
User Manual for Blossom Statistical Package for R 

By Marian K. Talbert and Brian S. Cade 

Open-File Report 2005–1353 

U.S. Department of the Interior 
U.S. Geological Survey 



U.S. Department of the Interior 
SALLY JEWEL, Secretary 

U.S. Geological Survey 
Suzette M. Kimball, Acting Director 

U.S. Geological Survey, Reston, Virginia: 2013 

 

For more information on the USGS—the Federal source for science about the Earth, 
its natural and living resources, natural hazards, and the environment—visit  
http://www.usgs.gov or call 1–888–ASK–USGS 

For an overview of USGS information products, including maps, imagery, and publications, 
visit http://www.usgs.gov/pubprod 

To order this and other USGS information products, visit http://store.usgs.govThe Blossom user 
manual and software for the original Fortran version is available for download from the web page of 
the Fort Collins Science Center, http://www.fort.usgs.gov/products/software/blossom/blossom.asp 

Although this program has been used by the U.S. Geological Survey (USGS), no warranty, expressed 
or implied, is made by the USGS or the U.S. Government as to the accuracy and functioning of the 
program and related program material nor shall the fact of distribution constitute any such warranty, 
and no responsibility is assumed by the USGS in connection therewith. 

Suggested citation: 
Talbert, M.K., and Cade, B.S., 2013, User manual for Blossom statistical package for R:   
U. S. Geological Survey Open-File Report 2005–1353, 81 p., http://pubs.usgs.gov/of/2005/1353/.  

Any use of trade, firm, or product names is for descriptive purposes only and does not imply  
endorsement by the U.S. Government. 

Although this information product, for the most part, is in the public domain, it also may contain 
copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be  
secured from the copyright owner. 

 
  

http://www.usgs.gov/
http://www.usgs.gov/pubprod
http://store.usgs.gov/
http://www.fort.usgs.gov/products/software/blossom/blossom.asp
http://pubs.usgs.gov/of/2005/1353/


iii 
 

Contents 

Introduction ................................................................................................................................................. 1 
Overview of Statistical Concepts ................................................................................................................ 4 
Statistical Commands ................................................................................................................................. 6 

Multiresponse Permutation Procedure (MRPP) ...................................................................................... 7 
Multiresponse Randomized Block Procedure (MRBP) .......................................................................... 25 
Permutation Tests for Matched Pairs (PTMP)....................................................................................... 31 
Multiresponse Sequence Procedure (MRSP) ....................................................................................... 37 
Least Absolute Deviation (LAD) and Quantile Regression .................................................................... 39 

Regression Quantiles ........................................................................................................................ 52 
Ordinary Least Squares Regression (OLS) ....................................................................................... 66 

G-sample and 1-sample Goodness-of-fit Coverage Tests .................................................................... 68 
Appendix 1. Common Statistical Tests Embraced by the MRPP Command ............................................ 73 
Appendix 2. Compilation of the internal Blossom code ............................................................................. 74 
Appendix 3. Blossom Statistics Program Installation, Configuration, Requirements................................. 75 

Blossom Requirements and Program Limits ......................................................................................... 75 
Appendix 4. Blossom Development and Testing ...................................................................................... 77 
Appendix 5. Acknowledgments ................................................................................................................. 77 
References Cited ...................................................................................................................................... 77 

Figures 
Figure 1. The observed sample for 2 groups with bivariate response YCoord and XCoord .......................... 7 
Figure 2. One of the possible other 34 permutations of the data in figure 1 ............................................ 8 
Figure 3. Two-group example from Mielke, 1986 (no outliers) .............................................................. 10 
Figure 4. Two-group example from Mielke, 1986 (one outlier in Group 2) ............................................ 12 
Figure 5. Migration distance and elevation change for 9 male and 12 female blue grouse  
(from Cade and Hoffman, 1993) ............................................................................................................... 15 
Figure 6. Pattern of immigration and emigration for female striped newts at Breezeway Pond,  
Florida, 1985–1990 ................................................................................................................................... 25 
Figure 7. Proportion of basal area and canopy cover for lodgepole pine in 31 stands .......................... 28 
Figure 8. Latitude and longitude coordinates (m) for blue grouse (no. 162) locations on  
12 dates November through March .......................................................................................................... 39 
Figure 9. Lodgepole pine canopy cover as a linear function of basal area and tree density 
estimated with LAD regression for 31 sample stands ............................................................................... 43 
Figure 10. Engelmann spruce canopy cover as a quadratic function of basal area and  
linear function of tree density estimated with LAD regression for 31 sample stands ................................ 44 
Figure 11. Soap scrap as a linear function of production speed for line 1 (open circles) 
and line 2 (solid circles) ............................................................................................................................ 47 
Figure 12. Average annual biomass of acorns and acorn suitability indices based on 
oak forest characteristics in 43 0.2-ha sample plots in Missouri ............................................................... 57 
Figure 13. Glacier lily seedling counts, lily flower numbers, and rockiness index for 
256 2 x 2 m quadrats in subalpine meadow of western Colorado ............................................................ 59 



iv 
 

Figure 14. Lahontan cutthroat trout m-1 and width:depth ratios for small streams sampled  
1993 to 1999 (n = 71); exponentiated estimates for 0.90, 0.50, and 0.10 regression quantiles  
for the weighted model w(ln y) = w(β0 + β1X1 + (γ0 + γ1X1)ε), w = (1.310–1.017X1)-1 ................................ 63 
Figure 15. Quantile plots of migration distances for 9 male and 12 female blue grouse ....................... 70 
Figure 16. Quantile plots of elevation changes (m) made by 9 male and 12 female blue  
grouse when migrating from breeding to winter areas .............................................................................. 71 

 



 1 

User Manual For Blossom Statistical Package 
for R 

By Marian K. Talbert and Brian S. Cade 

Introduction 
Blossom is an R package with functions for making statistical comparisons with distance-

function based permutation tests developed by P.W. Mielke, Jr. and colleagues at Colorado State 
University (Mielke and Berry, 2001) and for testing parameters estimated in linear models with 
permutation procedures developed by B. S. Cade and colleagues at the Fort Collins Science 
Center, U.S. Geological Survey.  This manual is intended to provide identical documentation of 
the statistical methods and interpretations as the manual by Cade and Richards (2005) does for 
the original Fortran program, but with changes made with respect to command inputs and 
outputs to reflect the new implementation as a package for R (R Development Core Team, 
2012). This implementation in R has allowed for numerous improvements not supported by the 
Cade and Richards (2005) Fortran implementation, including use of categorical predictor 
variables in most routines. 

 
Statistical procedures documented in this manual include: 

• A permutation testing version of ordinary least squares (OLS) regression that parallels the 
least absolute deviation (LAD) and quantile regression permutation tests; 

• A permutation and asymptotic chi-square approximation of P-values for a rank score 
statistic for regression quantiles;  

• Double permutation (hypothesis.test with double.permutation) procedures for 
linear model tests (OLS, LAD regression, and quantile rank score tests) when null models 
are either implicitly or explicitly constrained through the origin, that is, no intercept 
models (Cade, 2003; Cade and others, 2005; Cade and others, 2006);  

• Dropping all but a single zero residual in LAD and quantile regression permutation tests 
of subsets of variables in multiple regression models (Cade, 2005; Cade and Richards, 
2006); 

• Computation of all quantile regression estimates (lad with the option all.quants = 
TRUE); 

• Empirical coverage tests for univariate goodness-of-fit and g-sample comparisons that are 
extensions of the Kolmogorov-Smirnov family of statistics for comparing cumulative 
distribution functions, including an option for testing goodness-of-fit for a random 
uniform distribution on a circle;  

• The multiresponse permutation procedures (MRPP) family of statistics including two 
options for standardizing multiple dependent variables (average Euclidean distance or 
Hotelling's commensuration based on variance/covariance); 
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• Computing exact probabilities by complete enumeration of all possible combinations for 
small block and treatment designs in MRPP and multiresponse randomized block 
permutation procedures (MRBP); 

• A Monte Carlo resampling approximation alternative for all the MRPP family of statistics 
(the mrpp commands with options number.perms); and 

• Multivariate medians and distance quantiles (MEDQ) to be used as descriptive statistics 
with MRPP analyses. In addition, we offer the option to store (save.test = TRUE) the 
vector of permuted test statistic values from Monte Carlo resampling approximations of 
probabilities.  
 
The permutation procedures in Blossom can be used for comparing data obtained in 

familiar survey sampling and comparative experimental designs. 
1. Multiresponse permutation procedures (MRPP) are used for univariate and multivariate 

analyses of grouped data in a completely randomized one-way design. MRPP are used for 
comparing equality of treatment groups analogous to one-way analysis of variance (or t-
test) for univariate data, or multivariate analysis of variance (or Hotelling's T2) for 
multivariate data. The default Euclidean distance function in MRPP provides an omnibus 
test of distributional equivalence among groups or a test for common medians if the 
assumption of equal dispersions is applicable. Options allow MRPP to perform 
permutation (randomization) versions of t-tests, one-way analysis of variance, Kruskal-
Wallis tests (for ranked data), Mann-Whitney Wilcoxon tests (for ranked data), and one-
way multivariate analysis of variance. Options in MRPP also allow truncation of 
distances to evaluate multiple clumping of data, establish an excess group, and select arc 
distances to compare circular distributions of grouped data. Multivariate data are 
commensurated (standardized) to a common scale but an option allows for no 
commensuration. Commensuration can be done by using average Euclidean distance 
(default) or the variance/covariance matrix for the dependent variables. Multivariate 
medians and distance quantiles (MEDQ) are provided as estimates to be used in 
describing distributional changes detected by MRPP analyses. 

2. Multiresponse permutation procedures for randomized blocks (MRBP) are used for 
univariate and multivariate analyses of grouped data in a complete randomized block 
design. Again, the default Euclidean distance function provides an omnibus test for 
equivalence of distributions or common medians if the assumption of equal dispersions is 
satisfied. Univariate comparisons are analogous to analysis of variance or Friedman's test 
(for ranked data) for complete randomized block designs. Options allow MRBP to 
perform permutation versions of these two tests. Options also allow for aligned or 
unaligned data analyses and to commensurate or not commensurate multivariate data. 
MRBP also can be used to calculate agreement measures among blocks. A linear 
transform of Pearson's correlation coefficient and a permutation test of significance also 
can be calculated in MRBP. 

3. The permutation test for matched pairs (PTMP) is a special case of MRBP, with 
univariate data in two groups and n blocks, used for paired comparisons. Options allow 
PTMP to perform permutation versions of paired t-tests and Wilcoxon's signed rank test 
(for ranked data). 

4. Multiresponse sequence procedure (MRSP) is a special case of MRPP where first-order 
sequential pattern of data is tested against the null hypothesis of no sequential pattern. 
Univariate analyses are analogous to the Durbin-Watson test for first-order serial pattern 
and bivariate analyses are analogous to Schoener's t2/r2 statistic (Solow, 1989). 
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Permutation versions of these two tests can be done. Options allow selection of the 
sequencing variable and to turn off multivariate commensuration. 

5. Least absolute deviation (LAD) regression is an alternative to ordinary least squares 
(OLS) regression that has greater power for thick-tailed symmetric and asymmetric error 
distributions (Cade and Richards, 1996). LAD regression estimates the conditional 
median (a conditional 0.50 quantile) of a dependent variable given the independent 
variable(s) by minimizing sums of absolute deviations between observed and predicted 
values. Options allow for testing all slope parameters (full model) equal to zero or to test 
subsets of parameters (partial models) equal to zero by Monte Carlo resampling of the 
permutation distribution (Cade and Richards, 1996, 2006 ). LAD regression can be used 
anywhere OLS regression would be used but is often more desirable because it is less 
sensitive to outlying data points and is more efficient for skewed error distributions as 
well as for some symmetric error distributions. 

6. Regression quantiles are a natural extension of LAD regression to estimate any 
conditional quantile and provided as an option in LAD regression. Regression quantiles 
allows estimation of any conditional quantile (say τ, 0 < τ < 1) of a dependent variable 
given the independent variable(s) by minimizing the asymmetrically weighted sum of 
absolute deviations, where the weights are τ for positive residuals and 1- τ for negative 
residuals. A 0.50 regression quantile is LAD regression. Regression quantiles are useful 
in ecological applications involving limiting factors where it is desirable to estimate 
functional changes along boundaries of distributions (Terrell and others, 1996; Cade and 
others, 1999; Cade and Guo, 2000; Dunham and others, 2002; Cade and others, 2005) 
and for general modeling of rates of change associated with heterogeneous variation in 
linear models. Cade and Noon (2003) provide a primer on quantile regression for 
ecological applications. The LAD permutation tests of Cade and Richards (1996) have 
been extended to regression quantiles, including improvements to handle multiple 
variables under alternative hypotheses and estimates forced through the origin (Cade, 
2003; Cade and Richards, 2006). Another permutation testing alternative also is provided 
that is based on the quantile rank score functions for regression quantiles (Koenker, 1994; 
Cade and others, 1999; Koenker and Machado, 1999), which maintains better Type I 
error rates than the Cade and Richards (1996) procedure when there are heterogeneous 
errors. The permutation approximation of P-values for the quantile rank score test 
statistic was evaluated in Cade, 2003; Cade and others, 2005; and Cade and others, 2006. 
The P-value based on the asymptotic Chi-square approximation of Koenker (1994) is also 
reported and was also evaluated by Cade, 2003; Cade and others, 2005; and Cade and 
others, 2006. Both test statistics require weighted estimates to maintain correct Type I 
error rates with heterogeneous distributions. It is possible to estimate all possible 
regression quantiles and save the estimates by quantiles to a specified data frame. 

7. G-sample and goodness-of-fit tests based on empirical coverages (COV) are for 
univariate comparisons of grouped data similar to the Kolmogorov-Smirnov family of 
statistics for comparing cumulative distribution functions (Mielke and Yao, 1988, 1990). 
These statistics are appropriate for continuous univariate responses with no or few tied 
values. Options allow for testing goodness-of-fit to a uniform distribution on the unit 
circle, which is equivalent to a permutation version of Rao's spacing test (Rao, 1976). 
Appendix 1 lists common statistical tests encompassed by these permutation procedures. 

The methods contained in Blossom are presented by example. Most of the examples are from 
ecology, but of course the procedures in Blossom can be used on many other sorts of data. 
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Overview of Statistical Concepts 
The statistical procedures in Blossom are distribution free in the sense that probabilities 

of obtaining extreme test statistic values given the truth of the null hypothesis (Type I errors) are 
based on permutations of the data from randomization theory and are not based on an assumed 
population distribution (Edgington, 1987; Good, 2000; Mielke and Berry, 2001). In most 
investigations, the population distribution will never be known and assuming an inappropriate 
distributional model can lead to weak or invalid statistical inferences. The normal distribution is 
an inappropriate model for many ecological data, which often are skewed, discontinuous, and 
multi-modal. When sample sizes are small, large sample (asymptotic) approximations often are 
questionable. Permutation procedures make efficient use of small samples, because probabilities 
can be calculated exactly by complete enumeration of all possible combinations under the null 
hypothesis. Of greater importance, the permutation testing framework allows us to use test 
statistics based on measures of variation other than squared deviations (variances). Test statistics 
based on variances are often derived from the distributional assumptions underlying the 
maximum likelihood approach. Other measures of variation may be more appropriate in a 
permutation test that does not require assumptions about the specific form of the error 
distribution. 

The distance-functions that form the basis of the MRPP family of tests allow test 
statistics to be based on powers of Euclidean distances. The distance function between any two 
observations xi and xj with r response variables (dependent variables) in MRPP is defined by 
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where v > 0 (Mielke and Berry, 2001). We emphasize use of test statistics based on ordinary 
Euclidean distances v=1 (expon = 1 in the mrpp command), a metric measure of variation that 
is congruent with most data measurement scales (Mielke, 1986; Biondini and others, 1988). 
Euclidean distances are the common geometrical interpretation of distance applied to differences 
between replicate data values on their measurement scale. Most conventional parametric and 
nonparametric methods are based on squared Euclidean distances (squared deviations are 
squared Euclidean distances, that is, expon = 2). Statistics based on squared Euclidean 
distances (variances) are nonmetric measures (they violate the triangle inequality of a metric) 
that have no simple geometrical interpretation in an r-dimensional data space, where r is the 
number of response variables. In contrast to Euclidean distance statistics, geometrical 
interpretation of variance based statistics involves distances between vectors in an n-dimensional 
space, where n is sample size (Box and others, 1978, p. 197–203). An n-dimensional geometric 
interpretation is complex, does not coincide with the data space, and results in considerable loss 
of graphical information because distances between replicates vanish. It is impossible to graph 
individual data points in a nonmetric space to examine dissimilarities (Pielou, 1984, p. 41–46). 
Although we emphasize tests based on Euclidean distances, analyses based on powers other than 
1 (Euclidean distance) are appropriate in some specific applications. 

Euclidean distance based statistics have greater power (the probability of rejecting the 
null hypothesis when it is false) to detect location (central tendency) shifts among skewed 
distributions than do squared Euclidean distance statistics (Zimmerman and others, 1985; 
Biondini and others, 1988; Mielke and Berry, 2001). Power to detect location shifts in symmetric 
distributions with Euclidean distance statistics is greater than or equal to power with squared 
Euclidean distance statistics, depending on distributional form (Mielke and others, 1981; Mielke 
and Berry, 1982; Mielke, 1984; Mielke and Berry, 1994, 1999, 2001). Euclidean distance based 
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statistics have better power to detect location shifts across a greater variety of distributions than 
squared Euclidean distance (variance) statistics. Euclidean distance based statistics also are used 
to detect omnibus differences in distributions, sensitive to both dispersion (variation) and shifts 
in central tendency (median) (Biondini and others, 1988; Mielke and Berry, 1994). There is no 
reason to presume that shifts in central tendency of data distributions characterize the only 
effects of interest in ecological investigations. 

The permutation procedures based on distance functions are readily extended to several 
novel applications, including truncation of values to detect multiple clustering, comparisons of 
circular distributions, assignment to an excess group, agreement of values, and first-order 
autoregressive analyses (Mielke, 1991; Mielke and Berry, 2001). Each of these applications will 
be discussed in appropriate examples. 

Medians and other quantiles are estimates obtained by minimizing sums of absolute 
deviations and are appropriate descriptive statistics for permutation procedures based on 
Euclidean distance functions (Mielke and Berry, 2001). Functions are provided to estimate 
multivariate medians of grouped data and quantiles for distances between individual 
observations and their group median. This function can also be used to compute medians and any 
selected quantiles for univariate data distributions. 

Permutation procedures for testing hypotheses in linear models are available for least 
absolute deviation (LAD) regression (Cade and Richards, 1996), a generalization for regression 
quantiles (Cade and others, 1999; Cade, 2003), and for ordinary least squares regression 
(Anderson and Legendre, 1999). LAD regression estimates rates of change in conditional 
medians, whereas the more familiar OLS regression estimates rates of change in conditional 
means. Regression quantiles estimate rates of change in any selected conditional quantile 
(Koenker and Bassett, 1978). The forms of the permutation test statistics are similar for all three 
of these estimation methods, and are based on a proportionate reduction in sums minimized 
when passing from a null, reduced parameter model to the alternative, full parameter model 
(Mielke and Berry, 2001; Cade, 2005). These tests are a drop in dispersion form. The observed 
test statistic, Tobs, equals the (sum of deviations for reduced parameter null model–sum of 
deviations for full parameter alternative model)/ sum of deviations for full parameter alternative 
model; where the deviations are squared residuals if OLS regression, absolute values of residuals 
if LAD regression, or weighted absolute values of residuals if regression quantiles. This test 
statistic is equivalent to the usual F-ratio used in OLS regression, except that the sums 
minimized are not divided by their degrees of freedom (df) because they are invariant under the 
permutation arguments. Hypothesis testing for all three of these regression estimates are made 
either by permuting the dependent variables for full model tests that all slope parameters are zero 
(null model includes just an intercept) or by permuting residuals from reduced parameter null 
model for partial model tests (subhypotheses) that some specified subset of slope parameters are 
zero (null model includes more than just an intercept). Extensive simulation work has 
demonstrated the approximate validity of permuting residuals under the reduced parameter null 
model when making permutation tests involving nuisance parameters in linear models (Cade and 
Richards, 1996; Kennedy and Cade, 1996; Anderson and Legendre, 1999). Simulation research 
(Cade, 2003; Cade, 2005; Cade and others, 2005; Cade and others, 2006; Cade and Richards, 
2006) has demonstrated that Type I error rates can be improved by using double permutation 
schemes when null models are constrained through the origin (no intercept) and by deleting all 
but a single zero residual when LAD and quantile regression null models include multiple 
independent variables. 

