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ALUNITE ISOTOPE COMPOSITIONS  

The Goldfield district, Esmeralda Co., Nevada, produced 4.2  Moz Au, 1.5 Moz Ag, and 3,800 tons Cu; 
most production occurred from 1904-1919.  Prominent lithologies in the district, Miocene rhyolites, latites 
and andesites, overlie Mesozoic and Paleozoic granitic and  sedimentary rocks.  Most production came 
from silicified, sub-linear fissures, or ledges, in Milltown Andesite and porphyritic andesite (dacite of 
Ransome, 1909; porphyritic rhyodacite of Ashley, 1974).  Ledges consist mainly of microcrystalline quartz 
that has replaced andesites.  Internal breccias constituted most ore and consist of multiple generations of 
clasts encrusted and replaced by gold, pyrite, and a large number of Cu-As-Sb-Ag-Bi-Sn-Te-Se minerals 
(e.g., enargite-luzonite, famatinite, goldfieldite, bisthmuthinite, calverite), minor sphalerite, galena, and 
chalcopyrite, alunite, kaolinite, and pyrophyllite. Ledges commonly consist of en echelon segments that 
form a broadly elliptical pattern in the district. Contiguous ledge segments are generally meters to tens of 
meters in length by meters in width.  Ledges are flanked by broad selvages of altered andesite consisting of proximal to 
distal quartz±alunite±kaolinite+pyrite, quartz+kaolinite+K-mica+pyrite, montmorillonite+pyrite, and, calcite+chlorite± 
pyrite, respectively.  The abundance of ledges coupled with coalescing alteration selvages resulted in a very large 
volume (tens of km3) of altered rocks in the district. More than 95% of district production came from a small area, the 
“main district”, near the town of Goldfield. 
 

Alunite occurs in many mineralized and unmineralized ledges, and in adjacent 
wall rocks, throughout much of the district.  In mineralized ledges it partially 
replaces early breccia clasts, occasionally forms clast crusts, more commonly is 
intergrown with quartz and sulfide-sulfosalt mineral encrustations, and 
occasionally dominates breccia matrices. In wall rocks alunite replaces 
phenocrysts and matrices and fills fractures. 

40Ar/39Ar ages of 13 alunites range from 21.5 to 15.2 Ma with 12 of the ages 
between 21.5 and 19.8 Ma.  The oldest alunites (21.5 to 21.2 Ma) from wall 
rocks and small mines in the northern and eastern parts of the district, coincide 
in age with rhyolites (Sandstorm Formation, Rhyolite of Wild Horse Spring, 
and Tuff of Chispa Hills; Ransome, 1909; Ashley, 1974), and are as much as 
several hundred Ka younger than andesites.  Main district, Preble Mountain, 
and Sandstorm-Kendall mine alunites range in age from 20.7 to 19.8 Ma. Most 
alunite ages are analytically indistinguishable, but some main district alunites 
are slightly younger than Preble Mountain alunites.  Sandstorm-Kendall mine 
and Vindicator Mountain alunites, both distal to the main district, are among 
the youngest alunites.  Alunite that cements sulfosalts in a main district ledge 
is 15.2 Ma. 
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Alunite (KAl3(SO4)2(OH)6) and natroalunite (NaAl3(SO4)2(OH)6) exhibit extensive solid solution. 
Chemical compositions of main district and Preble Mountain alunites (microprobe analyses by J. 
McCormack), expressed as normalized cation abundances, show variable K/Na, and minor to no Ca.  
Compared to Preble Mountain alunites and other alunites from Walker Lane acid-sulfate systems, main 
district alunites have less variable K/Na, and low Ca (< several wt.%).  No minor element and volatile 
abundances have been determined.   

Sulfur isotope temperatures of ~400 ºC for pyrite-alunite pairs in early ledge 
replacement quartz, and of ~200 to 260 ºC for pyrite-alunite pairs in matrices of 
mineralized ledge breccias, are broadly similar to fluid inclusion homogenization 
temperature modes (Th ºC), suggesting sulfur isotope equilibrium in main district 
ledge fluids.  Most pyrite-barite, and pyrite-gypsum sulfur isotope temperatures 
also are similar to (Th ºC). Isotope temperatures for Preble Mountain alunites are 
impossibly high, much greater than the upper thermal stabilities of alunite and 
natroalunite (480-490 ºC; Rudolph et al, 2003) or the disproportionation 
temperature of SO2, attesting to the isotopic disequilibrium among sulfur species 
apparently caused by high velocities of parent fluids.  Analyzed pyrite and sulfate 
minerals from ledges are in physical contact in individual clast crusts, and are 
presumed to be paragenetically coeval.  Pyrite and alunite from Preble Mountain 
also coxist, but several pairs are from breccia matrices with fluidized textures 
where simultaneous deposition of pyrite and alunite is less certain.  
 

