Dry Tortugas National Park
USGS-NPS-NASA EAARL Submarine Topography
Map Tile 314000e_2734000n

John C. Brock, C. Wayne Wright, Matt Patterson, Amar Nayegandhi, and Judd Patterson
NASA Wallops Flight Facility, Wallops Island, VA
NPS National Park Service, NPS South Florida/Caribbean Network Inventory and Monitoring Program, Miami, FL
USGS Center for Coastal and Watershed Studies, St. Petersburg, FL
ETI Professionals, Lakewood, CO

This map is not intended for use in navigation.

Area of this map

24°42'0"N-20°49'43"S
82°49'43"W-74°52'0"W

1:2470 SCALE

1 MILE = 1.60934 KILOMETERS
1 KILOMETER = 0.62137 MILES

Dry Tortugas National Park

NO DATA

This map was produced as a collaborative effort between the U.S. Geological Survey and the National Park Service.

Map produced by the U.S. Geological Survey Center for Coastal and Watershed Studies, St. Petersburg, FL.

For more information, contact: USGS Center for Coastal and Watershed Studies, St. Petersburg, FL, 727-894-4150.

USGS-NPS-NASA EAARL Submarine Topography
Map Tile 314000e_2734000n

FURTHER READING

Organized as 2 km by 2 km data tiles in 32-bit floating-point integer GeoTiff format. Contour line and hillshade layers were 1-meter resolution raster images that can be easily ingested into a Geographic Information System (GIS). The data were sounding per square meter. The data were processed by the USGS Center for Coastal and Watershed Studies to produce (land) topography in a single overflight. The EAARL system is typically flown at 300 m altitude AGL, resulting in a 240 m swath.

Cessna 310 aircraft. The EAARL uses a 'waveform-resolving' green laser capable of mapping submarine and subaerial.

The laser soundings used to create this map were collected during July and August 2004 by the NASA EAARL system mounted on a

Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this project was to develop innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring water depth.

This lidar-derived submarine topography map was produced as a collaborative effort between the USGS Center for Coastal and Watershed Studies and the National Park Service. This effort was supported by the NPS South Florida/Caribbean Network Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA).

May 20­22, 2002: Ann Arbor, MI, Veridian International Conferences, 1 computer optical disc.


Coast Association of Geological Societies, v. 52, p. 89­98.