All the tests described above for the linear model maintain validity of their type I error 
rates only if it is reasonable to assume independent and identically distributed (i.i.d.) errors. If 
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the errors are heterogeneous as happens when the variance changes as a function of the 
independent variables, other methods must be employed. One possibility is to estimate weighted 
versions of either LAD or OLS regression, where weights are selected to be inversely 
proportional to the square root of the variances. Permutation testing then is employed on the 
weighted transforms of the dependent (y) and independent (X) variables (Cade and Richards, 
1996; Cade, 2005; Cade and others, 2005; Cade and others, 2006). Alternatively, for the 
regression quantile estimates, we provide a permutation test for the quantile rank score statistic 
(Koenker, 1994; Koenker and Machado, 1999), which is not as sensitive to heterogeneity of 
variances because it uses the signs of the residuals and not their magnitude. Statistical 
performance of the permutation test for the quantile rank score statistic was investigated by 
Cade, 2003; Cade and others, 2005; and Cade and others, 2006. Weighted estimates and rank 
score tests were required to maintain correct Type I error rates when heterogeneity exceeded a 
change in 2.5 standard deviations across the domain of the independent variable. Blossom also 
reports the asymptotic version of the quantile rank score statistic that is distributed as a Chi-
square distribution with degrees of freedom equal to the difference in number of parameters (q) 
between alternative (full p parameters) and null (reduced p – q parameters) models (Koenker, 
1994; Koenker and Machado, 1999). 

The empirical coverage tests included in Blossom are related to the Kolmogorov-
Smirnov family of tests for equality of univariate cumulative distribution functions. One-sample 
goodness-of-fit and g-sample tests exist. The coverage test statistic is based on the spacings 
between the order statistics. These tests provide another permutation testing alternative to MRPP 
for univariate continuous data. Unlike MRPP, the coverage test are not appropriate when there 
are many tied values, as this violates the continuity assumption. Little can be said at this time 
about the power of the coverage tests relative to MRPP for data for which both tests are 
appropriate. Go forth and investigate! 

Statistical Commands 
Blossom currently has nine statistical commands, mrpp, mrbp, ptmp, sp, medq, lad, 

ols, hypothesis.test, and coverage. 
The distance-function procedures (MRPP, MRBP, and PTMP) are distribution-free 

techniques for making inferences about grouped data. Their advantages over many classical 
techniques include the ability to select an analysis space commensurate with the geometry of the 
data as perceived by the investigator. Several classical univariate and multivariate parametric and 
rank tests can be emulated with these procedures as well. The simplest MRPP analysis is for data 
consisting of two or more observations on objects in two or more groups. The MRBP and PTMP 
variants are for similar data that are blocked or paired. 

The medq command calculates univariate or multivariate medians and distance quantiles 
either by groups specified by a grouping variable or for the entire dataset being used. Options 
allow specification of quantiles to report that differ from the default quantiles. 

The sp command calculates the multiresponse sequence procedure to test for first-order 
autoregressive patterns (serial dependency). The default value produces an analysis in Euclidean 
space. A sequencing variable that determines the order of the data can be selected or Blossom 
assumes by default that the order in the dataset is the sequential order of interest. 

The lad command estimates a least absolute deviation regression or an optional quantile 
regression. The model specified in the lad command line is considered the full parameter 
alternative model for hypothesis tests. The associated command, hypothesis.test, can be 
used to test two models specified by the lad command. 
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The ols command estimates an ordinary least squares regression by setting the optional 
argument OLS = TRUE in the lad command. The hypothesis.test can be used for OLS 
regression just as with LAD regression. 

The coverage command provides for tests of g-sample empirical coverage tests it used 
with a grouping variable and related goodness-of-fit tests if specified without a grouping 
variable. 

The MRPP variants, MRSP, LAD, OLS, and COV are discussed in turn. MEDQ is 
discussed with MRPP as it provides descriptive estimates that are useful for interpreting results 
of hypothesis tests with MRPP. 

Multiresponse Permutation Procedure (MRPP) 
 
 

 

Figure 1. The observed sample for 2 groups with bivariate response YCoord and XCoord. 
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Figure 2.  One of the possible other 34 permutations of the data in figure 1. 

MRPP is best introduced with an example. The following is a bivariate example adapted 
from Biondini and others (1985). A similar example is found in Zimmerman and others (1985), 
Biondini and others (1988), and a univariate example is given in Slauson (1988). 

In figure 1, the values of two variables x and y are shown for seven observations in two 
groups, A and B.  The objects in groups A and B seem to be clustered or concentrated in different 
parts of the x-y plane representing the two response (measured) variables x and y. One way to 
determine if the two groups are so clustered is to measure or calculate the distances between all 
pairs of members of each group and calculate an average distance for each group (A = 1.609, B = 
1.344). If group members are clustered together, then the intragroup average distances will be 
small compared to cases where the group members are spread out and overlap more with other 
groups. For example, figure 2 shows the same data except that the groups that observations A3 
and B2 belong to are switched. In this case the intragroup average distances will be greater than 
for the case first shown above (A = 2.419, B = 1.717). 

The strategy of MRPP is to compare the observed intragroup average distances with the 
average distances that would have resulted from all the other possible combinations of the data 
under the null hypothesis. The test statistic, usually symbolized with a lower case delta, δ, is the 
average of the observed intragroup distances weighted by relative group size, 3/7 and 4/7 in this 
case. The observed delta δobs is compared to the possible deltas δ resulting from every 
permutation of the above seven points into two groups of three and four members. If the 
hypothesis that the distribution of the two groups are not different (the null hypothesis) is true, 
then each of the possible assignments (permutations) is equally likely. In this example there are 
35 permutations possible, each with a 1/35 (1/35 = 0.0286) chance of occurring. Here are the 
Blossom commands to compute the MRPP results on the dataset example1. 
>  out <- mrpp(example1,commens = FALSE,exact = TRUE) 
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x_coord and y_coord are the two response variables, group is the grouping variable, 
and the exact version of MRPP is chosen since this is such a small sample. commens = FALSE 
signifies that no multivariate commensuration is desired. Blossom by default will commensurate 
multiple variables by the average Euclidean distance for each variable ignoring group structure. 
Think of this as similar to the usual parametric approach of standardizing variables to unit 
variance (average squared Euclidean distance). 
>  summary(out) 

 Exact Multi-Response Permutation Procedure (EMRPP)  
 
Call:  
mrpp(data = example1, commens = FALSE, exact = TRUE)  
 
  Grouping Variable :  group 
  Response Variables:  x_coord y_coord 
 
Specification of Analysis: 
 Number of Observations: 7  
 Number of Groups      : 2  
 Distance Exponent     : 1  
 Weighting Factor      : n(I)/sum(n(I))=C(I) =  1 
 
Group Summary: 
  Group Value  Group Size 
  1            3          
  2            4          
 
 Variables are not commensurated 
 
 Results: 
 Delta Observed             :  1.458 
 Probability (Exact) 
 of a smaller or equal delta:  0.02857* 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
The probability value (P-value) is 0.0286 which means that the observed delta was the 

smallest among the 35 possible deltas.  Use the exact = TRUE option for mrpp with caution 
for it can take a long time if the sample sizes are greater than about 30, depending on the 
computer. 

By default mrpp does not compute exact probabilities but uses an approximation of the 
exact distribution of the test statistic (δ) to estimate the P-value. The default approximation is 
based on the first three exact moments (mean, variance, and skewness) of the permutation 
distribution evaluated as a Pearson type III distribution (Berry and Mielke, 1983; Iyer and others, 
1983; Mielke and Berry, 2001). The moments approximation avoids the simulation error 
associated with Monte Carlo resampling tests (Mielke and Berry, 1982; Berry and Mielke, 1985). 
However, we offer the option of approximating the permutation distribution of the test statistic 
with a Monte Carlo resampling procedure by setting number.perms equal a positive integer 
value.  The user may specify any desirable number of resamples, for example, number.perms 
= 10000. Most examples we've encountered yield similar P-values from the Monte Carlo 
resampling and Pearson type III distribution approximations, but it is possible for the Monte 
Carlo resampling approximation to yield better estimates for some problems, for example, with a 
large number of discrete values clumped in some region of the data space or if interest is in upper 
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tail probabilities (for example, P > 0.90) associated with detecting regularity of spatial data 
distributions. Further investigation of these properties is an open area for research. 

 

 

Figure 3. Two-group example from Mielke, 1986 (no outliers). 

The next example shows how to emulate a 2-sample t-test with the mrpp command. 
Consider the data for two groups in figure 3 (from Mielke, 1986). The single response variable is 
represented on the horizontal axis and the number of observations on the vertical. 

Group 1 (median = 15.10, mean = 15.09 ) and 2 (median = 15.40, mean = 15.42 ) appear 
to differ slightly (0.3) in central tendency. To test for equality of means with the t-test, use the 
dataset example3, and enter the following mrpp command. 
> out <- mrpp(example3, expon = 2,c.form = 2) 

The expon = 2 option causes mrpp to compute squared Euclidean distances (expon = 
1 is the default value and specifies Euclidean distance). The c.form = a option specifies how 
the intragroup distances are to be averaged. If c.form = 2 is specified, then the analysis 
mimics the classical parametric t-test, where the group distances are weighted by the relative 
degrees of freedom. If c.form = 1 then the intragroup distances are weighted by relative group 
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size, then averaged to arrive at delta. This is the default value. In this example, since the group 
sizes are equal, the choice of c.form does not matter. In general choose c.form = 2 and 
expon = 2 to calculate a test that mimics the classical parametric t- and F-tests for univariate 
data and Hotelling's T-square or MANOVA for multivariate data. Here are the results of the 
above mrpp command: 
> summary(out) 

 Multi-Response Permutation Procedure (MRPP)  
 
Call:  
mrpp(data = example3, expon = 2, c.form = 2)  
 
  Grouping Variable :  group 
  Response Variables:  response 
 
Specification of Analysis: 
 Number of Observations: 30  
 Number of Groups      : 2  
 Distance Exponent     : 2  
 Weighting Factor: (n(I)-1)/sum(n(I)-1) = C(I) =  2 
 
Group Summary: 
  Group Value  Group Size  Group Distance 
  1            15          0.02133        
  2            15          0.02705        
 
 
 Results: 
 Delta Observed                :  0.02419 
 Delta Expected                :  0.08083 
 Delta Variance                :  1.563e-05 
 Delta Skewness                :  -2.565 
 
 Standardized test statistic   :  -14.32 
 Probability (Pearson Type III) 
 of a smaller or equal delta   :  1.926e-06*** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
The very small P-value (0.0000019) indicates that these two samples are unlikely to 

come from populations with the same mean, that is, they are different. The two sample t-test 
based on normal theory also gives a very low P-value for these data (P < 0.000001). 

Now consider the same data, but with one difference, a change in one of the 30 data 
values (fig. 4). 
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Figure 4. Two-group example from Mielke, 1986 (one outlier in Group 2). 

To compare these samples use the dataset example4 and issue the following mrpp 
command. 
> out <- mrpp(example4, expon = 2,c.form = 2) 
Here are the results: 
> summary(out) 

 Multi-Response Permutation Procedure (MRPP)  
 
Call:  
mrpp(data = example4, expon = 2, c.form = 2)  
 
  Grouping Variable :  group 
  Response Variables:  response 
 
Specification of Analysis: 
 Number of Observations: 30  
 Number of Groups      : 2  
 Distance Exponent     : 2  
 Weighting Factor: (n(I)-1)/sum(n(I)-1) = C(I) =  2 
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Group Summary: 
  Group Value  Group Size  Group Distance 
  1            15          0.02133        
  2            15          1.336          
 
 
 Results: 
 Delta Observed                :  0.6785 
 Delta Expected                :  0.6643 
 Delta Variance                :  0.0002558 
 Delta Skewness                :  -0.9893 
 
 Standardized test statistic   :  0.8879 
 Probability (Pearson Type III) 
 of a smaller or equal delta   :  0.8144 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Now the P-value is quite large (0.81) indicating that it is likely that these samples come 

from the same population, that is, there is no difference between the means of the groups. The 
variances of the two groups differ considerably as evidenced by the average within group 
distance (when squared Euclidean distances are used this value is twice the variance). The 
medians are still 15.10 and 15.40, respectively, but the means now are 15.09 and 15.23, 
respectively. The parametric two-sample t-test also results in a large P-value (0.54). The reason 
for the discrepancy in results for data in which only one value is changed is the use of squared 
distance. In the squared Euclidean distance analysis space the distance of the outlier from the 
bulk of the data is exaggerated because it is squared. Now compare the results of analyzing the 
data of Example 4 in a space corresponding to the geometric space of the data itself. Issue the 
following command. 
> out <- mrpp(example4, expon = 1,c.form = 1) 
which, since these are the default values, is equivalent to 
> out <- mrpp(example4) 
Here are the results. 
> summary(out) 

 Multi-Response Permutation Procedure (MRPP)  
 
Call:  
mrpp(data = example4)  
 
  Grouping Variable :  group 
  Response Variables:  response 
 
Specification of Analysis: 
 Number of Observations: 30  
 Number of Groups      : 2  
 Distance Exponent     : 1  
 Weighting Factor: n(I)/sum(n(I))=C(I)=  1 
 
Group Summary: 
  Group Value  Group Size  Group Distance 
  1            15          0.1162         
  2            15          0.5314         
 
 
 Results: 
 Delta Observed                :  0.3238 
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 Delta Expected                :  0.4184 
 Delta Variance                :  6e-05 
 Delta Skewness                :  -2.369 
 
 Standardized test statistic   :  -12.21 
 Probability (Pearson Type III) 
 of a smaller or equal delta   :  6.262e-06*** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Now the resulting P-value (0.0000063) is in line with the results obtained from the data 

without the single aberrant value. This is a demonstration of the sensitivity of variance- (squared 
Euclidean distance) based statistics and estimates of means to even a single outlying value. 
Estimates of medians and statistics based on absolute deviations (Euclidean distance) are far less 
sensitive to outlying data observations (Mielke and Berry, 2001). 

Here is another example of how it is possible to get varying statistical results by methods 
that differ in their underlying geometry. The distance and elevation changes (in meters) for male 
and female blue grouse (Dendragapus obscurus) migrating from where they were marked on 
their breeding range to their winter range are given in the dataset bgrouse and are plotted in 
figure 5 (data from Cade and Hoffman, 1993). Generally the males seem to migrate farther and 
higher than the females and distance moved and elevation change are correlated (r = 0.71).  Here 
we will change sex in the bgrouse dataset to factor which is an option available in the R 
Blossom but not in the original Fortran program.   
> BlueGrouse <- bgrouse 
> BlueGrouse$sex <- as.factor(c("Female","Male")[(BlueGrouse$sex   ==  
+ 3)+1]) 

To test gender differences in both distance and elevation, the multivariate parametric test 
is Hotelling's T2, which gives P = 0.033 for F = 4.145 with df = (2, 18), indicating some 
evidence of a difference in the bivariate means (males = 13388.9,  493.0; females = 5966.7,  
231.66, distance and elevation respectively). To perform a permutation version of Hotelling's T2, 
you would issue the following commands: 
> out <- mrpp(BlueGrouse,hotelling = TRUE,exact = TRUE,expon =   
+ 2,c.form = 2) 

or equivalently by specifying the variables and grouping structure 
> out <- mrpp(variables = c(distance,elev), group = sex, data = BlueGrouse,  
+ hotelling = TRUE,exact = TRUE,expon = 2,c.form = 2) 

where the options hotelling = TRUE indicated Hotelling's variance/covariance 
standardization of the multiple dependent variables, expon = 2 requests squared Euclidean 
distances, and c.form = 2 requests that groups be weighted by their relative degrees of 
freedom, and exact = TRUE requests a complete enumeration of all possible permutations for 
computing P-values. 
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Figure 5. Migration distance and elevation change for 9 male and 12 female blue grouse (from Cade and 
Hoffman, 1993).  M and F denote bivariate medians for males and females, respectively. 

Here are the results: 
> summary(out) 

 Exact Multi-Response Permutation Procedure (EMRPP)  
 
Call:  
mrpp(variables = c(distance, elev), group = sex, data = BlueGrouse, 
 expon = 2, c.form = 2, hotelling = TRUE, exact = TRUE)  
 
  Grouping Variable :  sex 
  Response Variables:  distance elev 
 
Specification of Analysis: 
 Number of Observations: 21  
 Number of Groups      : 2  
 Distance Exponent     : 2  
 Weighting Factor      : (n(I)-1)/sum(n(I)-1) = C(I) =  2 
 
Group Summary: 
  Group Value  Group Size 
  Female       12         
  Male         9          
 
  Hotelling's Commensuration Applied 
   Variance/Covariance Matrix: 
                                               
     Variable 1 : distance 1.412e+09 2.840e+07 
     Variable 2 : elev     2.840e+07 1.134e+06 
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 Results: 
 Delta Observed             :  0.1773 
 Probability (Exact) 
 of a smaller or equal delta:  0.02963* 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 

Notice that there is little difference between the P-values for the permutation (0.030) and 
parametric normal theory (0.033) versions of Hotelling's T2 for this data.  Now if we want to 
analyze these data in the more natural Euclidean distance space, we can issue the following 
commands: 
> out <- mrpp(variables = c(distance,elev),group = sex,data = BlueGrouse, + 
exact = TRUE) 
which uses the default average Euclidean distance of each variable, ignoring the group structure, 
to standardize the variables so that they have an average pairwise Euclidean distance (Δi, j ) = 1.0. 
Although distances and elevation changes are in the same units (meters) so that we might 
consider not commensurating the variables (commens = FALSE), there is some correlation 
between distance moved and elevation change so that it is possible that commensuration will 
provide more powerful hypothesis tests (Mielke and Berry, 1999, 2001). Here are the results: 
> summary(out) 

 Exact Multi-Response Permutation Procedure (EMRPP)  
 
Call:  
mrpp(variables = c(distance, elev), group = sex, data =   BlueGrouse, 
 exact = TRUE)  
 
  Grouping Variable :  sex 
  Response Variables:  distance elev 
 
Specification of Analysis: 
 Number of Observations: 21  
 Number of Groups      : 2  
 Distance Exponent     : 1  
 Weighting Factor      : n(I)/sum(n(I))=C(I) =  1 
 
Group Summary: 
  Group Value  Group Size 
  Female       12         
  Male         9          
 
 
Variable Commensuration Summary 
  Variable Name  Average Distance (Euclidian if V=1) 
  distance       9265                                
  elev           279.2                               
 
 
 Results: 
 Delta Observed             :  1.257 
 Probability (Exact) 
 of a smaller or equal delta:  0.003167** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 

