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1.0 THE STRENGTH OF ROCK 

Whether the aim be to prevent collapse or to promote it, rock strength is an important factor in many 
practical problems of rock mechanics.  The property of ‘strength’ of a rock derives, as with all 
solids, from various types of inter-atomic and intermolecular bonds, some strong and others 
relatively weak, that exist within the rock.  To break the rock, it is necessary to break enough bonds 
to separate it into at least two pieces.   

A bond between a pair of atoms (or molecules) is formed as a result of two forces — one an 
attraction, the other a repulsion.  The force-intensity versus atomic-separation relationship differs for 
the two forces such that the resultant force between the atom-pair for various spacings is as shown in 
Figure 1. 

 

  

 

 

 

 

 

 
 

 
 

Figure 1 Schematic representation of (i) forces; (ii) potential energy trough 
between atoms (after Houwink, 1958 p.23)  

                                                 

*     Originally presented at the Colloquium on Rock Fracture, Ruhr University, Bochum, Germany, April 1971, 
(and revised from original, published in  Veröff. Inst. Bodenmechanik und Felsmechanik (Karlsruhe), 55, 1-56.) 

      **     Now (2004) Professor Emeritus, University of Minnesota; Senior Consultant, Itasca Consulting Group, Inc.,             
               111,Third Avenue South, Suite 450, Minneapolis, MN 55401, USA.  [E-mail fairh001@umn.edu ] 

mailto:fairh001@umn.edu


Fundamental Considerations Relating to the Strength of Rock 2 

 

Both forces increase as the inter-atomic spacing is reduced, with the compressive (i.e., repulsion) 
force becoming very dominant at small spacings.  The value of the exponents m and n in Figure 1 
vary depending on the nature of the bond so that the force and spacing scales will change, but the 
general shape of the net-force vs. spacing curve remains the same — i.e., there is always a tensile or 
cohesive limit, a decrease in net force at large spacing, and a rapid increase without limit at small 
spacings.   

Application of external compression forces will reduce the inter-atomic spacing (i.e., cause the solid 
to contract) in accordance with the net force-spacing relationship; application of external tension will 
increase the spacing.  Release the external loads and the spacing will return to the zero net force 
value.  The slope of the curve in the vicinity of the zero-force value represents the elastic modulus of 
the material.   

Careful distinction must be drawn between the physical reality of discrete bond forces and the 
mathematical construct of stress.  The mathematical, continuum, concept of ‘stress at a point’ has no 
direct physical meaning.  Because it is, however, common to determine stresses, and to compute 
stress-strain behavior from the physical response of solids to applied forces, it is convenient to 
indicate the analogy at the atomic level.1    

If we assume that, over a small planar element of area   ∆A, in the solid, all n possible bonds are fully 
active normal to the element, then we may define an average inter-atomic normal ‘stress’ (σ) across 
the plane ∆A as 

 0nF A
A

σ = ∆ →
∆

 (1) 

where F is the inter-atomic force per bond. 

We may similarly define an intrinsic2 elastic modulus, E, for small displacement (x) about the 
equilibrium spacing (a). 

                                                 

1  Filonenko-Borodic explains the situation as follows:  “... it is sometimes said that the theory of elasticity is based on 
the hypothesis of the continuous structure of solids.  It must be borne in mind, of course, that this hypothesis is but a 
working hypothesis; it is dictated by the adopted mathematical method of investigation and does not intrude into the 
branches of physics that are directly concerned with the problems of body structure.”   

2 ‘Intrinsic’ in that the deformation from which the strain is computed results entirely from deformation (extension or 
compression) of the bonds.  Macroscopically observed moduli in rocks will include additional deformations [e.g., due 
to pre-existing cracks (‘zero-modulus bonds’) and will tend to be less than this intrinsic value. 
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Thus, defining the inter-atomic ‘strain’ ε , 

 x
a

ε =  (2) 

we obtain 

 aE
x

σ
=  (3) 

2.0 COHESIVE STRENGTH  

We may now obtain a rough estimate of the value of the cohesive strength as a (maximum)tensile 
stress (σm). (Joffé et al. 1935).  Assuming that the form of the inter-atomic stress-spacing curve is 
sinusoidal (see Figure 2) for extensional displacements x from the equilibrium position in the range, 
0 < x < a — i.e., 

 2sinm
xπσ σ

λ
=  (4) 

where σm is the inter-atomic cohesive strength, and 

λ is a separation parameter in the direction of x, which describes the range of inter-
atomic force interaction (see Figure 2). 

