NATIONAL IMAGERY AND MAPPING AGENCY

DEPARTMENT OF GEODESY AND GEOPHYSICS

GRAVITY STATION DATA FORMAT

&

ANOMALY COMPUTATIONS

30 JULY 1999

DEFINITIONS AND EXPLANATIONS

1. Observed (or measured) Gravity (g) is the value of gravity at the station location. All values have been adjusted to the International Gravity Standardization Net of 1971.

2. Theoretical (Normal) Gravity (γ) is the reference gravity value obtained from the gravity field of the World Geodetic System (WGS 84) reference ellipsoid of revolution. It is given in closed form by:

$$\gamma = (978032.53359) \times (1+0.00193185265241 \sin^2 \phi) \text{ mgal}$$
(1)
(1-0.00669437999014 sin² \phi)^{1/2}

where ϕ equals geodetic latitude. In analytical form, equation (1) is given by

$$\gamma = \gamma_{\mathsf{e}} \frac{(1 + k \sin^2 \phi)}{(1 - e^2 \sin^2 \phi)^{1/2}} \tag{1a} **$$

3. Atmospheric Gravity Correction (δg_A) is a correction that is added to observed gravity. It is necessary because the WGS 84 earth's gravitational constant includes the mass of the atmosphere. It is given by 1.0471

$$\delta g_{A} = 0.87 e^{-0.116[(h/1000)^{1.047}]} mgal \text{ for } h \ge 0$$
(2)

$$\delta g_{A} = 0.87 mgal \text{ for } h < 0$$

where h is the elevation with respect to sea level (SL).

4. Vertical Gradient of Normal Gravity $(\partial \gamma / \partial h)$ is the rate of change of theoretical gravity in a vertical direction at the ellipsoidal surface. It is given by

$$\frac{\partial \gamma}{\partial h} = -2\frac{\gamma}{a} (1 + f + m - 2f(\sin^2 \phi)). \tag{3}$$

There is also a second order term which can be appreciable at high elevations. An approximation of the second order term is

$$\frac{\partial^2 \gamma}{\partial h^2} = 6 \frac{\gamma}{a^2} \tag{4}$$

1,2 reference: Heiskanen, W. & Moritz, H., <u>Physical Geodesy</u>, 1967, pp. 78, 79 ** NOTATION FOR EQUATION (1a)

$$k = constant = \frac{b\gamma_p}{a\gamma_e} - 1$$

a = semimajor axis (WGS 84 Ellipsoid)

- γ_p = normal gravity at the poles (WGS 84 EGM 96 Earth Gravity Model)
- γ_e = normal gravity at the equator (WGS 84 EGM 96 Earth Gravity Model)
- ϕ = geodetic latitude
- e^2 = square of the first eccentricity (WGS 84 Ellipsoid)

5. Free-Air Anomaly (Δg_t) is defined as the difference between observed gravity on the physical surface (P) and normal gravity on the telluroid (Q). The telluroid is defined as that surface where the potential of normal gravity is equal to the actual potential on the physical surface. The height above the ellipsoid at which the normal potential is equal to the actual potential on the physical surface is called the normal height. The gravity anomaly formulas given in section **8** are based on the assumption that the normal height is equal to the elevation of the gravity station.

6. Bouguer Anomaly (Δg_B) is computed through a mass normalization process in which masses above the geoid are removed and mass deficiencies below the geoid are restored to a standard density of 2.670 grams/cm³. These mass layers are approximated by flat plates of finite thickness, infinite extent, and uniform density. These plates are referred to as Bouguer plates. The gravitational attraction of such a plate can be rigorously computed by the formula:

$$\delta g_{_{B}} = 2\pi G \rho h$$

where G is the Universal Constant of Gravitation (WGS 84: $6.673 \times 10^{-8} \text{ cm}^{3}/\text{gram}\cdot\text{sec}^{2}$),

- ρ is the density of the Bouguer plate in grams/cm³,
- h is the thickness of the Bouguer plate.

7. Summary of Symbols:

<u>Symbol</u>	Description	
$\Delta {f g}_{_{f}}$	Free-Air Gravity Anomaly	(mgals)
$\Delta \mathbf{g}_{_{\mathrm{B}}}$	Bouguer Gravity Anomaly	(mgals)
$\delta \boldsymbol{g}_{_{\!B}}$	Gravitational attraction of Bouguer plate	(mgals)
$\delta \boldsymbol{g}_{_{\!\!\boldsymbol{A}}}$	Atmospheric Correction	(mgals)
γ	Theoretical Gravity	(mgals)
g	Observed Gravity	(mgals)
h	Elevation of Observation Site, Land Surface, Space (Airborne), Ice, or Water	(meters)
d	Supplemental Elevation (Depth of Ocean, Lake, Ice, or Instrument)	(meters)
ρ	Density	(grams/cm ³)