The same analysis but without any commensuration (commens = FALSE) produced a P = 
0.008, over twice the size of the above analysis with average Euclidean distance 
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commensuration. Notice that the P-value with the MRPP statistic based on Euclidean distances 
(expon = 1) and average Euclidean distance commensuration is an order of magnitude smaller 
(P = 0.003) than for the permutation version of Hotelling's T2 (P = 0.030) based on squared 
Euclidean distances (expon = 2) and the variance/covariance commensuration. There are 
several contributing factors. Notice, that the bivariate medians for males and females in figure 5 
indicated that the centroids of the groups were shifted in the same direction as the correlation 
between distance (dist) and elevation change (elev). Simulations conducted by Mielke and 
Berry (1999) demonstrated that the average Euclidean distance commensuration of bivariate 
variables provided greater power than the variance/covariance standardization when the group 
structure was shifted parallel to the covariance structure of the two variables. Furthermore, since 
the MRPP comparisons with expon = 1 focus on shifts in the bivariate medians which were 
separated by 9,271.6 m rather than shifts in the bivariate means which were only separated by 
7,426.8 m, there was a larger estimated effect size for the Euclidean distance compared to the 
squared Euclidean distance analysis. For these data, the analysis based on Euclidean distances 
and bivariate medians was more powerful with greater estimated effect sizes (shift in bivariate 
medians). When the groups are shifted orthogonal to the covariance structure of the dependent 
variables, then MRPP analyses with Hotelling's variance/covariance standardization (option 
hotelling = TRUE) and expon = 1 can be more powerful. The bivariate medians for the 
blue grouse movements in figure 5 were estimated by giving the following command: 
> out <- medq(data = BlueGrouse) 
where the save.test = TRUE option stores the distance between each observation and its 
group bivariate median these can be later extracted using the command Dist2mvm(output). 
This can be used for additional analysis or graphing. The output are: 
> summary(out) 

 2-Dimensional Median and Distance Quantiles  
 
Call:  
medq(data = BlueGrouse)  
 
Specification of Analysis: 
 
 Grouping Variable         :  sex 
 Number of Report Variables:  2 
 Report Variables          :  distance, elev  
 
 Number of Observations    :  21 
 Number of Groups          :  2 
_________________________________________________ 
 
Results for Group Value:  Female  
 
 Observations in Group     :  12 
 Iterations to Solution    :  500 
 Solution Tolerance        :  1.6e-11 
 
    Within Group Median Coordinates for Variables 
         Variable Name  Multivariate Median Coordinate 
         distance       2526.8                         
         elev            139.4                         
 
    2-Dimensional Distance From Median Quantiles 
   Average Distance to Multivariate Median:  5405  
         Quantile             Distance from Median 
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         0         (Minimum)   1229                
         0.05                  1229                
         0.1                   1732                
         0.25                  1884                
         0.5       (Median)    2429                
         0.75                  6285                
         0.9                  12575                
         0.95                 25481                
         1         (Maximum)  25481                
 
_________________________________________________ 
 
Results for Group Value:  Male  
 
 Observations in Group     :  9 
 Iterations to Solution    :  91 
 Solution Tolerance        :  1.6e-11 
 
    Within Group Median Coordinates for Variables 
         Variable Name  Multivariate Median Coordinate 
         distance       11797.2                        
         elev             292.2                        
 
    2-Dimensional Distance From Median Quantiles 
   Average Distance to Multivariate Median:  4260  
         Quantile             Distance from Median 
         0         (Minimum)    109.2              
         0.05                   109.2              
         0.1                    109.2              
         0.25                  1238.6              
         0.5       (Median)    2317.1              
         0.75                  5401.3              
         0.9                  17603.3              
         0.95                 17603.3              
         1         (Maximum)  17603.3    
           
The bivariate median coordinates are given for the two variables (dist and elev), and 

summary quantiles are provided for the distances between observations and the bivariate median 
for each group. The average distances to the bivariate median differ for males (4,260.3) and 
females (5,404.6), suggesting that there may be dispersion differences being detected by the 
MRPP analysis as well as shifts in bivariate medians. It is possible to test for equality of 
multivariate dispersions using a permutation version of a modification of Van Valen's (1978) 
test; the effect of the shift in group centroids removed are made with the multivariate medians 
rather than the multivariate means. This is accomplished for the blue grouse movements by 
performing a permutation version of the 2-sample t-test on the distances from the bivariate 
medians (variable Dist2MVM) by sex in the output from the previous command: 
> BgDist2mvm <- Dist2mvm(out) 

 
> out <- mrpp(variables = Dist2MVM,group = sex,data = BgDist2mvm,exact =  
+ TRUE,expon = 2,c.form = 2) 
 
The output below suggests there is little statistical support for dispersion differences. 
> summary(out) 

 Exact Multi-Response Permutation Procedure (EMRPP)  
 
Call:  
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mrpp(variables = Dist2MVM, group = sex, data = BgDist2mvm, expon = 2, 
 c.form = 2, exact = TRUE)  
 
  Grouping Variable :  sex 
  Response Variables:  Dist2MVM 
 
Specification of Analysis: 
 Number of Observations: 21  
 Number of Groups      : 2  
 Distance Exponent     : 2  
 Weighting Factor      : (n(I)-1)/sum(n(I)-1) = C(I) =  2 
 
Group Summary: 
  Group Value  Group Size 
  Female       12         
  Male         9          
 
 
 Results: 
 Delta Observed             :  82227846 
 Probability (Exact) 
 of a smaller or equal delta:  0.7082 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Note that tests for equality of univariate dispersions based on the median modification of 

Levene's test (Good, 2000) can also be performed by requesting the univariate medians be 
calculated for each group with medq, saving the distances from the group medians, and then 
comparing those distances (Dist2mvm(output)) with the permutation version of the t-test 
implemented in mrpp by using the expon = 2, c.form = 2 options. Testing for equality of 
dispersions after removing the effect of the estimated medians is one of those special cases 
where tests based on squared deviations (expon = 2) have better statistical performance than 
using Euclidean distances (expon = 1). 

Because the sample size is only 21 for the blue grouse data, all the examples used the 
optional exact = TRUE enumeration of all permutations to compute probabilities. This is not 
practical to do with larger sample sizes and by default mrpp would use the Pearson Type III 
moments approximation. The following command yields the default approximation: 
> out <- mrpp(c(distance,elev),sex,data = BlueGrouse) 
The output is: 
> summary(out) 

 Multi-Response Permutation Procedure (MRPP)  
 
Call:  
mrpp(variables = c(distance, elev), group = sex, data = BlueGrouse)  
 
  Grouping Variable :  sex 
  Response Variables:  distance elev 
 
Specification of Analysis: 
 Number of Observations: 21  
 Number of Groups      : 2  
 Distance Exponent     : 1  
 Weighting Factor: n(I)/sum(n(I))=C(I)=  1 
 
Group Summary: 
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  Group Value  Group Size  Group Distance 
  Female       12          1.396          
  Male         9           1.072          
 
 
Variable Commensuration Summary 
  Variable Name  Average Distance (Euclidian if V=1) 
  distance       9265                                
  elev           279.2                               
 
 
 Results: 
 Delta Observed                :  1.257 
 Delta Expected                :  1.513 
 Delta Variance                :  0.002706 
 Delta Skewness                :  -2.098 
 
 Standardized test statistic   :  -4.904 
 Probability (Pearson Type III) 
 of a smaller or equal delta   :  0.002983** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 

Alternatively, we can approximate the probabilities by Monte Carlo resampling with the 
command: 
> out <- mrpp(c(distance,elev),sex,data = BlueGrouse,number.perms = 10000) 
where the option number.perms = 10000 specifies that 9,999 random samples + the 1 
observed test statistic are to be used to approximate the probabilities. The output is: 
> summary(out) 

 Multi-Response Permutation Procedure (MRPP)  
 
Call:  
mrpp(variables = c(distance, elev), group = sex, data = BlueGrouse, 
 number.perms = 10000)  
 
  Grouping Variable :  sex 
  Response Variables:  distance elev 
 
Specification of Analysis: 
 Number of Observations: 21  
 Number of Groups      : 2  
 Distance Exponent     : 1  
 Weighting Factor: n(I)/sum(n(I))=C(I)=  1 
 
Group Summary: 
  Group Value  Group Size  Group Distance 
  Female       12          1.396          
  Male         9           1.072          
 
 
Variable Commensuration Summary 
  Variable Name  Average Distance (Euclidian if V=1) 
  distance       9265                                
  elev           279.2                               
 
 
 Results: 
 Delta Observed                :  1.257 
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 Probability (Resample) 
 of a smaller or equal delta   :  0.0033** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 

Notice that with these data that the exact, Pearson Type III approximation, and Monte Carlo 
resampling approximation all yield very similar P-values even though sample sizes were only n 
= 9 and n = 12. 

If the data given to Blossom have been rank transformed (substituting the original values 
by their rank order), then MRPP can be used to emulate some well known nonparametric rank 
tests. Using ranks combined with the selection of expon = 2 and c.form = 2 produces these 
analyses. Analyze the dataset example4, which has been rank transformed in the dataset 
ex4rank, with a permutation version of the Mann-Whitney-Wilcoxon test as follows. 

 
> out <- mrpp(variables = rank,group = group,data = ex4rank,expon = 2,c.form 
+ = 2) 
> summary(out) 

 Multi-Response Permutation Procedure (MRPP)  
 
Call:  
mrpp(variables = rank, group = group, data = ex4rank, expon = 2, 
 c.form = 2)  
 
  Grouping Variable :  group 
  Response Variables:  rank 
 
Specification of Analysis: 
 Number of Observations: 30  
 Number of Groups      : 2  
 Distance Exponent     : 2  
 Weighting Factor: (n(I)-1)/sum(n(I)-1) = C(I) =  2 
 
Group Summary: 
  Group Value  Group Size  Group Distance 
  1            15          43.2           
  2            15          103.1          
 
 
 Results: 
 Delta Observed                :  73.17 
 Delta Expected                :  151.9 
 Delta Variance                :  55.34 
 Delta Skewness                :  -2.572 
 
 Standardized test statistic   :  -10.58 
 Probability (Pearson Type III) 
 of a smaller or equal delta   :  4.006e-05*** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
If there are more than three groups the test is analogous to the Kruskal-Wallis one-way 

analysis of variance by ranks. Note that both these tests are for univariate data (one response 
variable), but MRPP also is able to analyze multivariate data (ranked or unranked) as well, 
offering a generalization of these tests. Further, the approximation used by MRPP is more 
accurate than the normal approximation used by the classical rank tests, since it uses the 
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skewness of the probability distribution in the Pearson Type III approximation. Of course, it is 
also possible to approximate the probabilities with the Monte Carlo resampling option. Since 
these tests use expon = 2 and c.form = 2, they are not congruent with the data space. Use 
the default values of expon and c.form to produce a congruent analysis. Thus besides 
generalizing some standard nonparametric tests to multiple dependent variables, MRPP adds 
congruent Euclidean distance variants to the statistical repertoire. 

The max.dist = num (truncation) option, if given in the mrpp command, causes the 
MRPP analysis to replace interobject distances Δi, j  greater than the truncation value (call it B) 
with the truncation value (Δi, j = Δi, j : Δi, j < B;  Δi, j = B : Δi, j ≥ B). For example, 

mrpp(variables = c(var1,var2),group = group,max.dist = 55) 
will replace distances greater than 55 with 55 in the permutation calculations. This is useful for 
detecting pattern and group clustering where one (or more) of the groups itself clusters in more 
than one region of the analysis space and another group is distributed uniformly or randomly in 
the same space. The truncation value (for example, 55) specified is the average diameter of the 
sub-clusters. Data plotting and experimentation with truncation values are advised. Examples 
where truncation is useful include: One kind of archeological artifact may be found in two 
distinct areas of a site while another artifact type is found scattered throughout the site. Clumping 
of plants in a homogeneous site or pattern of habitat types within a landscape are detectable with 
a truncated MRPP analysis (Reich and others, 1991). For further information see Mielke (1991). 

The has.excess or excess.value option allows for several comparisons not possible 
with other statistical procedures. MRPP takes data that, before analysis, are classified into 
groups. In the usual case the groups represent comparable levels of classification (for example, 
male-female; treatments a, b, and c; or before and after observations). But in some cases one of 
the groups may not be comparable to the other groups of interest. This happens for example 
when one group is considered miscellaneous or otherwise contains unclassifiable objects. When 
such a group exists it may, in MRPP, be treated as an excess group. Since the concept of an 
excess group is not dealt with by most familiar statistical methods, a few examples will help 
clarify the idea. 

In a study of the spatial distribution of artifacts in an archeological site Berry and others 
(1983) note that many times artifacts cannot readily be classified. A particular artifact may be 
anomalous, lack sufficient defining characteristics, or be broken or too worn to be classifiable. 
Such objects are definitely artifacts and may contain information, yet treating such a class on 
equal footing with other well defined artifact classes seems inappropriate. Investigators usually 
have the choice of excluding such miscellaneous classes from analysis or including them and 
risking bias in results or interpretation. MRPP gives the additional choice of including the excess 
group, but without elevating its status to that of the other groups. The observations of the excess 
group are treated as background noise, against which the observations on the other groups are 
analyzed. 

Another example of the use of an excess group concerns the presence of higher lead 
concentration in soils near the center of a city (Mielke and others, 1983). The locations (x and y 
spatial coordinates) of high concentration soil samples (greater than or equal to median) were 
compared with the locations of all samples, low and high concentration, to determine whether 
higher concentrations of lead are associated with the city center. 

In the excess group MRPP with a group of size n and an excess group of size m an 
intragroup average distance is computed for each possible combination of n observations out of 
the n + m possible observations. These values comprise the distribution of the test statistic, delta, 
to which is compared the actual intragroup distance. 
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The excess group can be implemented in comparisons of used versus available resources 
for a particular organism in a design where a random sample of resources is obtained and then 
presence (used) and absence (unused) observed. The used habitats are alike in that they all share 
the features necessary for the organism's survival. But the unused habitats may not form such a 
unitary group, some may be suitable for the organism and just happen not to be used, others may 
not be suitable at all, and among these some may not be suitable for lack of one requirement and 
others for lack of another requirement. 

Here is an example comparing used versus available blue grouse habitat described by the 
basal area measurements of four kinds of trees present in stands on winter range (data from Cade 
and Hoffman, 1990). Note that the n = 16 forest stands measured are an exhaustive and exclusive 
partitioning of the finite population of habitats studied (that is no random sampling assumptions 
apply). 
> out <- mrpp(habitat, expon = 1,c.form = 1,interv = 0.0,has.excess = TRUE, 
+ excess.value = 2,commens = FALSE) 
Here are the results: 
> summary(out) 

 Multi-Response Permutation Procedure (MRPP)  
 
Call:  
mrpp(data = habitat, expon = 1, c.form = 1, commens = FALSE, interv = 
 0, has.excess = TRUE, excess.value = 2)  
 
  Grouping Variable :  use 
  Response Variables:  dfir junip aspen other 
 
Specification of Analysis: 
 Number of Observations: 16  
 Number of Groups      : 1  
 Distance Exponent     : 1  
 Weighting Factor: n(I)/sum(n(I))=C(I)=  1 
 
Group Summary: 
  Group Value  Group Size  Group Distance 
  1            12          9.168          
  2*           4*                         
 
 Variables are not commensurated 
 * Excess Group 
 
 Results: 
 Delta Observed                :  9.168 
 Delta Expected                :  10.08 
 Delta Variance                :  1.268 
 Delta Skewness                :  -0.5313 
 
 Standardized test statistic   :  -0.8079 
 Probability (Pearson Type III) 
 of a smaller or equal delta   :  0.1994 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
In this example the used habitats do not seem to differ (P = 0.200) in tree basal area from 

the available (that is, used plus unused) habitats. commens = FALSE was selected for no 
variable commensuration because tree basal areas were all in the same units (square meters/ha) 
and occurred at the same scale (tens of square meters/ha). However, there is some covariation 
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among the basal areas, so commensurating them with the average Euclidean distance may be 
desirable. Use of the average Euclidean distance here leads to even less difference with an exact 
P = 0.896. 

The interv = num option allows an analysis to be conducted on univariate circular 
data such as time or compass orientation. This analysis recognizes that there are no endpoints to 
the measurement scale. Distances between replicates used in the ARC analyses are the shorter of 
the 2 possible distances around the circular distribution, that is min (|xi – xj| and ARC – |xi – xj|). 
The interv = num specifies the number of units in the circular distribution so that input data 
can be standardized to values on a unit circle. The interv = num command submits the 
standardized data to an MRPP program configured for circular distributions. 

As an example, consider an analysis of the orientation of movements of striped newts 
(Notophtalmus peristriatus) immigrating to and emigrating from Breezeway Pond, Florida in 
1985–1990 (Dodd and Cade, 1998). Figure 6 presents the angular orientation of 585 females 
immigrating to and 564 emigrating from the pond that were captured in pitfall buckets inside and 
outside of a drift fence surrounding the pond. 

Implement the arc-distance analysis with the following commands: 
> out <- mrpp(variables = angle,group = ei,data = npof,interv = 360) 

The grouping variable ei has 1's for emigrating and 2's for immigrating females. Here are the 
results of this analysis: 
> summary(out) 

 Multi-Response Permutation Procedure (MRPP)  
 
Call:  
mrpp(variables = angle, group = ei, data = npof, interv = 360)  
 
  Grouping Variable :  ei 
  Response Variables:  angle 
 
Specification of Analysis: 
 Number of Observations: 1149  
 Number of Groups      : 2  
 Distance Exponent     : 1  
 Weighting Factor: n(I)/sum(n(I))=C(I)=  1 
 ARC distances used    : 360 
 Intervals in unit circle 
 
Group Summary: 
  Group Value  Group Size  Group Distance 
  1            585         89.17          
  2            564         89.53          
 
 
 Results: 
 Delta Observed                :  89.35 
 Delta Expected                :  89.74 
 Delta Variance                :  0.004177 
 Delta Skewness                :  -1.969 
 
 Standardized test statistic   :  -6.092 
 Probability (Pearson Type III) 
 of a smaller or equal delta   :  0.0007966*** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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The ARC (interv) analyses indicated that immigration and emigration orientation of the 
striped newts differed (P = 0.008). More females immigrated to the northeast and southwest, 
whereas more emigrated from the southeast and northwest. The arc-distance analyses with mrpp 
are likely to be better than the more conventional Watson's test, especially useful when 
comparing circular distributions that have unequal angular variation or that are multimodal 
(Mielke and Berry, 2001). The interv option in Blossom is intended to be used with any 
univariate cyclical data (angular orientation, days of the year, hour of the day); more complicated 
transformations are possible for spherical data and combinations of scalar and circular data (see 
Mielke, 1986; Mielke and Berry, 2001). 

 

 

Figure 6. Pattern of immigration and emigration for female striped newts at Breezeway Pond, Florida, 
1985–1990.   Length of the lines indicates number of newts counted in pitfalls (data from Dodd and 
Cade, 1997). 

