	8.2	0.0
San Jacinto-San Bernardino	SJ1	1890	114	"	9	0	7.5	"	1.0	0.0
San Jacinto-San Jacinto Valley	SJ2	1918	8 6	"	9	0	7.5	"	0.8	0.0
San Jacinto-Anza	SJ3	1750	254	"	9	0	7.5	"	2.3	0.0
San Jacinto-Borrego Mountain	SJ4	1968	3 6	"	9	0	7.5	"	0.3	0.0
Superstition Mountains	S	1430	574	"	8	- 5	7.5	"	4.6	-2.9
Imperia I	I	1979	25	"	3 5	0	7.5	"	0.9	0.0
Brawley	В	1981	23	NEIC	23	12	7.5	"	0.5	0.3
Laguna Sala da	LS	1892	112	Cramer et al, 200 0	6	- 1	7.5	"	0.7	-0.1
Elsinore-Coyote Mountain	EL1	1892	112	"	6	0	7.5	"	0.7	0.0
Elsinore-Julian	EL2	1892	112	"	6	0	7.5	"	0.7	0.0
Elsinore-Termecula	EL3	1818	186	"	6	0	7.5	"	1.1	0.0
Elsinore-Glen Ivy	EL4	1910	94	"	6	0	7.5	"	0.6	0.0
Elsinore-NW extensio n	EL5	???	200	Unknown, assume	6	0	7.5	"	1.2	0.0
Mexica I i	М	???	200	"	16	3 1	6	"	3.2	6.2
San Migue I	SM	???	200	"	3	0	12	"	0.6	0.0
San Clemente	SC	???	200	"	4	0	12	"	0.8	0.0
Agua Blanca	ΑВ	???	200	"	4	- 2	12	"	0.8	-0.4
San Pedro Martir	SPM	???	200	"	5	5	12	"	1.0	1.0
Cerro Prieto	СР	???	200	"	42	0	6	"	8.4	0.0


Examples of Estimated Slip Deficits

Fault Segment	Last Event	Time Interval (yr)	Slip Rate (mm/yr)	Slip Deficit (m)
San Andreas- Coachella	1690	314	26	8.2
San Jacinto- Anza	1750	254	9	2.3
Elsinore- Julian	1892	112	6	0.7
San Miguel	???	200???	3	0.6
San Clemente	???	200???	4	0.8

Conclusion

Stress orientation offers promise for use in estimating or confirming estimates of slip deficit