The following table lists Bouguer correction factors for various densities which are used in the Anomaly Computations: $2\pi G \rho$

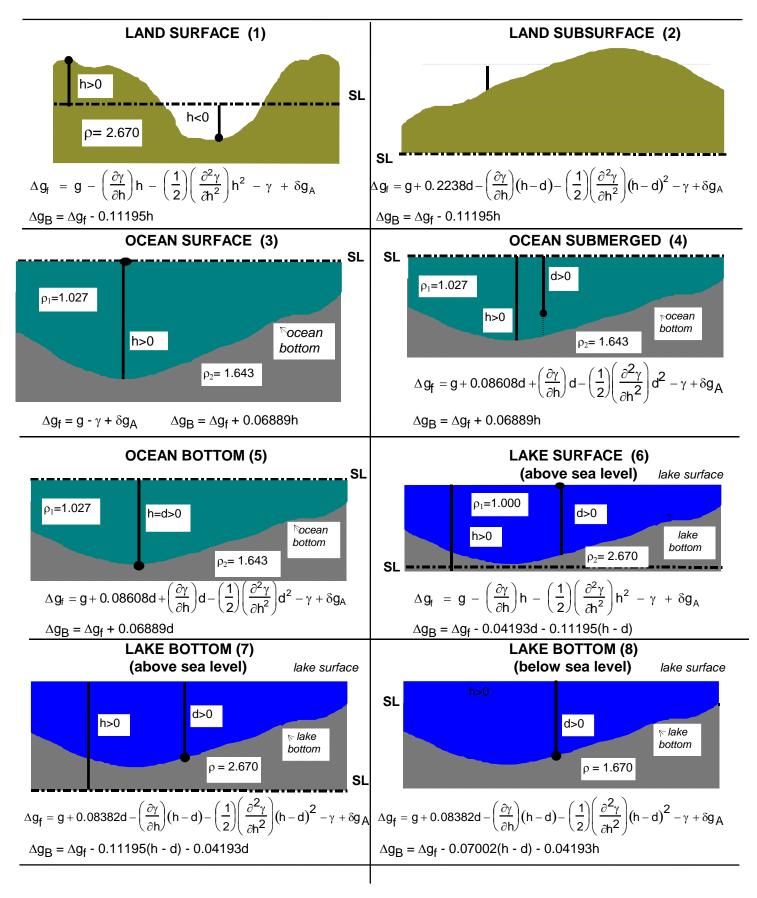
	$\underline{\rho}$	<u>2πGp</u>
Fresh Water	1.000	0.04193
Salt Water	1.027	0.04305
Ice	0.917	0.03845
Land	2.670	0.11195
Land - Fresh Water	1.670	0.07002
Land - Salt Water	1.643	0.06889
Land and Ice	1.753	0.07350

The WGS 84 parameters used in equations 1 - 4 are as follows:

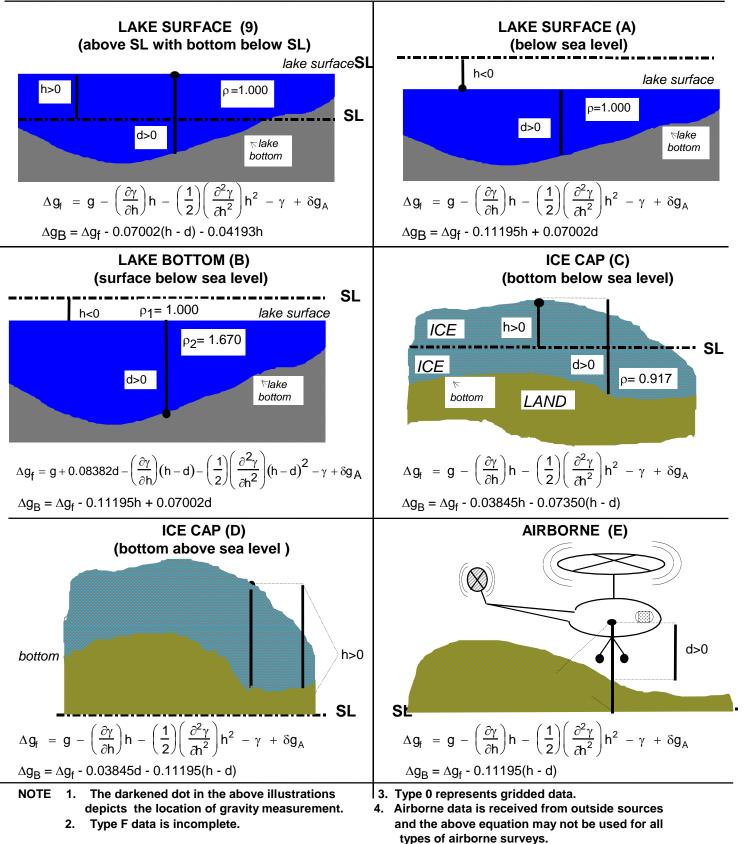
Semimajor axis	a =	= 6,378,137 m
Semiminor axis	b =	= 6,356,752.3142 m
Eccentricity	e =	0.081819190842622
	$e^2 =$	0.00669437999014
Angular Velocity	ω =	\pm 7,292,115 x 10 ⁻¹¹ radians/sec \pm 0.1500 x 10 ⁻¹¹ radians/sec
Flattening	f =	= 0.00335281066474 (unitless)
Normal Equatorial Gravity	γ _e =	= 9.7803253359 m/sec ²
Normal Gravity at Poles	γ_p =	= 9.8321849378 m/sec ²
Normal Gravity Constant	k =	0.00193185265241
$m = \frac{\omega^2 a^2 b}{GM}$	m =	0.00344978650684 (unitless)
Gravitational Constant	GM =	$ = 3,986,004.418 \times 10^8 \text{ m}^3/\text{sec}^2 $ $ \pm 0.1 \times 10^8 \text{ m}^3/\text{sec}^2 $