Multiresponse Randomized Block Procedure (MRBP) 
Data from a complete randomized block design or data that can be construed in a 

treatment by block manner can be analyzed by specifying a blocking variable in the mrbp 
command. The following data (Mielke and Iyer, 1982) are from a mine reclamation study 
comparing oven-dried biomass (gm) of three species of shrubs in six treatments (1 = no fertilizer, 
2 = low fertilizer, 3 = high fertilizer, 4 = mulch and no fertilizer, 5 = mulch and low fertilizer, 
and 6 = mulch and high fertilizer) by three blocks (different plots). A complete randomized block 
analysis is done with the following commands which can be specified equivilantly in four 
different ways: 
> a <- mrbp(data = mrbp1) 
>    a <- mrbp(mrbp1) 
>    a <- mrbp(variables = c(spp1,spp2,spp3),group = trtmt,block = block,data 
+    = mrbp1) 
>    a <- mrbp(c(spp1,spp2,spp3),trtmt,block,data = mrbp1) 

Here are the results of the MRBP analysis with the default multivariable commensuration 
and block alignment. Note, the original analysis by Mielke and Iyer (1982) did not 
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commensurate or align the data and you can duplicate their analysis by using the options align 
= FALSE, commens = FALSE. 
> summary(a) 

 Multiresponse Randomized Block Procedure (MRBP)  
 
Call:  
mrbp(variables = c(spp1, spp2, spp3), group = trtmt, block = block, 
 data = mrbp1)  
 
Specification of Analysis: 
 Response Variables      :  spp1 spp2 spp3 
 Number of Observations  :  18 
 Grouping Variable       :  trtmt  
    Number of Groups     :  6 
 Blocking Variable       :  block  
    Number of Blocks     :  3 
 Distance Exponent       :  1 
 Data Aligned 
 Hotelling's Commensuration Applied 
 
Group Summary:  
  Group Value  Group Size 
            1           3 
            2           3 
            3           3 
            4           3 
            5           3 
            6           3 
 
 
Block Alignment Summary: 
  Block Value  Variable Name  Alignment Value 
  1            spp1           6.500           
               spp2           3.165           
               spp3           2.170           
  2            spp1           9.915           
               spp2           1.165           
               spp3           2.665           
  3            spp1           6.250           
               spp2           1.915           
               spp3           2.415           
 
 
Variable Commensuration Summary 
  Variable Name  Average Euclidean Distance 
  spp1           7.602                      
  spp2           3.107                      
  spp3           0.9006                     
 
 
 Results:  
 Delta Observed   :  1.785 
 Delta Expected                :  1.98 
 Delta Variance                :  0.02093 
 Delta Skewness                :  -0.3897 
 Agreement measure among blocks:  0.09861 
 Standardized test statistic   :  -1.35 
 Probability (Pearson Type III) 
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 of a smaller or equal delta   :  0.09499. 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
The P-value is 0.095, indicating weak evidence to reject the null hypothesis of no 

treatment effect. The original analysis without commensurating and aligning variables gave P = 
0.067. Because of the small number of blocks and treatments it is possible to conduct this 
analysis by complete enumeration of the permutation distribution by using the option exact = 
TRUE. This yields P = 0.099. The Monte Carlo resampling approximation also is available for 
problems with large block and treatment structure. 

The data used in the MRBP test have been aligned so that the medians of the blocks are 
all equal. The value chosen to align each block is selected to make the block medians all equal to 
zero. If there is more than one response variable then Blossom adjusts or commensurates 
variables by their average Euclidean distance by default as in mrpp. The block alignment values 
and variable commensuration values are reported. 

It is possible to turn off one or both of the alignment and variable commensuration 
options. The align = FALSE in the mrbp command produces an analysis without data 
alignment. The commens = FALSE option in mrbp produces an analysis without multivariate 
commensuration. These options can be important for special applications of MRBP. Here is an 
example command: 
mrbp(variables = length,group = trtmt,block = block,align = FALSE) 

Of course since only one variable, length, was specified, no variable commensuration is 
done. This option is especially useful when the blocked design is used not so much to detect 
treatment effects but to get a measure of the agreement among blocks. One use for this option is 
numerical model verification. Here blocks contain the predictions of one or more models and one 
block contains measured results. See Tucker and others (1989) for details. Agreement measures 
(1– observed delta/expected delta)  based on Euclidean distances are generalizations of Cohen's 
kappa extended to multiple groups, multiple variables, and interval data (Berry and Mielke, 
1988). The agreement measure based on squared Euclidean distances (expon = 2) applied to 
interval data is a linear transform of Pearson's correlation coefficient, that is, a probability value 
for a correlation coefficient based on a permutation argument can be obtained. 

Here is an example analysis comparing measures of the proportion of basal area to the 
proportion of canopy cover of lodgepole pine (Pinus contorta) in 31 stands of subalpine forest in 
Colorado (fig. 7) (Cade, 1997). 
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Figure 7. Proportion of basal area and canopy cover for lodgepole pine in 31 stands (data from Cade, 
1997).  Solid line corresponds to perfect agreement. 

The 31 sample plots are specified by the grouping variable stand and the proportion of either 
basal area or canopy cover are specified by the blocking variable method. The response variable 
for proportion lodgepole pine is pctlcc.   
> out <- mrbp(agree2[,c(5,6,3)],align = FALSE) 
Here are the results of the analysis: 

> summary(out) 
 
 Multiresponse Randomized Block Procedure (MRBP)  
 
Call:  
mrbp(align = FALSE)  
 
Specification of Analysis: 
 Response Variables      :  pctlcc 
 Number of Observations  :  62 
 Grouping Variable       :  stand  
    Number of Groups     :  31 
 Blocking Variable       :  method  
    Number of Blocks     :  2 
 Distance Exponent       :  1 
 
Group Summary:  
  Group Value  Group Size 
            1           2 
            2           2 
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            3           2 
            4           2 
            5           2 
            6           2 
            7           2 
            8           2 
            9           2 
           10           2 
           11           2 
           12           2 
           13           2 
           14           2 
           15           2 
           16           2 
           17           2 
           18           2 
           19           2 
           20           2 
           21           2 
           22           2 
           23           2 
           24           2 
           25           2 
           26           2 
           27           2 
           28           2 
           29           2 
           30           2 
           31           2 
 
 Data are not aligned within blocks 
 Variables are not commensurated 
 
 Results:  
 Delta Observed   :  0.09431 
 Delta Expected                :  0.3062 
 Delta Variance                :  0.001219 
 Delta Skewness                :  -0.08266 
 Agreement measure among blocks:  0.692 
 Standardized test statistic   :  -6.067 
 Probability (Pearson Type III) 
 of a smaller or equal delta   :  8.653e-09*** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
The agreement measure in this analysis (0.692) indicates that there is an average 

reduction in Euclidean distance between the proportions of basal area and canopy cover that is 
69% greater than expected by chance and this differs from zero with P < 0.0001. The observed 
delta = 0.094 which indicates that the two proportionate measures of lodgepole pine (pctlcc) 
differed on average by 0.094 across all 31 stands (fig. 7). There was good but not perfect 
agreement between measures of the proportion of basal area and the proportion of canopy cover 
for characterizing the lodgepole pine contribution to the forest composition. Additional 
univariate agreement comparisons for subalpine fir (Abies lasiocarpa, pctfcc) and Engelmann 
spruce (Picea engelmannii, pctscc) are given in Cade (1997). A multivariate measure of 
agreement that considers all three species simultaneously given in Cade (1997) is performed with 
the command: 
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> agree <- agree2[,c(5,6,1,2,3)] 
> out <- mrbp(agree,align = FALSE,commens = FALSE) 

The results indicate that the average deviation between proportionate measures of basal 
area and canopy cover is 0.168 (observed delta) across the 31 stands for the three conifer species 
and the agreement measure indicates a 62% reduction in the observed deviation over that 
expected by chance. 
> summary(out) 

 Multiresponse Randomized Block Procedure (MRBP)  
 
Call:  
mrbp(commens = FALSE, align = FALSE)  
 
Specification of Analysis: 
 Response Variables      :  pctscc pctfcc pctlcc 
 Number of Observations  :  62 
 Grouping Variable       :  stand  
    Number of Groups     :  31 
 Blocking Variable       :  method  
    Number of Blocks     :  2 
 Distance Exponent       :  1 
 
Group Summary:  
  Group Value  Group Size 
            1           2 
            2           2 
            3           2 
            4           2 
            5           2 
            6           2 
            7           2 
            8           2 
            9           2 
           10           2 
           11           2 
           12           2 
           13           2 
           14           2 
           15           2 
           16           2 
           17           2 
           18           2 
           19           2 
           20           2 
           21           2 
           22           2 
           23           2 
           24           2 
           25           2 
           26           2 
           27           2 
           28           2 
           29           2 
           30           2 
           31           2 
 
 Data are not aligned within blocks 
 Variables are not commensurated 
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 Results:  
 Delta Observed   :  0.1681 
 Delta Expected                :  0.4409 
 Delta Variance                :  0.001553 
 Delta Skewness                :  -0.08762 
 Agreement measure among blocks:  0.6186 
 Standardized test statistic   :  -6.921 
 Probability (Pearson Type III) 
 of a smaller or equal delta   :  1.161e-10*** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
For information on other ways to align data useful for analyzing incomplete block and 

Latin square designs with MRBP see Fawcett (1990), Mielke and Iyer (1982), and Hodges and 
Lehmann (1962). 

If expon = 2 is chosen, then the univariate version of this test is a permutation version 
of analysis of variance for complete randomized blocks. Note that when expon = 2 is used in 
an MRBP analysis that the blocks are self-aligning to a common mean and no alignment is 
required; analyses made with mrbp and expon = 2 and the option align = FALSE should 
result in identical test statistics and P-values as when alignment is not turned off. Specification of 
the c.form (group averaging method) parameter has no effect, since group sizes have to be the 
same. Also the excess.value option is not supported for mrbp and is ignored. The exact = 
TRUE option is available only for some small block (<10) and group combinations. The Monte 
Carlo resampling approximation of P-values is available with the option number.perms = 
num. 

If ranked data are used and expon = 2 is specified, then the test (with one response 
variable) is functionally related to Friedman's nonparametric randomized block analysis. 

Permutation Tests for Matched Pairs (PTMP) 
Matched pair tests can be performed by the MRBP command. Essentially the matched 

pairs test is a special case of the randomized block version MRBP with one or more response 
variables, two groups, and a blocking variable identifying pairs. Data of this sort can be analyzed 
by an MRBP command specified just like that for performing an MRBP. For example the sample 
dataset paired1 contains one response (response), for two groups (groups), and with the 
paired members of each group indicated by a blocking variable (pair). Use this dataset and 
perform a matched pairs test by issuing the following command: 
>  a <- mrbp(paired1) 

 
>  ###Or equivalently 
>  a <- mrbp(variables = response,group = group,block = pair,data = paired1) 

 
>  summary(a) 

 Multiresponse Randomized Block Procedure (MRBP)  
 
Call:  
mrbp(variables = response, group = group, block = pair, data = 
 paired1)  
 
Specification of Analysis: 
 Response Variables      :  response 
 Number of Observations  :  20 
 Grouping Variable       :  group  
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    Number of Groups     :  2 
 Blocking Variable       :  pair  
    Number of Blocks     :  10 
 Distance Exponent       :  1 
 Data Aligned 
 
Group Summary:  
  Group Value  Group Size 
            1          10 
            2          10 
 
 
Block Alignment Summary: 
  Block Value  Variable Name  Alignment Value 
  1            response       4.275           
  2            response       3.340           
  3            response       6.545           
  4            response       3.070           
  5            response       2.880           
  6            response       8.190           
  7            response       6.105           
  8            response       5.065           
  9            response       2.695           
  10           response       0.790           
 
 Variables are not commensurated 
 
 Results:  
 Delta Observed   :  1.211 
 Delta Expected                :  1.887 
 Delta Variance                :  0.02099 
 Delta Skewness                :  -1.984 
 Agreement measure among blocks:  0.3581 
 Standardized test statistic   :  -4.664 
 Probability (Pearson Type III) 
 of a smaller or equal delta   :  0.003421** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
With one response variable and expon = 2 specified on the command line, then this test 

mimics the t-test for matched pairs. 
Sometimes it is convenient to structure paired data such that the values for each pair are 

given on a single line in the dataset with a separately named variable for the response of the first 
and of the second members of each pair. Blossom allows for this different data structure. Use the 
example dataset paired2 and simply issue the following command: 
>  a <- ptmp(paired1,number.perms = 10000,save.test = TRUE) 

 
> summary(a) 

 Permutation Tests for Matched Pairs (PTMP)  
 
Call:  
ptmp(data = paired1, number.perms = 10000, save.test = TRUE)  
 
   Grouping Variable:  group 
   Blocking Variable:  pair 
   Response Variable:  response 
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Specification of Analysis: 
 
 Number of Observations        :  20  
 Number of Groups              :  2  
 Number of Pairs               :  10  
 Number of Non-Zero Differences:  10  
 Distance Exponent             :  1  
 
 
Group Summary: 
  Group Value  Group Size 
  1            10         
  2            10         
 
 
 Results: 
 Delta Observed              :  2.423 
 Probability (Resample) 
 of a smaller or equal delta :  0.0044** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 

>  ## or alternatively 
>  a <- ptmp(variables = c("first", "second"), data = paired2,  
+  number.perms = 10000,save.test = TRUE) 

The ptmp command is used when the observations are paired (next to each other) in the 
dataset. Thus the pairing is indicated by position not by a blocking variable. Also no grouping 
variable is specified because in PTMP there can only be two groups. The univariate observations 
for each group correspond to the columns named first and second. Note, this is a special 
dataset format useful only for PTMP, which is a univariate, two group, paired comparison, where 
the number of blocks equals the number of pairs. 

Because the number of pairs in this dataset is less than 20 the P-value reported was 
obtained by exact enumeration of the permutation distribution (and thus differs slightly from the 
P-value given in the previous example). With more than 20 pairs an approximation with the 
Pearson Type III distribution is used by default or the Monte Carlo resampling option can be 
invoked with the option number.perms = num. Notice that the different test statistic structures 
produce an observed delta in PTMP that is exactly twice the observed test statistic for the same 
problem in MRBP. Also, data in PTMP are aligned to a median of 0 by the structure of the test 
statistic. It is possible to do a 1-sample comparison of data with a hypothesized parameter for 
central tendency (either median or mean) with PTMP by making one of the column variables 
equal to the hypothesized parameter and the other the observed data vector (Mielke and Berry, 
2001). If the hypothesized parameter is a median and ptmp is implemented with expon = 1 
then this test is for a null hypothesis that the sample comes from a population with median equal 
to the specified value. If the hypothesized parameter is a mean and ptmp is implemented with 
expon = 2 then this test if for a null hypothesis that the sample comes from a population with 
mean equal to the specified value. 

Multivariate extensions of the 1-sample comparison are made by using the mrbp 
command and specifying the vector of hypothesized parameters for the multivariate median 
(mean) as one group, the observed vector as the second group, for each of n blocks comprising 
the sample. As an example, consider the data on ring-necked pheasant (Phasianus colchicus) 
habitat selection from Aebischer and others (1993: Appendix 1), where the percentage of home 
ranges in 5 habitat types—scrub (scrub), broadleaf woodlands (broad), conifer woodlands 
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(conifer), grasslands (grass), and crops (crop)—for 13 radio-marked birds was compared to 
the available percentages of these habitat types. Because these data are compositions with a unit 
sum constraint, Aebischer and others (1993) chose to analyze these data with log ratios in a 
MANOVA. We can perform a similar 1-sample analysis comparing the observed percentages of 
the habitat types for the 13 birds with the hypothesized available percentages in MRBP without 
resorting to log ratios (which are problematic when you have some zero proportions). The 
dataset prefer has 13 blocks (bird) for the grouping use = 1 corresponding to the 
observations for the 13 birds, and the same 13 block values for the grouping use = 0 
corresponding to 13 replications of the hypothesized available percentage of the habitat types. 
Issue the commands: 
> out <- mrbp(variables = c("scrub","broad","conifer","grass","crop"), 
+ group = use,block = bird,data = prefer) 

The following output indicated that the 13 pheasants were not using habitat types in 
proportion to their availability. Of course, it is possible to do a permutation version of the 1-
sample MANOVA analysis on log ratios as done by Aebischer and others (1993), but the 
Euclidean distance statistics of MRPP avoid concerns about singular matrices with dependent 
variables having the unit sum constraint and ad hoc procedures needed to deal with zero 
proportions when transforming to log ratios. 

We can compute the multivariate median for the percentage of the habitat types used by 
the 13 pheasants to compare with the hypothesized percentages by issuing the command: 
> summary(out) 

 Multiresponse Randomized Block Procedure (MRBP)  
 
Call:  
mrbp(variables = c("scrub", "broad", "conifer", "grass", "crop"), 
 group = use, block = bird, data = prefer)  
 
Specification of Analysis: 
 Response Variables      :  scrub broad conifer grass crop 
 Number of Observations  :  26 
 Grouping Variable       :  use  
    Number of Groups     :  2 
 Blocking Variable       :  bird  
    Number of Blocks     :  13 
 Distance Exponent       :  1 
 Data Aligned 
 Hotelling's Commensuration Applied 
 
Group Summary:  
  Group Value  Group Size 
            1          13 
            0          13 
 
 
Block Alignment Summary: 
  Block Value  Variable Name  Alignment Value 
  1            scrub          11.410          
               broad           5.600          
               conifer         0.365          
               grass          26.415          
               crop           56.190          
  2            scrub          11.900          
               broad          11.965          
               conifer         0.365          
               grass          26.615          
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               crop           49.145          
  3            scrub           5.770          
               broad           7.480          
               conifer         0.365          
               grass          55.865          
               crop           30.505          
  4            scrub           6.000          
               broad          16.545          
               conifer         0.365          
               grass          32.535          
               crop           44.540          
  5            scrub           3.815          
               broad          19.760          
               conifer         5.525          
               grass          53.905          
               crop           16.990          
  6            scrub           4.325          
               broad          19.875          
               conifer         5.420          
               grass          53.385          
               crop           16.990          
  7            scrub           3.780          
               broad          20.235          
               conifer         5.875          
               grass          53.110          
               crop           16.990          
  8            scrub           5.940          
               broad          23.970          
               conifer         0.365          
               grass          52.720          
               crop           16.990          
  9            scrub           6.430          
               broad          31.195          
               conifer         0.365          
               grass          45.000          
               crop           16.990          
  10           scrub           7.470          
               broad           9.025          
               conifer         0.365          
               grass          66.135          
               crop           16.990          
  11           scrub           8.790          
               broad          20.895          
               conifer         0.365          
               grass          52.940          
               crop           16.990          
  12           scrub           6.460          
               broad          10.090          
               conifer         0.365          
               grass          66.080          
               crop           16.990          
  13           scrub           4.375          
               broad          14.655          
               conifer         2.420          
               grass          61.555          
               crop           16.990          
 
 
Variable Commensuration Summary 
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  Variable Name  Average Euclidean Distance 
  scrub          4.993                      
  broad          11.69                      
  conifer        2.456                      
  grass          15.07                      
  crop           18.21                      
 
 
 Results:  
 Delta Observed   :  2.238 
 Delta Expected                :  2.66 
 Delta Variance                :  0.008276 
 Delta Skewness                :  -1.165 
 Agreement measure among blocks:  0.1585 
 Standardized test statistic   :  -4.634 
 Probability (Pearson Type III) 
 of a smaller or equal delta   :  0.001209** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 
> out2 <- medq(variables = c("scrub","broad","conifer","grass","crop"), 
+ group=use,data = prefer) 
> summary(out2) 

 5-Dimensional Median and Distance Quantiles  
 
Call:  
medq(variables = c("scrub", "broad", "conifer", "grass", "crop"), 
 group = use, data = prefer)  
 
Specification of Analysis: 
 
 Grouping Variable         :  use 
 Number of Report Variables:  5 
 Report Variables          :  scrub, broad, conifer, grass, crop  
 
 Number of Observations    :  26 
 Number of Groups          :  2 
_________________________________________________ 
 
Results for Group Value:  0  
 
 Observations in Group     :  13 
 Iterations to Solution    :  1 
 Solution Tolerance        :  1.6e-13 
 
    Within Group Median Coordinates for Variables 
         Variable Name  Multivariate Median Coordinate 
         scrub           3.22                          
         broad           9.23                          
         conifer         0.73                          
         grass          52.83                          
         crop           33.98                          
 
    5-Dimensional Distance From Median Quantiles 
   Average Distance to Multivariate Median:  0  
         Quantile             Distance from Median 
         0         (Minimum)  0                    
         0.05                 0                    
         0.1                  0                    
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         0.25                 0                    
         0.5       (Median)   0                    
         0.75                 0                    
         0.9                  0                    
         0.95                 0                    
         1         (Maximum)  0                    
 
_________________________________________________ 
 
Results for Group Value:  1  
 
 Observations in Group     :  13 
 Iterations to Solution    :  55 
 Solution Tolerance        :  1.6e-13 
 
    Within Group Median Coordinates for Variables 
         Variable Name  Multivariate Median Coordinate 
         scrub           7.616                         
         broad          28.677                         
         conifer         5.666                         
         grass          54.042                         
         crop            3.988                         
 
    5-Dimensional Distance From Median Quantiles 
   Average Distance to Multivariate Median:  33.74  
         Quantile             Distance from Median 
         0         (Minimum)   6.621               
         0.05                  6.621               
         0.1                   7.164               
         0.25                 10.466               
         0.5       (Median)   30.597               
         0.75                 33.372               
         0.9                  83.137               
         0.95                 96.678               
         1         (Maximum)  96.678  
         
The output indicated that the multivariate median vector for the proportions of habitats 

used is shifted towards a much higher proportion of broadleaf woodlands, moderately higher 
proportions of scrub and conifer woodlands, much lower proportions of crops, with little 
difference in the proportion of grasslands compared to available habitat types. Note that this 
summary doesn't recognize the blocked by animal nature of the design and could be made more 
appropriate by first taking differences between components of used and available habitat types 
by animal and then taking the multivariate medians of those differences. 

