Data generated from the lidar data tile and incorporated into this map product.

Organized as 2 km by 2 km data tiles in 32-bit floating-point integer GeoTiff format. Contour line and hillshade layers were 1-meter resolution raster images that can be easily ingested into a Geographic Information System (GIS). The data were sounding per square meter. The data were processed by the USGS Center for Coastal and Watershed Studies to produce for each flightline. Data collection occurred with approximately 50% overlap between flightlines, resulting in about one laser (land) topography in a single overflight. The EAARL system is typically flown at 300 m altitude AGL, resulting in a 240 m swath Cessna 310 aircraft. The EAARL uses a 'waveform-resolving' green laser capable of mapping submarine and subaerial

Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring water depth and conducting cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to managers of coastal habitats.

Research is to create techniques to survey coral reefs for the purposes of habitat mapping, ecological monitoring, change detection, Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this PROJECT DESCRIPTION

May 20­22, 2002: Ann Arbor, MI, Veridian International Conferences, 1 computer optical disc.


Brock, J.C., and Sallenger, Ashbury, 2001, Airborne topographic lidar mapping for coastal science and resource management: FURTHER READING