8. The computations of free-air and Bouguer anomalies for various types of terrain are provided in the anomaly computations which follow. These computations result from formulas given by Heiskanen & Moritz (<u>Physical Geodesy</u>, 1967, p. 293):

$$\Delta g_{f} = g_{P} - \gamma_{Q}$$


where g_{p} is the actual gravity measured on the physical surface and γ_{q} is the normal gravity on the telluroid surface.

$$\gamma_{Q} = \gamma_{o} + \frac{\partial \gamma}{\partial h} H^{*} + \left(\frac{1}{2!}\right) \left(\frac{\partial^{2} \gamma}{\partial h^{2}}\right) H^{*2}$$


where $\gamma_{_{0}}$ is the normal gravity on the ellipsoid and H* is the normal height.

Elevation of station above MSL (h) is used in the anomaly computations and is assumed equal to H*.

ANOMALY COMPUTATIONS

ANOMALY COMPUTATIONS (CONT.)

Column(s) Description

- 1 - 2 Classification: "U " or "20" - Unclassified
 - "F2" or "32" Limited Special Release "F4" or "34" - Proprietary
- 4 Sign of Latitude
- 5 10 Latitude: (DDMMmm)

- Sign of Longitude 12
- 13 19 Longitude: (DDDMMmm)
- Type Elevation: Code: Description: 21
 - 0 Grid
 - 1 Land Surface
 - 2 Land Subsurface
 - 3 **Ocean Surface**
 - 4 **Ocean Submerged**
 - 5 **Ocean Bottom**
 - 6 Lake Surface (Above Sea Level)
 - 7 Lake Bottom (Above Sea Level)
 - 8 Lake Bottom (Below Sea Level)
 - Lake Surface 9
 - (Above Sea Level Bottom Below)
 - Α Lake Surface (Below Sea Level)
 - Lake Bottom (Surface Below Sea Level) В
 - С Ice Cap (Bottom Below Sea Level)
 - D Ice Cap (Bottom Above Sea Level)
 - Е Airborne
 - F **Miscellaneous Data**
- 23 29 Elevation / Depth: XXXXXX meters

(If Column 21 = 3, 4 or 5 then Ocean Depth is **Positive Downward.)**

- Supplemental Elevation: (XXXXx)
- 31 35 37 - 42 Observed Gravity: (Less 976,000 mgals) (XXXXxx) mgals
- 44 Sign of Free-Air Anomaly
- 45 48 Free-Air Anomaly: (XXXx) mgals
- 50 Sign of Bouguer Anomaly
- 51 54 Bouguer Anomaly: (XXXx) mgals
- **Isostatic Anomaly or Terrain Correction in Original Document:** 56
 - Code: Description:
 - No information on either 0
 - **Terrain Correction given** 1
 - 2 **Isostatic Anomaly given**
 - 3 Both quantities given
- **DoD Gravity Library Assigned Source Number** 57 - 61
- **DoD Reference Base Station (RBS) Number** 63 - 66
- **DoD RBS Site** 67
- 69 72 Station Sequence Number or Track Number
- 76 77 Free-Air Anomaly Estimated Accuracy in mgals (Standard Deviation)
- Bouguer Anomaly Estimated Accuracy in mgals (Standard Deviation) 79 - 80