Multiresponse Sequence Procedure (MRSP) 
The multiresponse sequence procedure sp command initiates a test of first-order serial 

dependency on univariate or multivariate response variables (Mielke, 1991). In this analysis of 
ungrouped data, the agreement measure (1- average Euclidean distance between ordered 
observations/average Euclidean distance among all possible pairs of observations) is a statistic 
describing first-order serial dependency. Significance of the null hypothesis of no first-order 
serial dependency is provided by the Pearson Type III approximation on the first three exact 
moments of the permutation distribution by default, optionally by exact enumeration for small 
samples, or by a Monte Carlo resampling procedure. In a univariate test, MRSP is analogous to 
the Durbin-Watson test. A permutation version of the Durbin-Watson test can be initiated by 
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selecting the option expon = 2 for squared Euclidean distances. In a bivariate test of animal 
locations, where latitude and longitude coordinates are the two response variables, MRSP 
provides a Euclidean distance analogue of Schoener's t2/r2 statistic (Solow, 1989), which is a 
nonmetric measure based on squared Euclidean distances. A permutation version of Schoener's 
t2/r2 test can be implemented on bivariate data by specifying the expon = 2 and commens = 
FALSE. MRSP obviously provides the possibility of evaluating first-order serial dependency of 
greater than two response variables. Blossom will commensurate (standardize) multiple variables 
to unit average Euclidean distance by default. 

Example data of biweekly grouse locations during November through March (Cade and 
Hoffman, 1993) are in the dataset blue162 and graphed below (fig. 8), where the numbers 
correspond to the temporal order of observations (variable date) for the response variables lat 
and long. Multiple observations at the same location are indicated by ordered values next to 
their location. 

To implement an analysis of first-order serial dependency on these bivariate locational 
data, the following commands are issued: 
> out <- sp(as.matrix(blue162[,4:5]),commens = FALSE) 

 
> ###or equivalently as 
>  out <- sp(variables = c("lat","long"),sequence = seq(1:12), data =        
+ blue162, commens = FALSE) 

Note that the same analysis on this dataset can be implemented without specifying the 
sequencing variable date because the dataset is ordered by date already and Blossom by 
default assumes the order in the dataset is the sequencing variable if none is specified. 
Here are the results of this analysis: 
> summary(out) 

 Multiresponse Sequence Procedure (MRSP)  
 
Call:  
sp(data = blue162, commens = FALSE, sequence = seq(1:12), variables = 
 c("lat", "long"))  
 
Specification of Analysis: 
 Number of Observations: 12  
 Distance Exponent     : 1  
 
 Variables are not commensurated 
 
 Results: 
 Delta Observed:  119.7 
 Delta Expected:  135.5 
 Delta Variance:  252 
 Delta Skewness:  -0.2363 
 
 Standardized test statistic    :  -0.9959 
 
 Agreement measure              :  0.1167 
 Probability (Pearson Type III) 
 of a smaller or equal delta    :  0.159 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
The agreement measure (0.117) is interpreted as the percent reduction in average 

Euclidean distance between sequentially ordered values (observed delta) over that expected 
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without any order (expected delta). In this analysis there is little evidence of first-order serial 
pattern and the null hypothesis of no serial dependency has P = 0.159. The expected delta is the 
average Euclidean distance among the locations ignoring any serial dependence (135.5 m) and 
the observed delta in the average Euclidean distance between sequentially ordered locations 
(119.7 m); both these measures are useful summary statistics describing animal home ranges 
(Cade and Hoffman, 1993). See Mielke and Berry (2001) for descriptions of how to extend the 
sequence procedure to higher orders of serial dependence. 
 

 

Figure 8. Latitude and longitude coordinates (m) for blue grouse (no. 162) locations on 12 dates 
November through March.  Numbers next to locations correspond to order of dates for locations (note 
multiple dates at same locations). 

Least Absolute Deviation (LAD) and Quantile Regression 
LAD regression differs from least squares (OLS) regression in that the sum of the 

absolute, not squared, deviations of the fit from the observed values is minimized to obtain 
estimates. LAD regression estimates the conditional median (0.5 regression quantile) of the 
dependent variable (y) given independent variables (X), and its generalization, regression 
quantiles, estimates the conditional quantile (τ, where 0 ≤ τ ≤ 1) of y given X. Since LAD does 
not use squared distances, it is an obvious companion to the MRPP which emphasizes Euclidean 
distances. Both LAD and MRPP satisfy the congruence principle (Mielke and Berry, 2001). 
Asymptotic distributional theory for testing procedures for LAD regression are found in Dodge 
(1987) and a concise, readable implementation is provided by Birkes and Dodge (1993). Cade 
and Noon (2003) is a primer on quantile regression for ecologists. 

The lad command is used to compute a fit of one dependent response variable by one or 
more independent predictor variables. The parameters in a LAD regression are tested by using a 
test statistic that compares the proportionate reduction in sums of absolute deviations when 
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passing from a reduced to full parameter model (that is, a test statistic very similar to general F-
tests in OLS regression). The drop in dispersion test statistic, Tobs, equals (sum of absolute 
deviations for reduced model–sum of absolute deviations for full model) / sum of absolute 
deviations for full model (Cade and Richards, 1996; Cade 2003, 2005). Large values of Tobs are 
evidence against the null hypothesis that the parameter(s) equal(s) zero. If all slope parameters 
are tested simultaneously against a reduced parameter model that includes only the intercept, 
then the reference permutation distribution for the test statistic Tobs is obtained by randomly 
sampling the n! permutations of the dependent variable to the matrix of independent variables as 
described by Manly (1991) and calculating T for each permutation. However, if only a subset of 
parameters is being tested (partial model tests), then the reference permutation distribution for 
the test statistic Tobs is obtained by randomly sampling the n! permutations of residuals from the 
reduced model to the matrix of independent variables and calculating T for each permutation, 
following Freedman and Lane (1983). Probabilities under the null hypothesis are given by 
(number of T ≥ Tobs + 1)/number of permutations sampled. Extensive power simulations 
demonstrated that these procedures maintained nominal error rates under the null hypothesis well 
across a variety of error distributions and design configurations (correlated and uncorrelated 
independent variables) provided the error distributions are independent and identically 
distributed (Cade and Richards, 1996). Similar conclusions were reached for the same form of 
the test statistic used with OLS regression (Kennedy and Cade, 1996; Anderson and Legendre, 
1999). The LAD permutation test is extended to any selected regression quantile (LAD is just 0.5 
regression quantile) by replacing sums of absolute deviations in the test statistic computation 
with the appropriate sums of weighted absolute deviations used in regression quantile estimation 
(Cade and Richards, 2006). 

Cade (2003, 2005) and Cade and Richards (2006) found that Type I error rates were 
improved when testing subsets of parameters in quantile regression models by deleting all but a 
single zero residual associated with the fit to p – q parameters under the null hypothesis, where p 
is the number of parameters in the full model and q is the number of parameters being tested. As 
this reduces the length of the residual vector so that it no longer conforms to the n x p matrix X 
of predictors, the corresponding number of rows of X are randomly deleted at each permutation. 
This deletion of zero residuals and random deletion of rows of X are done by default for this 
drop in dispersion permutation test. In addition, Cade (2003, 2005) and Cade and Richards 
(2006) found that anytime the null, reduced (p – q) parameter model was constrained through the 
origin (no intercept), Type I error rates were improved by randomly recentering the residual 
vector since the residuals from the null model will no longer have zero associated with the 
specified quantile (or mean zero for OLS). This is implemented as a double permutation 
procedure where the first step at each iteration is to randomly recenter the selected quantile of the 
residual vector by a quantity generated as a random binomial for the specified quantile (for 
example,  0.90). A similar operation is done for OLS regression where the quantile = 0.50 is 
always used to generate random binomials. The second step at each iteration then (the doubling 
of permutations) permutes these randomly recentered residuals to the matrix X. Because it is not 
always obvious when a model is constrained through the origin (for example, some weighted 
model tests will require this and some won't), we elected to make the double permutation scheme 
selected by an option of the hypothesis testing command double.permutation = TRUE. 

If error distributions are not identical (heteroscedastic) then they must be transformed or 
weighted to be made approximately identical (homogeneous) (Cade and Richards, 1996; Cade, 
2003, 2005; Cade and Richards, 2006). Cade and Noon (2003) and Cade and others (2006) 
discuss two weighting schemes, one where all quantiles have the same weights in a location-
scale form of heterogeneity, and one where the weights must be estimated separately for the 
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selected quantiles in more general models of heterogeneity. When the weights are based on a 
function of the independent variables (X) many of the permutation hypothesis tests will 
implicitly constrain the null model through the origin and the double permutation procedure will 
be required to maintain correct Type I error rates (Cade, 2005; Cade and others, 2005; Cade and 
Richards, 2006). 

As an alternative test for LAD and its generalization to regression quantiles, we provide a 
quantile rank score statistic that is less sensitive to heterogeneous error distributions (Koenker, 
1994; Cade and others, 1999; Koenker and Machado, 1994). The permutation version of the 
quantile rank score test (Cade, 2003; Cade and others, 2006) maintains Type I error rates better 
than the asymptotic Chi-square distributional approximation (Koenker, 1994) at smaller n and 
more extreme quantiles. It is important to note that the rank score test is not immune to the 
effects of heterogeneity and maintaining correct Type I error rates with this test often requires 
weighted estimates and test statistics just as the drop in dispersion test does (Cade, 2003; Cade 
and others, 2005; Cade and others, 2006). 

We will demonstrate the procedures with an example from Cade (1997), where lodgepole 
pine canopy cover (lcc) was modeled as a function of basal area (apico) and density of the 
trees (picopha). Use the dataset fraserf. Issue the following command for the simple 
regression of canopy cover (lcc) as a linear function of basal area (apico): 
> Out <- lad(lcc~apico,data = fraserf,test = TRUE) 

The model to be computed is written out algebraically where the dependent variable is 
lcc (lodgepole pine canopy cover) and the single independent variable is apico (basal area of 
lodgepole pine adjusted for slope of terrain). By default, lad will estimate an intercept. If -1 is 
included in the formula specification, the intercept is left out, and the fit is forced through the 
origin. The test = TRUE option indicates that the model is to be compared to a reduced model 
that is a straight line parallel to the X axis going through the median y value (lcc). Thus, the 
reduced model has just one parameter, the constant. In this test Blossom uses a default sample 
size of 5,000 permutations (including the observed value) to approximate the permutation 
distribution. 

Here are the results of the above lad command: 
> summary(Out) 

     Least Absolute Deviation Regression (LAD) 
 
Call:  
lad(formula = lcc ~ apico, data = fraserf, test = TRUE)  
 
 
Specification of Analysis: 
 Number of Observations: 31  
 Response Variable     : lcc  
 
        Independent variables      Regression coefficients 
                  (Intercept)                        8.789 
                        apico                        1.054 
 
 Number of iterations: 3 
 
 Sum of absolute values of the residuals: 252.9 
 Solution: Successful 
 
Regression Evaluation: 
 LAD Model: lcc ~(Intercept)+apico 
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Test Summary: 
 Number of permutations                    :  5000 
 P-value of Full Model                     :  2e-04*** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Because canopy cover must be zero when basal area is zero, Cade (1997) used LAD 

regression models without an intercept term. Here the following command estimates the model 
above without an intercept: 
> Out <- lad(lcc~-1+apico,data = fraserf) 
The output is given below: 
> summary(Out) 

     Least Absolute Deviation Regression (LAD) 
 
Call:  
lad(formula = lcc ~ -1 + apico, data = fraserf)  
 
 
Specification of Analysis: 
 Number of Observations: 31  
 Response Variable     : lcc  
 
        Independent variables      Regression coefficients 
                        apico                        1.314 
 
 Number of iterations: 1 
 
 Sum of absolute values of the residuals: 267.4 
 Solution: Successful 
 
A multiple independent variable LAD regression is specified by adding the appropriate 

independent variable names to the lad command. Here we consider the model used by Cade 
(1997) with lodgepole pine density (picopha) as an additional explanatory variable: 
> Out <- lad(lcc~-1+apico+picopha,data = fraserf) 

The added variables are assumed to be in the dataset in use. The commands 
predict(Out)and residuals(Out) can be used to obtain the predicted y values and the 
residuals respectively.  Here are the results: 
>   summary(Out) 

     Least Absolute Deviation Regression (LAD) 
 
Call:  
lad(formula = lcc ~ -1 + apico + picopha, data = fraserf)  
 
 
Specification of Analysis: 
 Number of Observations: 31  
 Response Variable     : lcc  
 
        Independent variables      Regression coefficients 
                        apico                      0.93470 
                      picopha                      0.01157 
 
 Number of iterations: 3 
 
 Sum of absolute values of the residuals: 127.5 
 Solution: Successful 
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Figure 9. Lodgepole pine canopy cover as a linear function of basal area and tree density estimated with 
LAD regression for 31 sample stands. 

The regression function, observed values and residuals are plotted in figure 9. 
A polynomial regression on a single independent variable, its square, its cube, and so on 

can be performed by including in the data a column containing the square, cube, and so on of the 
independent variable as well as the original independent and dependent variable.  Use the dataset 
fraserf and enter the following lad command: 
> Out <- lad(scc~-1+apien+pienpha+I(apien^2),data = fraserf) 
to estimate the model used in Cade (1997), where canopy cover of Engelmann spruce (scc) is 
predicted as a function of basal area (apien), basal area2 (I(apien^2)), and stem density 
(pienpha). The results are below and the regression surface is plotted in figure 10: 
> summary(Out) 

     Least Absolute Deviation Regression (LAD) 
 
Call:  
lad(formula = scc ~ -1 + apien + pienpha + I(apien^2), data = 
 fraserf)  
 
 
Specification of Analysis: 
 Number of Observations: 31  
 Response Variable     : scc  
 
        Independent variables      Regression coefficients 
                        apien                     1.582000 
                      pienpha                     0.008423 
                   I(apien^2)                    -0.030190 
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 Number of iterations: 5 
 
 Sum of absolute values of the residuals: 85.84 
 Solution: Successful 
 
Here the quadratic curvature implied by use of basal area2 can be tested with the 

hypothesis.test command to test whether the addition of the squared term yielded an 
improvement in fit. This is equivalent to testing the full model specified above against a reduced 
model that doesn't include the term (I(apien^2)) for basal area2. This is done by fitting the 
reduced parameter null model using the lad command and then using the hypothesis.test 
with the full and reduced parameter Lad objects: 

 
> Out2 <- lad(scc~-1+apien+pienpha,data = fraserf) 

 
> set.seed(9) 

 
> Test.Out <- hypothesis.test(Out,Out2,number.perms = 10000, 
+   double.permutation = TRUE,save.test = TRUE) 
 

 

Figure 10. Engelmann spruce canopy cover as a quadratic function of basal area and linear function of 
tree density estimated with LAD regression for 31 sample stands. 

Here are the results for the hypothesis.test command where we optionally have 
selected the double permutation scheme because our null hypothesized model is constrained 
through the origin: 
> summary(Test.Out) 

     Least Absolute Deviation Regression (LAD) 
     Hypothesis Test, drop p-q-1 zero residuals with double    



 45 

          permutation 
 
Call:  
hypothesis.test(object1 = Out, object2 = Out2, number.perms = 10000, 
 save.test = TRUE, double.permutation = TRUE)  
 
 
Specification of Analysis: 
 Number of Observations: 31  
 Response Variable     : scc  
 
        Independent variables      Regression coefficients 
                        apien                      0.61350 
                      pienpha                      0.01353 
 
 Number of iterations: 3 
 
 Sum of absolute values of the residuals: 99.38 
 Solution: Successful 
 
Regression Evaluation: 
 LAD Model:  
 scc ~apien+pienpha+I(apien^2) 
 Versus Hypothesis Model: 
 scc ~apien+pienpha 
 
Test Summary: 
 Number of permutations                    :  10000 
 Observed Test Statistic                   :  0.1577 
 P-value of variables in full model but  
  not reduced model                        :  0.0144* 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
The results indicate that the coefficient for the quadratic basal area term differs from zero 

with P = 0.014. Here both double permutation and dropping of all but one of the zero residuals 
under the null model were implemented because the null model includes two parameters but no 
intercept. If we had not used the double permutation option (double.permutation = FALSE) 
and not deleted one of the zero residuals associated with the two parameters fit under the null 
model, then the P-value would be slightly smaller (0.0091) as in Cade (1997). The double 
permutation and dropping of zero residuals usually will increase the size of P-values slightly. 

A goodness-of-fit measure for regression models is often a useful summary statistic. It is 
possible to compute an LAD coefficient of determination for the full model with reference to 
some reduced model (usually that specifies just an intercept term) by estimating the full model 
and obtaining the sums of absolute deviation (call it SAF), then estimating the reduced parameter 
model and obtaining its sum of absolute deviations (call it SAR), and computing the coefficient 
of determination  R1 = 1–(SAF/SAR) (Cade and Richards, 1996; Cade, 1997). This can be 
extended to any selected regression quantile by replacing the sums of absolute deviations in the 
formula above with the sum of weighted absolute deviations minimized by regression quantiles 
(Koenker and Machado, 1999). We've already obtained the sums for the full parameter model, 
scc = apien + pienpha + I(apien^2 as SAF = 85.839, so to obtain them for the 
reduced parameter model: 

 
> Out <- lad(scc~1,data = fraserf) 
> summary(Out) 
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     Least Absolute Deviation Regression (LAD) 
 
Call:  
lad(formula = scc ~ 1, data = fraserf)  
 
 
Specification of Analysis: 
 Number of Observations: 31  
 Response Variable     : scc  
 
        Independent variables      Regression coefficients 
                  (Intercept)                           10 
 
 Number of iterations: 1 
 
 Sum of absolute values of the residuals: 230 
 Solution: Successful 
 

yields a sum, SAR = 230.0 and, thus, the coefficient of determination R1 = 1-(85.839 / 230.000) = 
0.627. This is interpreted as the model with variables apien, pienpha, and  I(apien^2) 
yield estimates of conditional medians of lcc with a 63% reduction in sum of absolute 
deviations compared to the model that is just a simple estimate of the median of lcc. 

It is possible to specify greater or fewer permutations for calculating probabilities by 
specifying number of permutations as an option after either the test option for lad command or 
as an option in the hypothesis.test command. For example: 
> Out <- lad(lcc~-1+apico+picopha,data = fraserf,number.perms = 10000, 
+   test = TRUE) 
will test all slope parameters equal to zero using 10,000 permutations of y. Manly (1991) 
summarizes recommendations on number of permutations to use in Monte Carlo sampling 
procedures. More is better but comes at increased computational cost. Specifying the random 
number seed is done with the standard set.seed(num) command in R before any function call. 

It is important to recognize that the LAD regression model (and generalization to 
regression quantiles discussed below) can be extended to any linear model design that might be 
estimated with OLS regression, including various variable transformations, and mixtures of 
continuous independent variables with indicator variables for categorical predictors. Extensive 
examples are in Mielke and Berry (2001). Indeed it is possible to use LAD regression for linear 
model analyses of multifactorial experimental designs, where the focus is on estimating changes 
in conditional medians rather than estimating changes in conditional means as typically done 
with OLS regression (Cade and Richards, 1996; Mielke and Berry, 2001). 