The δ34S, δ18O, and δD values of main district 
alunites display a large variance relative to Preble 
Mountain and Walker Lane (Virginia Range) 
alunites.  The large δ34S values indicate that all of 
these alunites are magmatic hydrothermal (MH) in 
origin and derived from disproportionation of SO2.  
Main district and Preble Mountain alunites were 
deposited during disproportionation of SO2 in 
exchanged Miocene meteoric water, with possible 
unexchanged and condensed magmatic water 
components. The     δ34S of aqueous sulfate in the 
Preble system in particular was buffered by 
condensation in exchanged meteoric water with δ18O 
of -4 ± 2 ‰.  The calculated H and O isotope 
composition of the water in the parent alunite fluids 
was similar to the composition of quartz fluid 
inclusion waters (not shown).  Magmatic water 
alunites and mixed magmatic-exchanged meteoric 
water alunites from the western Virginia Range are 
shown for reference (Vikre, 1998) because they show 
a classical trend of δ18O values of aqueous sulfate 
affected by condensation in various mixtures of 
exchanged meteoric and magmatic water.  Reference 
fields on the S-O isotope diagram are from Rye et 
al., 1992. 

CONCLUSIONS 
 
1. Magmatic hydrothermal (MH) alunite resulting from the disproportionation of SO2 is widespread 
in the Goldfield district, occurring as encrustations on main district high-grade ledge breccia clasts, 
replacing breccia clast and wall rock minerals, and forming veins and breccia matrices. 
 
2. Main district and Preble Mountain MH alunite ages, 20.7 to 19.8 Ma, are mostly analytically 
indistinguishable; MH alunites from small mines and wall rocks distal to the main district and Preble 
Mountain are both older and younger.  The duration of hydrothermal activity recorded by MH alunites 
at Goldfield is ~1.7 m.y.  Ledge host rocks, 22.5 to 21.5 Ma, are either slightly older than or the same 
age as the oldest ledges.   
 
3. Main district MH alunites have more homogeneous K/Na compositions than alunites from Preble 
Mountain and Walker Lane acid-sulfate systems.  However, volatiles and minor elements have not 
been analyzed, and might discriminate between mineralized and non-mineralized ledges at Goldfield. 
 
4. Sulfur isotope temperatures based on pyrite-alunite/barite/gypsum pairs mostly range from 400 to 
200 ºC and generally agree with fluid inclusion homogenization temperatures in main district 
mineralized ledges.  Unrealistically high sulfur isotope temperatures for Preble Mountain alunite-pyrite 
pairs most likely reflect sulfur isotope disequilibrium between sulfur species because of high fluid 
velocities of parent fluids.  Some of the Preble Mountain alunites appear to be similar to the magmatic 
steam alunites classically described at Marysvale, UT (Rye et al., 1992). 
 
5. Stable isotope compositions of main district and Preble Mountain alunites overlap, and their 
exceptionally low δ18OSO4 values indicate that magmatic SO2 in parent fluids disproportionated in 
fluids dominated by exchanged meteoric water.   
 
6. Chemical and isotope compositions of alunites at Goldfield only generally distinguish mineralized 
from unmineralized ledges.  Small differences in ages and compositional ranges (K/Na; δ18O – δ34S) 
may not be sustained by additional analyses.  However, disequilibrium isotope temperatures in 
unmineralized ledges may be a significant discriminator. Besides gold, geologic characteristics of 
mineralized ledges (multiple, nested breccias, Cu-As minerals in addition to pyrite, 200 to 260º C 
sulfur isotope temperatures), characterize mineralized ledges.  
 