 

  

 

 

 

 

 

 

 

Figure 2 Inter-atomic stress spacing curve 
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Differentiating (4) with respect to x, we have 

 

2 2cos

2 , for small x

m

m

d x
dx
σ π πσ

λ λ

π σ
λ

=

=

 (5) 

Substituting in (5) from (3), we have 

 2
2

or m
m

E E
a a

πσ λσ
λ π

= =  (6) 

For an ‘order-of-magnitude’ estimate, we will consider λ/2 to be approximately equal to a.  Hence, 
from (6) we obtain 

 
3m
Eσ =  (7) 

Alternatively, if we assume that the work done to create unit area of surface  

[i.e., to separate the atomic bonds acting across a unit area of the solid to the point 
where the bonds are ‘broken’, or no longer attract each other.  This is effectively to 
separate them to infinite spacing]  

reappears entirely as the ‘surface energy’ 2γ , where γ  is the specific energy for each of the two 
(upper and lower) surfaces created, then we avoid the necessity of assigning a value to γ . 

Noting that the work done per unit area of new surface (2γ ) equals the shaded area in Figure 2, 
which we will assume to be roughly twice the area under the half-sine wave, we may then write 

 
2 2sin or m

m
o

x dx

λ

λσπσ γ γ
λ π

⋅ = =∫  (8) 

Substituting for γ  from (6), we obtain 

 
2m
E

a
γσ =  (9) 

The values for the theoretical cohesive strength indicated by (7) and (9) are orders of magnitude 
larger than the observed tensile strengths of most solids.  For granite, for example, the typical elastic 
modulus (E) in tension may be of the order of 5 x 10

6
 lb. per sq. in.; according to (7), the cohesive 

strength should then be of the order of 2 x 10
6
 lb. per sq. in.  A tensile strength of 2 x 10

3
 lb. per sq. 
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in., or three orders of magnitude smaller, is closer to the value usually observed.  Similar 
discrepancies, although not as great, exist for other materials. 

The hypothesis presented by Griffith in 1921 was an attempt to explain the discrepancies.  It will be 
discussed in some detail below.  Before leaving the topic of atomic interaction, however, several 
points of interest should be noted. 

1. A solid can only be ruptured by exceeding the cohesive strength.  This requires 
“stretching” of the inter-atomic bonds, either by direct extension or by shearing. 
Tension and shear are thus the two basic modes of causing rupture. There is no 
fundamental compression mechanism of rupture. 

2. Rupture of a solid occurs when all bonds have been broken across (as a 
minimum) a continuous plane of separation traversing the solid.  To ‘break’ a 
bond, it is necessary to separate the atoms to such a spacing (effectively to 
‘infinity’ on an inter-atomic scale) that the atoms no longer attract each other.  
Each atom forms a new (surface) equilibrium with its neighbors in the absence of 
the previously unbroken bond. If the rupturing force is released at any value of 
spacing less than that necessary to break down inter-atomic attraction, even 
though the extension be beyond that corresponding to that at the cohesive 
strength, the atoms will attract each other back to the equilibrium spacing.  In 
other words, the complete energy of separation — the total area under the 
extension portion of the inter-atomic force-spacing curve (shaded in Figure 2) 
must be supplied before rupture will occur. 

In short, rupture involves two conditions.  Both are necessary for rupture to occur but, together, they 
are also sufficient to ensure rupture.  The two are: 

(1) a ‘stress’ condition (The inter-atomic cohesive stress must be exceeded.); and 

(2) an energy condition.  (The energy necessary to form two distinct surfaces 
through the solid must be supplied.) 