As an example, consider the soap production example from Cade and Richards (1996), 
where soap scrap (y is soap) is modeled as a linear function of production line speed (X1 is 
speed) and an indicator variable X2 is line.n = 1 for production line 1 and X2 is line.n = 0 for 
production line 2 (fig. 11). We are interested in testing whether the rates of change in soap scrap 
(y) as a function of line speed (X1) differs by production line (X2), which requires that we 
estimate a model with an interaction term (lxs is X1 X2).  Here, unlike in the original Fortran, we 
have the ability to utilize categorical terms and specify interactions as well as other functions of 
the predictors and response using the standard formula specification in R. We will convert line 
number (line.n) to a factor in order to demonstrate this capability. 
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Figure 11. Soap scrap as a linear function of production speed for line 1 (open circles) and line 2 (solid 
circles).  Circled solid circle is an outlying value.   Solid lines are LAD estimates and dashed lines are 
OLS estimates. 

Use the dataset neter365 and estimate the full parameter model with the interaction 
term specified 
 
> neter365$line.n <- as.factor(c("Line1","Line0")[(neter365$line.n == 0)+1]) 
> Out <- lad(soap~speed+line.n+lxs,data = neter365) 

Because lxs is the interaction between line.n| and speed we could specify an 
identical model using  

 
> lad(soap~speed*line.n,data = neter365) 

     Least Absolute Deviation Regression (LAD) 
 
Call:  
lad(formula = soap ~ speed * line.n, data = neter365)  
 
 
Specification of Analysis: 
 Number of Observations: 27  
 Response Variable     : soap  
 
        Independent variables      Regression coefficients 



 48 

                  (Intercept)                   -3.197e-14 
                        speed                    1.333e+00 
                  line.nLine1                    1.076e+02 
            speed:line.nLine1                   -2.103e-01 
 
 Number of iterations: 5 
 
 Sum of absolute values of the residuals: 389.4 
 Solution: Successful 
 

where the lxs is a column variable created by multiplying speed times line.n across all 
observations. Here are the results: 
> Out <- lad(soap~speed+line.n+lxs,data = neter365) 

Interpretation of the parameter estimates is identical to the interpretation for linear 
models estimated by OLS regression: the constant term is the intercept and the speed term (X1), 
is the slope for the regression of soap scrap on line speed for line 2, the line.n term (X2) is the 
difference between intercepts for the regressions for line 1 and line 2, and the lxs interaction 
term (X1 X2) is the difference between slopes for the regressions for lines 1 and 2. We want to 
test the null hypothesis that the estimated interaction term is equal to zero, that is, differences in 
slopes equals zero, by specifying the reduced parameter null model in the hypothesis.test 
command: 
> Out2 <- lad(soap~line.n+speed,data = neter365) 
> Test.Out <- hypothesis.test(Out2,Out,number.perms = 10000,save.test = TRUE) 

The results below indicated that there was moderate evidence (P = 0.046) that the 
estimated difference in slopes of -0.21 for the interaction term lxs was not equal to zero. Note 
that without dropping 2 of the 3 zero residuals in the null hypothesized model the P-value would 
be slightly smaller at P = 0.031. 
> summary(Test.Out) 

     Least Absolute Deviation Regression (LAD) 
     Hypothesis Test, drop p-q-1 zero residuals 
 
Call:  
hypothesis.test(object1 = Out2, object2 = Out, number.perms = 10000, 
 save.test = TRUE)  
 
 
Specification of Analysis: 
 Number of Observations: 27  
 Response Variable     : soap  
 
        Independent variables      Regression coefficients 
                  (Intercept)                       39.250 
                  line.nLine1                        1.183 
                        speed                       60.420 
 
 Number of iterations: 6 
 
 Sum of absolute values of the residuals: 451.8 
 Solution: Non-Unique 
 
Regression Evaluation: 
 LAD Model:  
 soap ~(Intercept)+speed+line.nLine1+lxs 
 Versus Hypothesis Model: 
 soap ~(Intercept)+line.nLine1+speed 
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Test Summary: 
 Number of permutations                    :  10000 
 Observed Test Statistic                   :  0.16 
 P-value of variables in full model but  
  not reduced model                        :  0.0413* 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Confidence intervals on parameters in LAD regression models can be constructed by 

inverting the hypothesis testing process in an iterative fashion. This is accomplished by 
recognizing that testing for nonzero values of parameters in null hypotheses only requires a 
linear transformation of the dependent variable, y. For example, for the H0: β1 = λ, where λ is 
some hypothesized value of the parameter, you transform y to, say z, by z = y – λX1. The 
transformed values of the dependent variable, z, are then substituted for y in the regression model 
and estimation and hypothesis testing of the null H0: β1 = 0 proceed as before. Cade and Richards 
(1996) describe in more general matrix notation how you accomplish this linear transformation 
for multiple parameters. Note that the formula defaults to what is done automatically when we 
test null hypotheses that parameters, λ, equal zero. The complication that arises in implementing 
this procedure for a (1− α)% confidence interval is that you must iterate through many possible 
values of λ to define the bounds on the set of values of λ with P ≥ α for H0: β1 = λ. This can 
require many transformations of y, estimation with LAD, and testing the null hypothesis with the 
hypothesis.test command. 

As an example of constructing confidence intervals, return to the model of lodgepole pine 
canopy cover as a function of pine basal area and stem density (Cade, 1997). Endpoints of the 
95% confidence interval for the basal area parameter (b1 = 0.935) were given as 0.81–1.05 in 
Cade (1997). This means that the transformations lcc–0.81(apico), call it z81, and lcc–
1.05(apico), call it z105, should have approximate P = 0.05 when z81 and z105 are 
substituted for lcc in the regression model that includes apico (basal area) and picopha (tree 
density) as predictors for the partial model hypothesis of apico. Any transformation of lcc by 
values between 0.81 and 1.05 ought to yield P > 0.05 and any outside of this interval ought to 
yield P ≤ 0.05. Minor discrepancies can occur, of course, because of the resampling variation 
inherent in Monte Carlo procedures and because of discreteness in the permutation distribution. 
We try and make the resampling error as small as possible by using a large number of 
permutations (number.perms=10,000). The dataset fraserf includes the transformations 
z81 and z105, as well as z90 = lcc – 0.90(apico) and z50 = lcc – 0.50(apico). Here we 
know that the interval presented in Cade (1997) is slightly narrower than expected when the 
more recently developed double permutation scheme (Cade, 2005; Cade and Richards, 2006) is 
used because the null model is constrained through the origin. To run the hypothesis test 
corresponding to the null model that the parameter for apico equals 0.81, issue the commands: 
> Out <- lad(z81~-1+apico+picopha,data = fraserf,number.perms = 10000) 
> Out2 <- lad(z81~-1+picopha,data = fraserf,number.perms = 10000) 
> set.seed(111) 
> Test.Out <- hypothesis.test(Out2,Out,number.perms = 10000, 
+     double.permutation = TRUE) 

The output indicates P = 0.0592, well within the Monte Carlo resampling variation of 
0.05 as it should be and only slightly larger than P = 0.0523 obtained without the double 
permutation scheme. 
> summary(Out) 

     Least Absolute Deviation Regression (LAD) 
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Call:  
lad(formula = z81 ~ -1 + apico + picopha, data = fraserf, 
 number.perms = 10000)  
 
 
Specification of Analysis: 
 Number of Observations: 31  
 Response Variable     : z81  
 
        Independent variables      Regression coefficients 
                        apico                      0.12470 
                      picopha                      0.01157 
 
 Number of iterations: 4 
 
 Sum of absolute values of the residuals: 127.5 
 Solution: Successful 
 

> summary(Test.Out) 
     Least Absolute Deviation Regression (LAD) 
     Hypothesis Test with double permutation 
 
Call:  
hypothesis.test(object1 = Out2, object2 = Out, number.perms = 10000, 
 double.permutation = TRUE)  
 
 
Specification of Analysis: 
 Number of Observations: 31  
 Response Variable     : z81  
 
        Independent variables      Regression coefficients 
                      picopha                      0.01282 
 
 Number of iterations: 1 
 
 Sum of absolute values of the residuals: 140 
 Solution: Successful 
 
Regression Evaluation: 
 LAD Model:  
 z81 ~apico+picopha 
 Versus Hypothesis Model: 
 z81 ~picopha 
 
Test Summary: 
 Number of permutations                    :  10000 
 Observed Test Statistic                   :  0.09781 
 P-value of variables in full model but  
  not reduced model                        :  0.0592. 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Similarly, we can run the hypothesis test corresponding to the null that the parameter for 

apico equals 0.50 by issuing the commands: 
> Out <- lad(z50~-1+apico+picopha,data = fraserf,number.perms = 10000) 
> Out2 <- lad(z50~-1+picopha,data =fraserf,number.perms =10000) 
> set.seed(111) 
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> Test.Out <- hypothesis.test(Out2,Out,number.perms = 10000, 
+     double.permutation = TRUE) 

The output here indicates the null hypothesis that the parameter equals 0.50 has P = 
0.0001, much smaller than 0.05 so that this hypothesized parameter value must be outside the 
95% confidence interval. 
> summary(Out) 

     Least Absolute Deviation Regression (LAD) 
 
Call:  
lad(formula = z50 ~ -1 + apico + picopha, data = fraserf, 
 number.perms = 10000)  
 
 
Specification of Analysis: 
 Number of Observations: 31  
 Response Variable     : z50  
 
        Independent variables      Regression coefficients 
                        apico                      0.43470 
                      picopha                      0.01157 
 
 Number of iterations: 4 
 
 Sum of absolute values of the residuals: 127.5 
 Solution: Successful 
 

> summary(Test.Out) 
     Least Absolute Deviation Regression (LAD) 
     Hypothesis Test with double permutation 
 
Call:  
hypothesis.test(object1 = Out2, object2 = Out, number.perms = 10000, 
 double.permutation = TRUE)  
 
 
Specification of Analysis: 
 Number of Observations: 31  
 Response Variable     : z50  
 
        Independent variables      Regression coefficients 
                      picopha                      0.01562 
 
 Number of iterations: 1 
 
 Sum of absolute values of the residuals: 211.2 
 Solution: Successful 
 
Regression Evaluation: 
 LAD Model:  
 z50 ~apico+picopha 
 Versus Hypothesis Model: 
 z50 ~picopha 
 
Test Summary: 
 Number of permutations                    :  10000 
 Observed Test Statistic                   :  0.6561 
 P-value of variables in full model but  
  not reduced model                        :  1e-04*** 
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--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Presently, hypothesized values of the parameter and their transformations must be made 

iteratively by successive approximation, that is, guess at values, compute the P-values, and then 
based on the size of the P-value successively move toward larger or lower values until you have 
values with P = α, which define the confidence interval endpoints. This can require 20 or more 
iterations depending on how close your initial choice of hypothesized parameter values are to the 
final values. It is possible to use asymptotic procedures described in Birkes and Dodge (1993) to 
help pick initial values for confidence interval endpoints that might be close to those obtained by 
the iterative permutation testing process. 

Regression Quantiles 
The quant = num option of the LAD regression command fits any specified conditional 

quantile as a linear regression model. LAD regression is the 0.50 (50th percentile) regression 
quantile. Various regression quantiles, e.g, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95 (that is, 5th, 
10th, 25th, 75th, 90th and 95th percentiles), can be estimated to examine linear trends in a 
dependent variable (y) as a function of one or more independent variables (X). Selecting 
all.quants = TRUE will yield all possible quantile regression estimates. If there is little 
variation in the errors across the independent variables (homogeneous errors), the regression 
quantiles will have similar slopes but different intercepts. However, if the errors are 
heterogeneous across the independent variables, then slopes and intercepts can differ greatly 
(Cade and Richards, 1996; Terrell and others, 1996; Cade and others, 1999; Koenker and 
Machado, 1999). Regression quantiles, thus, provide a way of modeling rates of change 
associated with heterogeneous variation in linear models without having to specify a functional 
link between conditional measures of means and and variances. Regression quantiles are 
especially useful when the consequences of over and under prediction differ in a linear model. 
Cade and Noon (2003) present a primer on quantile regression for ecologists. 

In studies of ecological limiting factors it is often expected that important measured 
processes operate as constraints on the response distribution (y) and, thus, we may focus on 
estimating regression quantiles associated with the upper percentiles (for example, 90–99th) of 
the dependent variable, that is, rates of change estimated are along the upper boundary of the 
distribution as it changes across the independent variables (Terrell and others, 1996; Cade and 
others, 1999; Haire and others, 2000; Cade and Guo, 2000). Rates of change in the responses 
below the boundary constraint may be lower because of the impact of unmeasured processes 
(Cade and others, 1999). Many ecological processes can be considered constraints on responses, 
where rates of change estimated with regression quantiles for upper percentiles might yield new 
insights. Examples include animal responses to habitat, self-thinning in plants, algal productivity 
as a function of limiting nutrients, animal abundance and body size relations in macroecology, 
comparisons of local and regional species diversity, plant productivity as a function of species 
diversity, and competition field experiments. Estimating rates of change for endpoints of some 
interval of quantiles (for example, 10th and 90th percentiles) also provides a flexible way to 
estimate prediction intervals for responses without resorting to untenable distributional 
assumptions. 

Returning to the soap production example, after using the dataset neter365, issue the 
following command: 
> Out <- lad(soap~speed+line.n+lxs,quant = .5,data = neter365) 

The output indicates that the coefficients estimated are identical to those above without 
the quant = 0.5 option, because the 0.5 quantile is LAD regression. Notice also that both the 
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sum of absolute deviations minimized in LAD regression and the sum of weighted absolute 
deviations minimized in regression quantiles are reported. The weights used when minimizing 
sums of absolute deviations in regression quantiles are τ for positive residuals and 1– τ for zero 
and negative residuals, where 0 ≤ τ ≤ 1 is the selected quantile with quant = num. Thus, in this 
example the sum of weighted absolute deviations is exactly half the sum of absolute deviations. 
> summary(Out) 

        Quantile Regression 
 
Call:  
lad(formula = soap ~ speed + line.n + lxs, data = neter365, quant = 
 0.5)  
 
 
Specification of Analysis: 
 Number of Observations: 27  
 Response Variable     : soap  
 For Quantile          : 0.5  
 
        Independent variables      Regression coefficients 
                  (Intercept)                   -3.197e-14 
                        speed                    1.333e+00 
                  line.nLine1                    1.076e+02 
                          lxs                   -2.103e-01 
 
 Number of iterations: 5 
 
 Sum of absolute values of the residuals: 389.4 
 Weighted sum of the absolute deviations: 194.7 
 Solution: Successful 
 
It is possible to test a full versus a reduced parameter regression quantile model with 

either the lad| command with the option test set equal to TRUE or the hypothesis.test, 
where the test statistic is identical in computation as for LAD except that the simple sum of 
absolute deviations are replaced with the sum of weighted absolute deviations (Cade, 2005; Cade 
and Richards, 2006). Validity of hypothesis tests for regression quantiles using this test statistic 
requires the same assumption of independent, identical error distributions as for LAD regression. 
However, we expect most applications of regression quantiles to be made when it is 
unreasonable to assume homogeneous variation across the independent variables, that is, the 
identical error distribution assumption is violated. Therefore, we have included the regression 
quantile rank score test (Koenker, 1994; Koenker and Machado, 1999), its asymptotic P-value 
approximation with a Chi-square distribution, and a permutation approximation that makes use 
of the permutation test for OLS regression. Type I errors of the regression quantile rank score 
test are less sensitive to heterogeneous error distributions because the statistic is based on the 
sign of the residuals from the reduced parameter null model and not their size. However, as Cade 
(2003) and Cade and others (2006) make abundantly clear, valid Type I error rates often will 
require appropriate weighted estimates and test statistics. This quantile rank score test is 
implemented with the option  rank.score = TRUE given with the 
hypothesis.test|command. 

As an example, consider the acorn production data as related to oak (Quercus spp.) forest 
characteristics (Schroeder and Vangilder, 1997) as analyzed with regression quantiles by Cade 
and others (1999). We will estimate 0.10 and 0.90 (10th and 90th percentiles) regression quantiles 
of annual acorn biomass (kg/ha, wtperha) as a function of a forest suitability index (oakccsi) 
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based on canopy cover and number of oak species (Schroeder and Vangilder, 1997) using the 
dataset acorn and will issue the command for a 0.10 regression quantile: 
> Out <- lad(wtperha~oakccsi,quant = .1,data = acorn) 

The command then is issued to test the hypothesis that the slope for the 0.10 quantile 
equals zero with the rank score test: 
> Out2 <- lad(wtperha~1,quant = .1,data = acorn) 
> Test.Out <- hypothesis.test(Out2,Out,number.perms = 10000,rank.score = 
TRUE) 

The output indicates that the estimated slope for the 0.10 regression quantile (21.8) likely 
differs from zero (P = 0.012). 
> summary(Out) 

        Quantile Regression 
 
Call:  
lad(formula = wtperha ~ oakccsi, data = acorn, quant = 0.1)  
 
 
Specification of Analysis: 
 Number of Observations: 43  
 Response Variable     : wtperha  
 For Quantile          : 0.1  
 
        Independent variables      Regression coefficients 
                  (Intercept)                         2.44 
                      oakccsi                        21.77 
 
 Number of iterations: 2 
  
 Sum of absolute values of the residuals: 1526 
 Weighted sum of the absolute deviations: 173.7 
 Solution: Successful 
 
> summary(Test.Out) 
        Quantile Regression 
     Hypothesis Test of Rank Score 
 
Call:  
hypothesis.test(object1 = Out2, object2 = Out, number.perms = 10000, 
 rank.score = TRUE)  
 
 
Specification of Analysis: 
 Number of Observations: 43  
 Response Variable     : wtperha  
 For Quantile          : 0.1  
 
        Independent variables      Regression coefficients 
                  (Intercept)                        12.82 
 
 Number of iterations: 1 
 
 Sum of absolute values of the residuals: 1737 
 Weighted sum of the absolute deviations: 194.2 
 Solution: Successful 
 
Regression Evaluation: 
 0.1 Quantile Regression Model: 
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 wtperha ~(Intercept)+oakccsi 
 Versus Hypothesis Model at Quantile 0.1: 
 wtperha ~(Intercept) 
 
Test Summary: 
 Number of permutations                    :  10000 
 
 Observed Rank Score Test Statistic        :  0.1842 
 P-value of Rank Score Test                :  0.01** 
 
 Asymptotic Rank Score Statistic           :  6.326 
 (Distributed as Chi-square with degrees of  
 freedom equal to difference in number of  
 parameters between full and reduced models) 
 P-Value of Asymptotic RS Stat             :  0.0119* 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Similarly, we can estimate the 0.90 regression quantile for the same functional relation by 

issuing the command: 
> Out <- lad(wtperha~oakccsi,quant = 0.9,data = acorn) 
followed by the command: 
> Out2 <- lad(wtperha~1,quant = 0.9,data = acorn) 
> Test.Out <- hypothesis.test(Out2,Out,number.perms = 10000,rank.score = 
TRUE) 

The output for the 0.90 regression quantile indicates that the rate of change of acorn 
biomass with the suitability index is five times greater (102.3) at the 90th percentile of the 
distribution compared to the 10 th percentile of the distribution (fig. 12). Clearly, there is 
heterogeneous variation in the acorn biomass changes across the acorn suitability index, with 
only larger biomass occurring at higher values of the suitability index. The estimated slope of the 
0.90 regression quantile also likely differs from zero (P = 0.035). Here because of the 
heterogeneity, improved Type I error rates could be obtained by using weighted estimates with 
the rank score tests. 
> summary(Out) 

        Quantile Regression 
 
Call:  
lad(formula = wtperha ~ oakccsi, data = acorn, quant = 0.9)  
 
 
Specification of Analysis: 
 Number of Observations: 43  
 Response Variable     : wtperha  
 For Quantile          : 0.9  
 
        Independent variables      Regression coefficients 
                  (Intercept)                        14.45 
                      oakccsi                       102.30 
 
 Number of iterations: 3 
 
 Sum of absolute values of the residuals: 1722 
 Weighted sum of the absolute deviations: 268.5 
 Solution: Successful 
 

> summary(Test.Out) 
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        Quantile Regression 
     Hypothesis Test of Rank Score 
 
Call:  
hypothesis.test(object1 = Out2, object2 = Out, number.perms = 10000, 
 rank.score = TRUE)  
 
 
Specification of Analysis: 
 Number of Observations: 43  
 Response Variable     : wtperha  
 For Quantile          : 0.9  
 
        Independent variables      Regression coefficients 
                  (Intercept)                        89.92 
 
 Number of iterations: 1 
 
 Sum of absolute values of the residuals: 1951 
 Weighted sum of the absolute deviations: 324.1 
 Solution: Successful 
 
Regression Evaluation: 
 0.9 Quantile Regression Model: 
 wtperha ~(Intercept)+oakccsi 
 Versus Hypothesis Model at Quantile 0.9: 
 wtperha ~(Intercept) 
 
Test Summary: 
 Number of permutations                    :  10000 
 
 Observed Rank Score Test Statistic        :  0.1151 
 P-value of Rank Score Test                :  0.0354* 
 
 Asymptotic Rank Score Statistic           :  4.198 
 (Distributed as Chi-square with degrees of  
 freedom equal to difference in number of  
 parameters between full and reduced models) 
 P-Value of Asymptotic RS Stat             :  0.04048* 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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Figure 12. Average annual biomass of acorns and acorn suitability indices based on oak forest 
characteristics in 43 0.2-ha sample plots in Missouri.  Solid lines are estimates for 6 selected 
regression quantiles. 