 ALUNITE STABLE ISOTOPE COMPOSITIONS 

 

 

 
 

 

DISTRICT GEOLOGY MAIN DISTRICT LEDGES ALUNITE LOCATIONS

Preble Mountain

ALUNITE AGES

ALUNITE CATION COMPOSITIONS 

ALUNITE TEMPERATURES

PURPOSE OF ALUNITE INVESTIGATION:  Alunite 40Ar/39Ar ages, chemical compositions, and stable 
isotope compositions were determined across the district in order to assess relationships between alunite 
characteristics and mineralized ledges.  

ABSTRACT

Hydrothermal mineral assemblages in the Goldfield district, Esmeralda County, NV, include several generations of quartz, alunite, ka-
olinite, and sulfide minerals that replaced and encrusted fragments and wall rocks of sub-linear tensional and shear fissures in Miocene 
andesites, rhyolites, and older rocks.  Altered fissures weathered into resistant, discontinuous ledges, hundreds of which form an elliptical 
pattern within the 40 km2 area of clay+pyrite alteration defining the district, but only a few percent contained minable quantities of Au, 
Cu and Ag.  Mined ledges are distinguished by nested heterolithic breccias that display upward clast displacement, and multiple encrusta-
tion of clasts by quartz, alunite, kaolinite, Cu-As-Sb-Ag-Bi-Sn-Te-S minerals, and gold.  Monolithic breccias and limited clast encrusta-
tion characterize many weakly mineralized and unmineralized ledges.

40Ar/39Ar ages, and chemical and stable isotope compositions of magmatic hydrothermal (MH) alunites, associated sulfide minerals, and 
ledge host rocks, were evaluated along with ledge structure and breccia characteristics in an attempt to discriminate between gold-
mineralized and unmineralized ledges.  The oldest alunites (21.2 to 20.8 Ma) in the pre-alteration eruptive sequence of andesites 
(Milltown Andesite and porphyritic andesite; 22.4 to 21.8 Ma) and rhyolites (rhyolite of Wildhorse Spring, tuff of Chispa Hills, Sand-
storm Rhyolite; 21.8 to 21.5 Ma), formed distally to subsequently formed ledges that were mined (alunite ages of 20.0 to 19.5 Ma) in the 
main district and Sandstorm-Kendall area. Alunite ages at Preble Mountain (20.4 to 19.5 Ma), a highly altered andesite edifice containing 
weakly mineralized tectonic breccias, fissures with fluidized textures, and pebble dikes, overlap those of mined ledges.  The oldest recog-
nized post-alteration eruptive rock is the 17.8 Ma Meda Rhyolite.

Magmatic hydrothermal alunites in mined ledges in the main district and Sandstorm-Kendall area are predominantly K-rich (K/Na/Ca ≈ 
8/1/1), while alunites formed in the same andesites at Preble Mountain have variable K/Na/Ca. Alunite-pyrite S-isotope equilibrium tem-
peratures of 200-260 ºC in ledge wall rocks contrast with unrealistically high disequilibrium S-isotope temperatures of >400 ºC in fluid-
ized fissures at Preble Mountain and in some mined ledge breccias.  The high disequilibrium temperatures apparently resulted from dis-
equilibrium between aqueous sulfur species in parent fluids because of elevated fluid flow velocities, and high flow rates may also have 
caused alunite cation variance. Stable isotope compositions of MH alunites and quartz fluid inclusions indicate that disproportionation 
of magmatic SO2 in exchanged meteoric water led to wall rock replacement and ledge breccia fragment encrustation by alunite and 
pyrite. Exceptionally low δ18OSO4 and δD of some alunites indicates that much of the alteration occurred during a wet period in which 
the hydrothermal systems were “flooded” by exchanged meteoric water.  Aerially extensive alteration and temporal correspondence of 
hydrothermal events to an eruption hiatus of at least 2 Ma, suggests protracted intrusion and degassing of sub-volcanic magmas through-
out the district. Ages, chemical compositions, isotopic compositions, and crustification of alunites and sulfide minerals in mined ledge 
breccias support episodic and dynamic degassing from a magma chamber directly beneath the main district, perhaps presaged by injec-
tions of S-rich (basaltic?) magma.  Multiple encrustations of hydrothermal minerals in mineralized ledge breccias are largely absent at 
Preble Mountain and in unmineralized ledges, and may reflect fewer magmatic mixing and degassing events outside of the main district. 
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