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Difterences in Source and Ground
Motion Characteristics between
Shallow and Buried Faulting

e Shallow faulting — top of shallowest
asperity (defined by slip or slip velocity) 1s
shallower than 5 km; there may also be
asperities whose tops are deeper than 5 km

e Buried faulting — tops of all asperities are
deeper than 5 km



Landers (1992, Mw=7.2)
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Peak Acceleration (g)

Abrahamson and Silva (1995)
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Spectral Acceleration (g)
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Ground Motion Residual (Ln units)
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Paleo Ground Motion from Analysis of
Precariously Balanced Rocks

Brune, Anooshepoor, Purvance, Anderson, et al

Balanced rocks appear to be inconsistent
with calculated seismic hazard levels

« Limitations of the ergodic assumption?
 Variability in ground motion level too high?

* Median ground motion level to high?



Vector Valued Seismic Hazard
for Paleo Ground Motion

Toppling of rocks depends on both peak
acceleration PGA and peak velocity PGV

« Thio: Hazard surface for PGA and PGV
« Purvance: Fragility surface for PGA and PGV

« Combine to give probability of toppling as a
function of return period

* Results incompatible with balanced rocks?
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Variations in Slip Along Strike

(Note: The slip and slip velocity were averaged along strike)

* Are there some places along strike where the
ground motions from large earthquakes may be
strong, e.g. due to a local deep asperity?

* Does a large surface faulting earthquake begin as
a subsurface earthquake and then evolve along
strike into a surface faulting earthquake?

e.g. Chi-Chi: South to North

* Do some multi-segment earthquakes contain both
surface and subsurface faulting segments?

e.g. Kobe: Nojima; Suma/Suwayama



Variations In Slip With Depth

e According to the Characteristic Earthquake
model, all surface faulting earthquakes on a given
fault have the same surface slip

- Do they also all have the same subsurtace slip?

* Do smaller buried earthquakes (with no surface
rupture) also occur on that fault?

- If not, then surface faults always produce surface
faulting and weak ground motions

- It so, then surface faults may also produce subsurface
faulting and strong ground motions



Comparison of Dynamic Rupture Parameters
of Shallow and Buried Faulting Earthquakes

Defined surface rupture

(1) [zmit Dalguer
(2) Kobe Song
3) Landers Song
4) Landers Pitarka
Defined subsurface rupture
(5) Northridge Guatteri
(6) Northridge Guatteri
(7) Loma Prieta Song
Undefined rupture
(8) Tottor1 Dalguer
9) Kagoshima Dalguer
(10) Yamaguchi Dalguer

(11) Whittier N. Song
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Fracture Energy and Stress
Intensity Factor

Large for defined surface faulting events

Small for defined subsurface and undefined faults

Large fracture energy events may produce mainly
long period seismic radiation

This 1s consistent with surface faulting events
producing weak high frequency ground motions



Features of Rupture in the Shallow
Part of Fault (0 — 5 km depth)

Controlled by velocity strengthening
Larger slip weakening distance Dc

Larger fracture energy 1.e.much energy
absorbed from the crack tip

Lower rupture velocity
Lower slip velocity

Lower ground motions than buried faulting
events



Implications for Seismic Hazards

Need separate ground motion models for shallow
and buried faulting

These models might each have lower aleatory
variability, and the shallow faulting model will
have much lower median values

Need criteria for predicting surface and/or
subsurface faulting

Ground motion amplitudes from shallow faulting
earthquakes may have been overestimated 1n
current seismic hazard estimates