Estimates for other regression quantiles can be obtained by changing the value used in the 
option quant = num. Note that the P-values approximated by the permutation evaluation of the 
rank score tests are similar to those produced by the asymptotic Chi-square distributional 
approximation (uses a Chi-square distribution with degrees of freedom equal to difference in 
number of parameters in full versus reduced models). Although the permutation P-values are 
slightly smaller than those for the asymptotic Chi-square approximation, the differences may be 
attributable just to the resampling error associated with the Monte Carlo approximation. 
Simulation research in Cade (2003) and Cade and others (2006) established that the permutation 
version of the rank score test maintains valid Type I error rates at more extreme quantiles (τ) 
with smaller n than does the Chi-square distributional approximation. 

Confidence intervals based on the regression quantile rank score statistic can be formed 
by a process identical to that described above for LAD regression. However, if you want to use 
the asymptotic Chi-square approximation of P-values for computing confidence intervals, there 
are fast implementations in linear programming algorithms available for S-Plus, R, and SAS 
(Koenker, 1994; Cade and others, 1999; Koenker and Machado, 1999). 

A multiple regression quantile example is provided by Cade and others (1999), where 
glacier lily (Erythronium grandiflorum) seedlings (seedlings) are linearly related to the 
number of flowers (flowers) and an index of rockiness (rockiness) in n = 256 contiguous 
2×2 m quadrats (fig. 13). 

To estimate the 95 th regression quantile model issue the following commands and obtain 
the following output: 
> Out <- lad(seedlings~flowers+rockiness,quant = 0.95,data = lily) 
> summary(Out) 
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        Quantile Regression 
 
Call:  
lad(formula = seedlings ~ flowers + rockiness, data = lily, quant = 
 0.95)  
 
 
Specification of Analysis: 
 Number of Observations: 256  
 Response Variable     : seedlings  
 For Quantile          : 0.95  
 
        Independent variables      Regression coefficients 
                  (Intercept)                     20.30000 
                      flowers                      0.08504 
                    rockiness                     -0.08987 
 
 Number of iterations: 5 
 
 Sum of absolute values of the residuals: 3800 
 Weighted sum of the absolute deviations: 272.8 
 Solution: Successful 

 
The estimates indicate a 0.085 increase in seedling numbers with each increase in flower 

numbers at a given level of rockiness, and a decrease of 0.090 of seedling numbers with each 
increase in unit of the rockiness index. We can test that these parameters jointly are equal to zero 
by comparing the full parameter model above with the reduced parameter model having just an 
intercept by the command: 
> Out2 <- lad(seedlings~1,quant = .95,data = lily) 
> Test.Out <- hypothesis.test(Out2,Out,number.perms = 10000,rank.score=TRUE) 
> summary(Test.Out) 

        Quantile Regression 
     Hypothesis Test of Rank Score 
 
Call:  
hypothesis.test(object1 = Out2, object2 = Out, number.perms = 10000, 
 rank.score = TRUE)  
 
 
Specification of Analysis: 
 Number of Observations: 256  
 Response Variable     : seedlings  
 For Quantile          : 0.95  
 
        Independent variables      Regression coefficients 
                  (Intercept)                           16 
 
 Number of iterations: 1 
 
 Sum of absolute values of the residuals: 3377 
 Weighted sum of the absolute deviations: 301.2 
 Solution: Successful 
 
Regression Evaluation: 
 0.95 Quantile Regression Model: 
 seedlings ~(Intercept)+flowers+rockiness 
 Versus Hypothesis Model at Quantile 0.95: 
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 seedlings ~(Intercept) 
 
Test Summary: 
 Number of permutations                    :  10000 
 
 Observed Rank Score Test Statistic        :  0.02857 
 P-value of Rank Score Test                :  0.029* 
 
 Asymptotic Rank Score Statistic           :  7.017 
 (Distributed as Chi-square with degrees of  
 freedom equal to difference in number of  
 parameters between full and reduced models) 
 P-Value of Asymptotic RS Stat             :  0.02995* 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

 

Figure 13. Glacier lily seedling counts, lily flower numbers, and rockiness index for 256 2 x 2 m quadrats  
in subalpine meadow of western Colorado.  Surfaces are for selected regression quantile estimates 
(1 outlying count of 72 seedlings is not plotted). 

The output indicates some evidence that at least one of the parameters is unlikely to equal 
zero (P = 0.030 for asymptotic approximation and P = 0.029 for permutation approximation). 
We can test each of the parameters individually by issuing the series of commands: 
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> Out3 <- lad(seedlings~flowers,quant = 0.95,data = lily) 
> Out4 <- lad(seedlings~rockiness,quant = 0.95,data = lily) 
> test.3 <- hypothesis.test(Out3,Out,number.perms = 10000,rank.score = TRUE) 
> test.4 <- hypothesis.test(Out4,Out,number.perms = 10000,rank.score = TRUE) 

The output indicates stronger evidence that the parameter for rockiness does not equal 
zero (P = 0.036) than for the parameter for flowers (P = 0.073). 
> summary(test.3) 

        Quantile Regression 
     Hypothesis Test of Rank Score 
 
Call:  
hypothesis.test(object1 = Out3, object2 = Out, number.perms = 10000, 
 rank.score = TRUE)  
 
 
Specification of Analysis: 
 Number of Observations: 256  
 Response Variable     : seedlings  
 For Quantile          : 0.95  
 
        Independent variables      Regression coefficients 
                  (Intercept)                     18.58000 
                      flowers                     -0.07273 
 
 Number of iterations: 4 
 
 Sum of absolute values of the residuals: 3460 
 Weighted sum of the absolute deviations: 296.1 
 Solution: Successful 
 
Regression Evaluation: 
 0.95 Quantile Regression Model: 
 seedlings ~(Intercept)+flowers+rockiness 
 Versus Hypothesis Model at Quantile 0.95: 
 seedlings ~(Intercept)+flowers 
 
Test Summary: 
 Number of permutations                    :  10000 
 
 Observed Rank Score Test Statistic        :  0.01715 
 P-value of Rank Score Test                :  0.0372* 
 
 Asymptotic Rank Score Statistic           :  4.17 
 (Distributed as Chi-square with degrees of  
 freedom equal to difference in number of  
 parameters between full and reduced models) 
 P-Value of Asymptotic RS Stat             :  0.04115* 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 

> summary(test.4) 
        Quantile Regression 
     Hypothesis Test of Rank Score 
 
Call:  
hypothesis.test(object1 = Out4, object2 = Out, number.perms = 10000, 
 rank.score = TRUE)  
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Specification of Analysis: 
 Number of Observations: 256  
 Response Variable     : seedlings  
 For Quantile          : 0.95  
 
        Independent variables      Regression coefficients 
                  (Intercept)                     22.00000 
                    rockiness                     -0.06522 
 
 Number of iterations: 4 
 
 Sum of absolute values of the residuals: 3918 
 Weighted sum of the absolute deviations: 278.6 
 Solution: Successful 
 
Regression Evaluation: 
 0.95 Quantile Regression Model: 
 seedlings ~(Intercept)+flowers+rockiness 
 Versus Hypothesis Model at Quantile 0.95: 
 seedlings ~(Intercept)+rockiness 
 
Test Summary: 
 Number of permutations                    :  10000 
 
 Observed Rank Score Test Statistic        :  0.01254 
 P-value of Rank Score Test                :  0.0779 
 
 Asymptotic Rank Score Statistic           :  3.094 
 (Distributed as Chi-square with degrees of  
 freedom equal to difference in number of  
 parameters between full and reduced models) 
 P-Value of Asymptotic RS Stat             :  0.07856 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Both P-values are consistent with the 90% confidence intervals given in Cade and others 

(1999) that did not overlap zero for either variable. Note that the permutation P-values are 
slightly smaller than the Chi-square distribution approximation. The confidence intervals in Cade 
and others (1999) were based on inverting the asymptotic Chi-square distribution approximation 
of the rank score statistic as part of the linear programming solution for regression quantiles that 
are available in the "quantreg" package for R. Because of the heterogeneity evident in this model, 
confidence intervals and rank score testing would be better based on weighted estimates (Cade 
and others, 2006) 

The use of all quantile regression estimates and weighting is provided for an example 
relating the logarithm of Lahontan cutthroat trout (Oncorhynchus clarki henshawi) numbers per 
meter of stream (lnlctm) to stream width:depth ratio (widrat) for n = 71 observations of 
streams across years in Nevada (Dunham and others, 2002; Cade, 2005; Cade and others, 2006). 
The scatter plot in figure 14 (A) indicate moderate heterogeneity and some nonlinearity in the 
relationship. Dunham and others (2002) chose to use a nonlinear model y = exp(β0 + β1X1 + ε) 
estimated in the linear scale by taking natural logarithms of both sides of the equation. Cade 
(2005), Cade and others (2006), and Cade and Richards (2006) also used weighted estimates, 
where the coefficients of the weight function w = (1.310 -0.0017 X1 )-1 were estimated from the 
average pairwise differences (by using expected value obtained from multiresponse sequence 
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procedure) between all possible quantile regression estimates for β0  and for β1 obtained by using 
the all.quants = TRUE option: 

> Out <- lad(lnlctm~widrat,data = lahontan,all.quants = TRUE) 
> summary(Out) 
 All Quantile Regression  
 
Call:  
lad 
 lnlctm ~ widrat 
 lahontan 
 TRUE  
 
 
Specification of Analysis: 
 Number of Observations: 71  
     Dependent Variable: lnlctm  
   Number of Parameters: 2  
    Number of Solutions: 77  
    Solution Result Was: Successful 
 
 
Output can be obtained using QuantValues() 
 
Columns are Quantile,Objective Function Solution, Predicted Y at X-Bar, 
 followed by estimates of coefficients for independent variables.  
 Each row describes an estimated conditional quantile function. 

 
The output object contains a row for each unique interval of quantiles, with column 

variables specifying the upper endpoint of the quantile interval (Quantile), the objective 
function minimized (ObjFuncSol is weighted sum of absolute deviations), the predicted value 
for that quantile at the mean of the independent variables (PredY_Xbar), and the parameter 
estimates (here, b_(Intercept) and b_widrat). Plots of the parameter estimates by quantile 
suggested the linear location-scale (in log scale) form of heterogeneity was a reasonable 
approximation so that a single weight function could reasonably be applied to all quantiles. The 
empirical distribution plots for each parameter estimate by quantile in figure 14 (B and C) were 
made from the weighted estimates by connecting the point estimates with an appropriate step 
function (fig. 14 B and C). The weighted estimates were made by multiplying all variables 
(lnlctm, a column of 1's for the intercept, and widrat) by the weights (wt) to form the 
variables wtlnlctm, wt, and wtwidrat. The model was estimated as: 
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Figure 14. Lahontan cutthroat trout m-1 and width:depth ratios for small streams sampled 1993 to 1999  
(n = 71); exponentiated estimates for 0.90, 0.50, and 0.10 regression quantiles for the weighted model 
w(ln y) = w(β0 + β1X1 + (γ0 + γ1X1)ε), w = (1.310–1.017X1)-1.  Solid lines in (B) and (C) are step 
functions for estimates of β0 and β1 by τ ϵ [0, 1] and dashed lines connect pointwise 90% confidence 
intervals for τ ϵ {0.05, 0.10, 0.15, …, 0.95} based on inverting the double permutation test. 

> Out <- lad(wtlnlctm~-1+wt+wtwidrat,data = lahontan,all.quants = TRUE) 
> summary(Out) 

 All Quantile Regression  
 
Call:  
lad 
 wtlnlctm ~ -1 + wt + wtwidrat 
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 lahontan 
 TRUE  
 
 
Specification of Analysis: 
 Number of Observations: 71  
     Dependent Variable: wtlnlctm  
   Number of Parameters: 2  
    Number of Solutions: 79  
    Solution Result Was: Successful 
 
 
Output can be obtained using QuantValues() 
 

   Columns are Quantile, Objective Function Solution, Predicted Y at X-Bar, 
 followed by estimates of coefficients for independent variables.  
 Each row describes an estimated conditional quantile function. 
 
Note that the variable wt (= 1 ×wt) replaces the usual constant term because the weighted 

model requires that weights are multiplied by all independent variables including the column of 
1's for the constant. The confidence intervals formed around the parameter estimates by quantiles 
in figure 14 (B and C) were made by using the drop in dispersion permutation test with double 
permutation (because null models for weighted estimates were constrained through the origin). 
Cade and Richards (2006) formed 90% confidence intervals at quantiles = 0.05, 0.10, 0.15 , …, 
0.90, 0.95 by successive iteration of hypothesized values as explained for LAD regression 
starting on page 79. These intervals were only slightly narrower than intervals formed by 
inverting the permutation version or Chi-square distributional approximation of the rank score 
test (Cade and others, 2006). Here, we provide an example of the hypothesis tests for the 
weighted 0.90 quantile regression estimates: 
> Out <- lad(wtlnlctm~-1+wt+wtwidrat,data = lahontan,quant=.9) 
> summary(Out) 

        Quantile Regression 
 
Call:  
lad(formula = wtlnlctm ~ -1 + wt + wtwidrat, data = lahontan, quant = 
 0.9)  
 
 
Specification of Analysis: 
 Number of Observations: 71  
 Response Variable     : wtlnlctm  
 For Quantile          : 0.9  
 
        Independent variables      Regression coefficients 
                           wt                      0.05762 
                     wtwidrat                     -0.02154 
 
 Number of iterations: 2 
 
 Sum of absolute values of the residuals: 82.41 
 Weighted sum of the absolute deviations: 8.797 
 Solution: Successful 
 

> Out1 <- lad(wtlnlctm~-1+wt,data = lahontan,quant = .9) 
 

> Out2 <- lad(wtlnlctm~-1+wtwidrat,data = lahontan,quant = .9) 
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> Test.Out <- hypothesis.test(Out,Out1,double.permutation = TRUE) 

 
> summary(Test.Out) 

        Quantile Regression 
     Hypothesis Test with double permutation 
 
Call:  
hypothesis.test(object1 = Out, object2 = Out1, double.permutation = 
 TRUE)  
 
 
Specification of Analysis: 
 Number of Observations: 71  
 Response Variable     : wtlnlctm  
 For Quantile          : 0.9  
 
        Independent variables      Regression coefficients 
                           wt                      -0.6764 
 
 Number of iterations: 1 
 
 Sum of absolute values of the residuals: 80.3 
 Weighted sum of the absolute deviations: 9.831 
 Solution: Successful 
 
Regression Evaluation: 
 0.9 Quantile Regression Model: 
 wtlnlctm ~wt+wtwidrat 
 Versus Hypothesis Model at Quantile 0.9: 
 wtlnlctm ~wt 
 
Test Summary: 
 Number of permutations                    :  5000 
 Observed Test Statistic                   :  0.1176 
 P-value of variables in full model but  
 not reduced model                        :  0.0018** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 

> Test.Out <- hypothesis.test(Out,Out2,double.permutation = TRUE) 
> summary(Test.Out) 

        Quantile Regression 
     Hypothesis Test with double permutation 
 
Call:  
hypothesis.test(object1 = Out, object2 = Out2, double.permutation = 
 TRUE)  
 
 
Specification of Analysis: 
 Number of Observations: 71  
 Response Variable     : wtlnlctm  
 For Quantile          : 0.9  
 
        Independent variables      Regression coefficients 
                     wtwidrat                     -0.02022 
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 Number of iterations: 1 
 
 Sum of absolute values of the residuals: 81.26 
 Weighted sum of the absolute deviations: 8.808 
 Solution: Successful 
 
Regression Evaluation: 
 0.9 Quantile Regression Model: 
 wtlnlctm ~wt+wtwidrat 
 Versus Hypothesis Model at Quantile 0.9: 
 wtlnlctm ~wtwidrat 
 
Test Summary: 
 Number of permutations                    :  5000 
 Observed Test Statistic                   :  0.001285 
 P-value of variables in full model but  
  not reduced model                        :  0.7912 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 
Note that both null hypothesized models above do not include a constant for a column of 

1's because of the weighting scheme, so that the double permutation option 
double.permutation was used to provide better Type I error rates. The output indicates a 
strong, nonzero slope but an intercept that doesn't differ from zero (in the log scale) for the 0.90 
regression quantile. Notice that these results are consistent with the 90% CI which indicate 
nonzero slopes for quantiles  ≥0.80 and nonzero intercepts for quantiles ≤ 0.70. 

There are several alternative approaches for estimating weights discussed in Cade and 
others (2005, 2006), Koenker (2005), and Cade and Richards (2006).  

Ordinary Least Squares Regression (OLS) 
Estimation and permutation testing alternatives for the familiar ordinary least squares 

regression are available with the OLS command that feeds the argument OLS = TRUE option to 
the lad command. OLS regression estimates rates of change in conditional means. The 
permutation testing approaches are identical to those used for LAD regression, and are described 
in Kennedy and Cade (1996) and Anderson and Legendre (1999). The test statistic is similar in 
structure to that for LAD regression, except for OLS Tobs equals (sum of squared residuals for 
reduced parameter model–sum of squared residuals for full parameter model) / sum of squared 
residuals for full model. Large values of Tobs are evidence against the null hypothesis that the 
parameter(s) equal(s) zero. Our test statistic is equivalent to an F statistic without the degrees of 
freedom (df), which are not necessary because they are invariant under permutation. Tobs × (df 
full model/(df reduced–df full model)) = F statistic with numerator df equal to df reduced–df full 
model and denominator df equal to df full model. For testing all slope parameters equal zero, the 
dependent variable is permuted against the matrix of independent variables, and for testing 
partial models (subhypotheses) involving some subset of parameters, residuals from the reduced 
parameter, null model are permuted to the matrix of independent variables. The benefits and 
validity of these permutation schemes are described in Kennedy and Cade (1996) and Anderson 
and Legendre (1999). 

