FURTHER READING

- The laser soundings used to create this map were collected during July and August 2004 by the NASA EAARL system mounted on a Dry Tortugas National Park.
- This lidar-derived submarine topography map was produced as a collaborative effort between the U.S. Geological Survey (USGS) and the National Park Service (NPS).

DATA DESCRIPTION

- Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring water depth.
- High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to managers of coastal habitats.
- As part of this project, data from an ETI Professionals, Lakewood, CO.
- The EAARL system is typically flown at 300 m altitude AGL, resulting in a 240 m swath (land) topography in a single overflight.
- The laser soundings per square meter. The data were processed by the USGS Center for Coastal and Watershed Studies to produce a single overflight. The EAARL system is typically flown at 300 m altitude AGL, resulting in a 240 m swath.
- Data collection occurred with approximately 50% overlap between flightlines, resulting in about one laser sounding per square meter. The data were processed by the USGS Center for Coastal and Watershed Studies to produce a single overflight. The EAARL system is typically flown at 300 m altitude AGL, resulting in a 240 m swath.
- For each flightline. Data collection occurred with approximately 50% overlap between flightlines, resulting in about one laser sounding.