3.0 GRIFFITH THEORY OF RUPTURE 

Griffith recognized the need to satisfy the two conditions for fracture.  He advanced the hypothesis 
that the average applied stress did in fact produce stresses to the cohesive-strength value because of 
intense stress concentrations produced at the tips of the sub-microscopic micro-cracks.  He then 
demonstrated that, once a certain stress level had been reached, the supply of energy necessary to 
produce rupture would indeed become available.  Although Griffith limited his analysis to an 
explanation of the strength of brittle solids, it will be seen later that the general principles upon 
which his Theory is based are applicable to a variety of practical situations. 
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Figure 3 Plate model analyzed by Griffith 

Griffith considered the conditions necessary for rupture of a thin, linearly elastic, isotropic, infinite 
plate loaded in plane stress by a ‘dead-weight’ tension, σ (i.e., the tension did not change with 
displacement of the boundary), into which was introduced a single thin slit, or ‘flaw’, of length 2c, 
and having a radius of curvature ρ at each tip.  The stress, σm, developed at the tip of the crack 
(considered as an ellipse of major axis 2c, minor axis 2b) due to the applied stress σ is given by the 
expression 

 21m o
c

b
σ σ  = + 

 
 (10)a 

or, for sharp cracks, 

 m o
cσ σ
ρ

≅  (10)b 

Thus, provided the ratio c/b or, equivalently c ρ , is very large  (i.e., the cracks are very narrow 
and considered as degenerate ellipses), the required stress, σm , equal to the cohesive strength, may 
be achieved with only moderate applied stress, σ. 

To establish the energy condition necessary for the cracks to start to spread (i.e., for rupture to 
begin), Griffith invoked the Theorem of Minimum Potential Energy, which may be stated as 
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The stable equilibrium state of a system is that for which the potential energy of the 
system is a minimum 

For the particular application of this theorem to rupture, Griffith added the statement 

[T]he equilibrium position, if equilibrium is possible, must be one in which rupture 
of the solid has occurred, if the system can pass from the unbroken to the broken 
condition by a process involving a continuous decrease of potential energy. 

The process of passing “from the unbroken to the broken condition” occurs by the progressive 
lengthening of the crack across the plate.  Therefore, in order to proceed with the mathematical 
formulation of the energy criterion for rupture, we must consider the energy changes that occur when 
the crack lengthens.  We will do this by first considering the energy change produced by introducing 
a crack into the plate, and then examining the effect of changing the crack length. 

There are three parts of the system which contribute to the energy changes due to crack extension: 

(1) potential energy of the applied forces (W); 

(2) strain energy of the loaded plate (U); and 

(3) surface energy of the crack surfaces (S). 

Other energies in the system (e.g., the surface energy of the faces and outer (infinite) boundary of the 
plate) are assumed not to change with crack extension and therefore can be neglected.  We will 
consider the three energies in turn. 

3.1 Potential Energy of Applied Forces (W) 

It may be shown (Love 1927) that, when a linearly elastic body is deformed by constant forces 
applied at the outer boundary, the potential energy of these forces is reduced by an amount (∆W) 
equal to twice the increase in strain energy (∆U) of the body produced by the deformation.3  Thus,  

                                                 

3 An elementary example of this is the energy change that occurs when an elastic solid is loaded in uniaxial tension by a 
constant force F.  The loss in potential energy (∆W) of the applied force F due to the elastic deformation u is Fu.  [See 
Fig. a1]. The gain in strain energy (∆U), equal to the area under the linear elastic force-deformation curve, is 1/2 Fu.  
Thus, 
 ∆W = -2 ∆U (a1) 

Figure a1    Loss in Potential Energy (∆P) and Gain in  
Strain Energy (∆U) of a Solid Loaded By a 
Constant Force 

 



Fundamental Considerations Relating to the Strength of Rock 8 

 

 2W U∆ = ∆  (11) 

3.2 Strain Energy of the Loaded Plate 

Griffith demonstrated that the strain energy of the infinite plate increased by an amount ( ) , 
where E is the elastic modulus of the plate material by introduction of a crack, length 2c.  This result 
was confirmed subsequently by Sneddon (1946) and by Irwin (1954)4:  

2 2 /c Eπ σ

 
2 2cU
E

π σ
∆ =  (12) 

3.3 Surface Energy of the Crack Surfaces  

If we designate the specific surface energy as γ , then, as the crack is of length 2c, and of unit 
thickness, the total increase in surface introduced is 

 2 2 4S c cγ γ∆ = ⋅ ⋅ =  (13) 

3.4 Change in Potential Energy of the System (∆P) 

The total change in potential energy of the system (∆P) produced by introduction of the crack may 
now be calculated.  Thus, 

 P W U S∆ = ∆ + ∆ + ∆  (14) 

Substituting from equation (11) we obtain 

 P S U∆ = ∆ − ∆  (15) 

Substituting from equations (12) and (13), we find 

 
2 2

4 cP c
E

π σγ∆ = −  (16) 

This relationship is plotted in Figure 4 for various crack lengths (2c) and two stress levels,  σa , σb, 
with σb a greater tension than σa. 