We will demonstrate the OLS permutation procedure by returning to the soap scrap 
example previously analyzed with LAD regression (fig. 11). Issue the following commands: 
> Out <- ols(soap~speed+line.n+lxs,data = neter365) 
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We see in the output below that the estimate for the parameters differs slightly from those 
estimated with LAD regression. In particular, notice that the estimate for the interaction term of 
line speed and production line number is -0.176 for OLS compared to -0.210 for LAD 
regression. 
> summary(Out) 

 Ordinary Least Squares Regression 
 
Call:  
ols(formula = soap ~ speed + line.n + lxs, data = neter365)  
 
 
Specification of Analysis: 
 Number of Observations: 27  
 Response Variable     : soap  
 
        Independent variables      Regression coefficients 
                  (Intercept)                       7.5740 
                        speed                       1.3220 
                  line.nLine1                      90.3900 
                          lxs                      -0.1767 
 
 
 Sum of squares of the residuals: 9904 
 
We can test that the interaction coefficient for lxs equals zero by using the 

hypothesis.test command after the OLS command similar to what was done for LAD 
regression: 

 
> set.seed(39) 
> Out2 <- ols(soap~speed+line.n,data = neter365) 
> Test.Out <- hypothesis.test(Out,Out2,number.perms = 10000,save.test = TRUE) 
> summary(Test.Out) 

 Ordinary Least Squares Regression 
     Hypothesis Test 
 
Call:  
hypothesis.test(object1 = Out, object2 = Out2, number.perms = 10000, 
 save.test = TRUE)  
 
 
Specification of Analysis: 
 Number of Observations: 27  
 Response Variable     : soap  
 
        Independent variables      Regression coefficients 
                  (Intercept)                       27.280 
                        speed                        1.231 
                  line.nLine1                       53.130 
 
 
 Sum of squares of the residuals: 10714 
 
Regression Evaluation: 
 Ordinary Least Squares:  
 soap ~(Intercept)+speed+line.nLine1+lxs 
 Versus Hypothesis Model: 
 soap ~(Intercept)+speed+line.nLine1 
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Test Summary: 
 Number of permutations                    :  10000 
 Observed Test Statistic                   :  0.08175 
 P-value of variables in full model but  
  not reduced model                        :  0.1831 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
The output indicates that there is little evidence to believe that the interaction term (lxs) 

differs from zero with P = 0.1831. 
The normal theory test of the same estimate yields F1, 23 = 1.88 with P = 0.184, indicating 

the similarity of the permutation and normal theory probabilities for this example. Remember, 
that the LAD regression estimate (-0.21) and permutation test suggested that there was some 
evidence that the interaction term differed from zero with P = 0.046. As explained in Cade and 
Richards (1996), the one outlying value for line 2 (circled value in fig. 11) has a studentized 
residual of 3.18, and though not a large outlier, has enough impact on the OLS regression 
estimate to reduce the magnitude of the lxs interaction term and increase the standard error of 
the estimate. If this outlier is deleted, the OLS estimate for the interaction term lxs becomes -
0.23 with F1, 23 = 3.70 and P = 0.068, much more similar to the LAD estimate and test results. 
Minor outliers such as this one (fig. 11) are likely to be missed or ignored in many analyses 
made with OLS regression and, thus, not detect nonzero effects with as much power as possible. 
LAD regression estimates and their permutation test are far less sensitive to the impacts of one or 
a few outliers (Cade and Richards, 1996; Mielke and Berry, 2001). 

G-sample and 1-sample Goodness-of-fit Coverage Tests 
The g-sample and 1-sample goodness-of-fit variants of the empirical coverages tests 

(Mielke and Yao, 1988, 1990; Mielke and Berry, 2001) are alternatives to the Kolmogorov-
Smirnov family of tests for comparing cumulative distribution functions of continuous variates. 
If x1/ i < ... < xni/ i are the ni order statistics of the ith sample (i = 1, ..., g), N = sum of the ni from i 
= 1 to g, and FN(x) = (number of observed values among the N pooled values which are ≤ x)/(N 
+ 1), the ni + 1 coverages associated with the ni observed values of the ith sample (i = 1, ..., g) are 
denoted by Cj/ i = FN(xj/ i)–FN(xj–1/ i). Consider an example with two groups of four and three 
observations with order statistics x1/ 1 < x2/ 1 < x3/ 1 < x1/ 2 < x4/ 1 < x2/ 2 < x3/ 2. The N + 1 = 8 
empirical coverages are C1/ 1 = C2/ 1 = C3/ 1 = C3/ 2 = 1/8, C4/ 1 = C2/ 2 = 2/8, C5/ 1 = 3/8, and C1/ 2 = 
4/8, for example, C4/ 1 = 5/8 ((the number of observations ≤ x4/ 1)/8)–3/8 ((the number of 
observations ≤ x3/ 1)/8) = 2/8.  The coverage test statistic is a function of the absolute value of the 
difference between the observed coverages (Cj/ i) and their expected value (ni + 1)-1 raised to 
some exponent v. The 1-sample goodness-of-fit coverage test implemented here is based on 
raising the absolute value of the coverages to an exponent of 1, and is equivalent to the test 
described by Sherman (1950). A special variant of this goodness-of-fit test for circular 
distributions is equivalent to Rao's (1976) spacing test for a uniform circular distribution. 
Probabilities under the null hypothesis are provided by a Pearson type III approximation based 
on the exact mean, variance, and skewness for the 1-sample goodness-of-fit test and based on 
Monte Carlo resampling approximations for g-sample tests. 

We will examine a two group example of the coverage test by returning to the blue 
grouse migration example given for mrpp. Here we will examine just the migration distances 
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(dist) since the coverage test is limited to univariate comparisons. Quantile plots of the 
distances are given in figure 15. 

The commands to compare these data are: 
> set.seed(24) 
> Out <- coverage(variable = bgrouse$distance,group = bgrouse$sex, 
+     number.perms = 100000) 
and the output is: 
> summary(Out) 

 Univariate G-Sample Empirical Coverage Test  
 
Call:  
coverage(variable = bgrouse$distance, group = bgrouse$sex, 
 number.perms = 1e+05)  
 
 
 
Specification of Analysis: 
 Number of Observations:  21  
 Number of Groups      :  2  
 Distance Exponent     :  1  
 Number of Permutations:  100000  
 
 
Group Summary: 
  Group Value  Group Size 
            3           9 
            4          12 
 
 
 Results: 
 Observed coverage statistic             :  1.122 
 Mean of coverage statistic              :  0.9818 
 Estimated variance of coverage statistic:  0.03034 
 Standard deviation of the variance 
  of the coverage statistic              :  0.0001314 
 
 Observed standardized coverage statistic:  0.803 
 Skewness of observed coverage statistic :  0.05628 
 Probability (Pearson Type III) 
 of a larger or equal coverage statistic :  0.21 
 Probability (Resampled) 
 of a largeror equal coverage statistic  :  0.1963 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
The option number.perms = 100000 requested that we use 100,000 resamples for the 

Monte Carlo approximation of the P-values. Two probabilities are reported from this 
approximation, one which is the standard Monte Carlo approach of referencing the observed test 
statistic to those generated by the resampling, and a second which uses the resampled statistics to 
estimate the variance and skewness of the sampling distribution to be evaluated with the Pearson 
type III curve. Note their similarity here. We obtained P = 0.196 (Monte Carlo resampling 
approximation), which suggests that there is little evidence to conclude that the cumulative 
distributions of male and female blue grouse migration distances differ. It also is possible to get 
an exact enumeration of all possible permutations of the data for the coverage test statistic for 
small sample sizes (n < 24) by using the exact = TRUE option, which gives a P = 0.204 for 



 70 

the data in figure 15. Interestingly, comparisons made with mrpp with expon = 1 yield P = 
0.008 (exact enumeration) and with mrpp and expon = 2, c.form = 2 (permutation version 
of t-test) yield P = 0.040 (exact enumeration), both which suggest greater evidence that male and 
female migration distances differ. 
 

 

Figure 15. Quantile plots of migration distances for 9 male and 12 female blue grouse (data from Cade and 
Hoffman, 1993).  

Consider now the univariate comparisons of elevation changes (elev) made by male and 
female blue grouse in migration (fig. 16). 
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Figure 16. Quantile plots of elevation changes (m) made by 9 male and 12 female blue grouse when 
migrating from breeding to winter areas (data from Cade and Hoffman, 1993).  

We can compare these distributions with the coverage statistic by issuing the commands: 
> Out <- coverage(variable = bgrouse$elev,group = bgrouse$sex,exact = TRUE) 

Here the P = 0.019 yields similar evidence of differences in movements as does mrpp 
with expon = 2, c.form = 2 (P = 0.010, exact), whereas mrpp with expon = 1 (P = 
0.004, exact) yields slightly stronger evidence of differences. 
> summary(Out) 

 Exact Univariate G-Sample Empirical Coverage Test  
 
Call:  
coverage(variable = bgrouse$elev, group = bgrouse$sex, exact = TRUE)  
 
 
 
Specification of Analysis: 
 Number of Observations:  21  
 Number of Groups      :  2  
 Distance Exponent     :  1  
 
 
Group Summary: 
  Group Value  Group Size 
            3           9 
            4          12 
 
 
 Results: 
 Observed coverage statistic             :  1.348 
 Probability (Exact) 
 of a larger or equal coverage statistic  :  0.01884* 
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--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
The power characteristics to detect nonzero differences between the groups clearly differ 

among these various test statistics. Mielke and Berry (2001) give other examples where 
conclusions differ greatly for coverages tests compared to MRPP comparisons. More extensive 
simulation research is needed to better characterize the types of distributional differences better 
detected by the coverage tests relative to MRPP. Simple location shifts (change in medians) 
appear to be detected with greater power by MRPP than by the coverage tests. 

The 1-sample goodness-of-fit coverage tests are of the Kendall-Sherman type (Mielke 
and Berry, 2001). Given an observed set of univariate data with order statistics x1 < x2 < ..., <xn, 
for i = 1 to n these values must be transformed to the cumulative probability of the distribution 
function F(x) specified under the null hypothesis, U(i) = F(xi) for i = 1 to n. These U(i) are then 
the probability integral transformed values used in the coverage test. For example, consider the 
five values given by Bradley (1968, p. 301–302) that were hypothesized to come from a normal 
distribution with mean = 3 and standard deviation = 2; -0.311, -0.078, 0.555, 1.462, and 5.711. 
The data brad302 has these five values (X) and the five transformed cumulative probabilities 
from a normal distribution with a mean = 3 and standard deviation = 2 for these values (FX). The 
1-sample goodness-of-fit test for these data are implemented by issuing the commands: 
> Out <- coverage(variable = fx,data = brad302) 

The output below yield P = 0.031, which suggests that there is some evidence to support 
the belief that these five observations did not come from a population with a normal distribution 
having a mean = 3 and standard deviation = 2, similar to conclusions reached with the 
Kolmogorov-Smirnov goodness-of-fit test (Bradley, 1968, p. 301–302). 
> summary(Out) 

 Kendall-Sherman Goodness of Fit Test  
 
Call:  
coverage(variable = fx, data = brad302)  
 
 
Specification of Analysis: 
 Number of Observations    : 5  
 Number of Intervals       : 5  
 
 
 Results: 
 Observed Statistic T      :  1.05 
 Expected Statistic T      :  0.6698 
 Variance of Statistic T   :  0.03755 
 Standardized statistic T  :  1.96 
 Skewness of statistic T   :  0.2467 
 
 P-value of observed statistic, 
  P(Expected ≥ Observed)  :  0.03135* 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1   
 
Because there are so many possible distributions that might be hypothesized and used 

with the 1-sample goodness-of-fit coverage test, we have not implemented any specific 
cumulative distribution function transformations in Blossom. We expect the user to make such 
transformations on the data prior to conducting an analysis in Blossom. There is one special 
cumulative distribution function transformation offered in Blossom because it is not commonly 
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available in other statistical packages. That is we transform the data to a cumulative uniform 
random distribution on the unit circle to test the null hypothesis that the sample came from a 
population with a uniform random circular distribution. This is done with the coverage test 
option interv = num, where the number provided tells the test how many units describe the 
circular units of measure recorded (for example, interv = 360 would be used for angular 
orientations recorded in degrees). When these transformed values are tested with the coverage 
test, it performs a goodness-of-fit test equivalent to Rao's (1976) spacing test for uniformity of 
circular distributions. We will consider the example given by Rao (1976) for the compass 
orientation at which 10 homing pigeons departed when released 25 km west of their loft: 20, 35, 
350, 120, 85, 345, 80, 320, 280, and 85 degrees. Use the dataset rao. 

 
> Out <- coverage(variable = angl,interv = 360,data = rao) 

The output below has P = 0.328 for an observed test statistic = 0.7611. This observed test 
statistic is related to Rao's U by (360/2) Tobs = U. Rao obtained U10 = 137 degrees. 
> summary(Out) 

 Kendall-Sherman Goodness of Fit Test  
 
Call:  
coverage(variable = angl, interv = 360, data = rao)  
 
 
Specification of Analysis: 
 Number of Observations    : 10  
 Number of Intervals       : 9  
 Arc distance used         : 360  
 
 
 Results: 
 Observed Statistic T      :  0.7611 
 Expected Statistic T      :  0.6974 
 Variance of Statistic T   :  0.02304 
 Standardized statistic T  :  0.42 
 Skewness of statistic T   :  0.1888 
 
 P-value of observed statistic, 
  P(Expected ≥ Observed)  :  0.3278 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1    
  
It is important to point out that the coverage tests assume continuous data with no tied 

values. The grouse examples above for the g-sample coverage tests had two tied values for both 
distances and elevations. This is only a minor violation of the assumption of continuity that 
likely has minimal impact on the analysis. At this point in time it is difficult to say what 
proportion of a sample comprised of tied observations constitutes a serious violation of the 
continuity assumption of the coverage tests. Beware of tied values. 

 
 

Appendix 1. Common Statistical Tests Embraced by the MRPP Command 
Multiresponse permutation procedures (MRPP) can duplicate many common statistical 

tests (the parametric tests listed below are all permutation versions). 
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     Two-sample t-test 
     One-way analysis of variance 
     Multivariate analysis of variance 
     Hotelling's T2 
     Median test (2 and k-sample) 
     Wilcoxon-Mann-Whitney test 
     Kruskal-Wallis test 
     Goodman and Kruskal contingency table tests of association 
                  (tau-a, tau-b) 
     Generalized runs tests (including Wald-Walfowitz runs test) 
     Durbin-Watson for univariate first-order autoregression 
     Schoener's t2/r2 for bivariate first-order autoregression 

 
The multiresponse permutation procedures for randomized block data (MRBP) and 

permutation tests for matched pairs (PTMP) can duplicate the following tests (the parametric 
tests listed below are all permutation versions). 

 
     Matched pairs and 1-sample t-test 
     Analysis of variance for complete randomized blocks 
     Sign test 
     Wilcoxon signed rank test 
     Pearson correlation coefficient 
     Spearman rank correlation 
     Kendall tau (correlation) 
     Friedman's test for randomized blocks 
     Spearman's footrule and multi-block extension 
     Cochran's Q and McNemar's tests 
     Cohen's kappa 
 
Other less familiar tests are also known to be special cases of MRPP and MRBP. Be 

aware, too, that many of the above tests are strictly univariate or bivariate, but MRPP and MRBP 
often generalize to the multivariate case as well. Further, most of the above listed tests use the 
square of Euclidean distance in the definition of the test statistic, whereas MRPP and MRBP 
have the option of choosing a distance measure commensurate with the data space. The 
generalized distance function in MRPP yields alternative, often more powerful versions of these 
tests. 

 

Appendix 2. Compilation of the internal Blossom code 
The code that performs the statistical analysis for all functions in the Blossom package is 

based on the code used in the Blossom statistical software developed by Brian Cade and Jon 
Richards at the U.S. Geological Survey.  The Fortran subroutines required to run the package are 
compiled into either a .so (shared object on Linux) or a .dll (dynamic-linked library on 
Windows).  The Fortran code has no dependencies on external libraries or subroutines with the 
exception of some subroutines available in R which are used for printing from Fortran, 
generating random numbers (done indirectly by calling C functions which in turn use R), and 
checking if the user has tried to escape the current function call.  Given the dependencies on the 
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subroutines available through R, the .dll/.so should be compiled using the compiler available 
through Rtools which will find these subroutines automatically for example using R CMD 
SHLIB InternalFcts.f90 myHelp.c -o Blossom.dll will build the .dll correctly.  No flags are 
required and a Makevars file has not been written for this package.  Building the .dll from source 
code on windows requires the appropriate version of Rtools and building the entire package from 
source will require other tools as described in``R Installation and Administration'' which is 
available on the CRAN website (http://cran.r-project.org/manuals.html).  Once the proper tools 
are installed and paths are correctly set the command 
install.packages("Blossom.tar.gz",type = "source") can be used to build the 
package from source.  Building R packages from source code under Windows is nontrivial given 
the list of tools and intricate setup required and should not be undertaken without good reason.    

 

Appendix 3. Blossom Statistics Program Installation, Configuration, 
Requirements 
Blossom Requirements and Program Limits 

Development and testing was done originally under Windows 98 and NT but for the last 
few years we have used only Windows 2000, XP, and 7. 

Blossom allocates virtual memory space dynamically at runtime. This means that the 
amount of memory required by Blossom depends on the program analyses being run and the size 
of the data and associated internal storage required for the analysis. If this exceeds the physical 
Random Access Memory (RAM) available, Blossom uses Windows virtual memory 
management. This runtime memory required cannot exceed the paging file size (swap space) 
available to Windows. Documentation to Windows virtual memory management should be 
consulted. 

Internally, Blossom has some limits on the amount of data it can support. The total 
amount of memory the program and dynamically allocated array space can occupy is about 2 
gigabytes. Here are some limits within Blossom: 
• Number of elements in a Blossom command: 1024 (command plus all variables and options 

and delimiters). 
• Maximum single command element length in ASCII representation: 25 bytes 
• Maximum size of Blossom command: 8192 bytes 
• Number of variables: 1024 
• Number of observations: about 2 billion (depends on number of variables, total memory 

limited to about 2GB) 
• Number of quantiles in a Median and Quantile (MEDQ) analysis: 250,000,000 
• Number of observations in a MEDQ: 250,000,000 
• Number of groups in one MEDQ: 250,000,000 
• Maximum group size in MEDQ: 250,000,000 
• Maximum number of variables in a MEDQ analysis: 255 
• Maximum number of blocks in an Exact Multiresponse Randomize Block Procedure: 9 
• Dataset size: Limit of Windows Virtual Memory (depends on associated memory required 

for an analysis) 
• Variable name size: 25 bytes 
• Maximum significant digits of double precision numbers: about 15 
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• Missing value internal representation: 0.10 X 10–37 (no datum within a dataset should have 
this value) 

Note that there may be other, smaller limits depending on the combination of all factors 
considered. 

 
Some specific Blossom statistical analyses require minimum numbers of elements: 
• Minimum number of observations for Multi-Response Permutation Procedure (MRPP): 6 
• Minimum number of groups for MRPP: 2 
• Minimum group size for MRPP: 2 
• Minimum number of observations for Exact MRPP: 3 
• Minimum number of groups for an Exact MRPP: 2 
• Minimum group size for Exact MRPP: 2 
• Minimum number of groups for Multiresponse Randomized Block Procedure (MRBP): 2 
• Minimum number of groups for an MRBP: 2 
• Minimum number of blocks for Exact MRBP: 2 
• Minimum number of cases for Permutation Test for Matched Pairs (PTMP): 3 
• Minimum number of observations for Multi-Response Sequence Procedure (MRSP): 6 
• Minimum number of observations for Exact MRSP: 2 
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Appendix 4. Blossom Development and Testing 
The primary computing routines in the Blossom package were  written in Fortran 95.  

Hundreds of hours of testing have gone into this (and previous) version of Blossom since 
development was initiated in 1989. We have done everything possible to ensure that our 
modifications of the principal computing routines for the MRPP family of statistics obtained 
from Paul. W. Mielke, Jr., yield numerical results identical to the original routines. We made 
comparisons with published and other known results, and had Dr. Mielke compare some of his 
original analyses with our program. Similar comparisons of numerical output were made for the 
regression quantile and rank score tests made with programs provided by Roger Koenker. No 
doubt, some errors remain undetected and we urge you to report any obvious or suspicious errors 
to us. We recommend running analyses on the datasets provided with the Blossom software to 
see if your computer duplicates the output in the User Manual and output files.    
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