 

                                                                                                                                                             

 
4 See the appendix. 
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Figure 4 Change in potential energy (∆P) of the plate-load system shown in 

Figure 3 due to the introduction of a crack of variable length 2c [or, 
equivalently, variation in ∆P with 'extension' of a crack under constant 
load].  N.B. The crack would actually ‘extend’ only on the right-hand 
(instability) side of ∆P maximum. 

According to Griffith's energy instability hypothesis of crack extension, cracks of length less than 
2ca would not extend at an applied stress level σa, as crack extension would require an increase (∆P) 
in the potential energy of the system.  The same is true for cracks less than 2cb in length at an applied 
stress  σb.  Conversely, introduction of a crack longer than 2ca or 2cb would immediately result in 
crack extension, at stress levels σa and σb, respectively, since ( ) /P 0∂ ∆ ∂ ≤ for these lengths. 

The Griffith energy criterion for tensile rupture is thus satisfied whenever ( ) , and 
rupture will begin when 

( )/ 0c P∂ ∂ ∆ ≤

 ( ) 0
P

c
∂

∂
∆

=  (17) 

Applying this criterion to (16), we find the tensile stress (σg) at which rupture begins.  Thus, 
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22
4 0

2

 
. . . . . . . (a)

or

          . . . . . . . (b)

g

g

c
E

E
c

π σ
γ

γσ
π

− =

=

 (18) 

Thus, according to the Griffith criterion,  σg is the tensile strength of a plate loaded in uniaxial (plane 
stress) tension. 

Analysis of the corresponding plane-strain problem reveals that E in (18) is replaced by ( )21E υ− , 
where υ  is Poisson's ratio for the material.  It has also been shown (Sack 1946) that, when the line 
crack is replaced by a ‘penny-shaped’ crack in a solid, the criterion is modified such that 2/π  in (18) 
is replaced by ( )24 1π υ− .  In all of these cases, the numerical factors associated with / oE cγ  are 

of similar magnitude.  This indicates that the geometry of the crack is probably not very influential 
on the tensile strength. 

There are several points that should be noted concerning the Griffith tensile strength (σg) as 
represented by (18). 

1. There is no fundamental significance to the value σg.  It is not the tensile strength 
of the plate material, but, rather, the stress at which spontaneous extension of the 
crack 2c will occur in the uniaxially loaded plate of Figure 3.  The fundamental 
criterion for rupture is that given by (17) — i.e., the onset of energy instability.  
As will be seen later, the stress at which (17) is satisfied may differ appreciably 
for different loading systems and ‘specimen’ geometries.   

2. The appearance of the length dimension (co) in (17) is a consequence of the fact 
that the change in energy stored in the system [second term in (16)] is 
proportional to the volume of the solid affected by the crack whereas energy 
absorbed by the system depends on the area of the crack.  Any linear, elastic, 
instability criterion will result in a rupture condition of the general form 

  (19) 2 const.t dσ =

 where σt is the tensile strength of the solid, and  

  d  is a length that characterizes the dimensions of those critical ‘flaws’ 
in the solid responsible for the onset of tensile rupture. 

The value of the constant in (19) will depend on the geometry of the flaws and the manner in which 
energy is absorbed during flaw growth. 
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4.0 INFLUENCE OF STIFFNESS OF APPLIED LOAD ON THE GRIFFITH CRITERION 

In the above analysis, it was assumed that the plate was loaded by a perfectly soft system — i.e., the 
tension forces applied at the boundary were constant independent of displacement of the boundary.  
This was the situation assumed by Griffith.  It may readily be shown, however, that the tensile 
rupture criterion is not affected by the load-deformation (or ‘stiffness’) characteristics of the applied 
load.   

This is most conveniently done by considering the force and displacement changes that will occur, 
simultaneously, at the plate boundary when the crack is introduced.  We will consider the plate 
loaded to a force F through a spring attached to a (rigid) end grip, as shown in Figure 5.   

 
Figure 5 Griffith plate stretched through a non-rigid applied load 

The strain energy (V) stored in the system (i.e., plate and spring) at the force level F is 

 
( ) ( ) 2

.
2

F

o

M K M c F
V x dF

+  = =∫  (20) 

where M(K)  is  the (constant) elastic compliance of the applied load (i.e., the reciprocal of the 
spring stiffness K) (Thus, ( )

11 xx M K F= , where 1x  is the spring extension at load ), and 

M(c) is the (variable) elastic compliance of the specimen. (
1x

F

( )M c  will increase with crack 

extension ( )( )2x M c F= . 
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The differential dV of the elastic energy when both F and c [or, equivalently, M(c)] change 
simultaneously is 

 ( ) ( ) ( )
2

.
2

FdV d M c M K M c F dF= + +        (21) 

As the crack lengthens (and, hence, x2 changes), the total extension (x) between the rigid end grips 
remains constant 

 1 2 constantx x x= + =  

or 

 ( ) ( ) . constantx M K M c F= + =    (22) 

Therefore, 

( ) ( ) ( ). 0dx M K M c df F d M c= + +     =  

or 

 ( ) ( ) ( ). 0M K M c df F d M c+ = −       (23) 

Substitution of (23) into (21) yields 

 ( )
2

.
2
FdV d M c−

=     (24) 

That is, the change in strain energy of the system (dV) is independent of the compliance [M(K)] or 
the stiffness of the applied load.   

Note that dV is equal to the sum (∆U + ∆W) in the earlier derivation of the Griffith criterion. 

It is important to recognize that, so far, we have considered the onset, or `initiation’, of rupture.  
Stiffness of the loading system can play a part in fracture propagation, as will be shown below.  We 
have established the important point that the tensile strength of a solid that behaves as a Griffith 
material (i.e., a cracked plate) should not depend on the particular direct tensile testing system used. 

5.0 STRESS-STRAIN BEHAVIOR OF A GRIFFITH MATERIAL IN TENSION 

It is useful to consider the macroscopic “stress-strain” behavior of the Griffith plate system loaded  
in tension [see Figure 2].  The analysis below follows that presented by Berry (1961). 



Fundamental Considerations Relating to the Strength of Rock 13 

 

The Griffith plate is assumed to be of unit thickness and large cross-sectional area A.   

The total strain energy of the plate before introduction of the crack 
2

2
A

E
σ

= .   

Increase of strain energy of the plate due to introduction of a crack, length 2c,  

2 2c
E

π σ
 

∴Strain energy of the cracked plate 
2

22
2

A c
E

σ π = +   . 

If we define an average elastic modulus E' of the cracked plate such that  

2 2
22

2 2
AA c

E E
σ σπ + =  '

 

we have 

 22'
22 1

AE EE
cA c

A
ππ

= +
+ +

 (25) 

From (18) we have 

2 2Eg
c
γσ

π
=  

However, for a linearly elastic material 

 'g gEσ ε=  (26) 

where gε is the average5 axial strain in the plate at rupture. 

Substituting in (26) for gσ  from 18(a), and for  from (25), we obtain  'E

 
2

3

8g
g

g

E
E A

σ γε
πσ

= +  (27) 

(27) is the locus in stress-strain space of the Griffith criterion for rupture in direct tension.  See 
Figure (6). 

                                                 

5Obviously, the strain will not be uniform in the vicinity of the crack 
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Figure 6 Locus of the Griffith criterion for rupture in direct tension 

It is seen that the locus is asymptotic to the slope tan-1E, where E is the modulus of elasticity of the 
uncracked plate, for which, according to Griffith, the strength would equal the theoretical cohesive 
strength.  For a plate with an initial crack of length 2c, the loading path would follow OB.  At B, the 
crack would start to lengthen, and the overall plate would ‘strain’ accordingly.  If the applied load 
were reduced with crack extension so as to follow the locus BCDE, the crack would be slowly 
extended to traverse the plate — i.e., the Griffith criterion /P c 0∂ ∂ =  is continuously just satisfied, 
with no excess energy to allow onset of the rapid instability condition /P c 0∂ ∂ < .  At loading 
condition B, the plate contains a crack length 2c about to extend, and strain energy proportional to 
the area OBF.  At C, the crack has lengthened to 2c1, and the plate contains strain energy 
proportional to the area OCG.  As the energy input to the plate in extending the crack from 2c0 to 2c1 
(i.e., from B to C) is proportional to the area BCGF, it follows that the area OBC is proportional to 
the increase in surface energy, , of the crack.  Similarly, area OBD is proportional to the 

new surface energy, .  It is seen that the total surface energy of a crack is proportional to 
the area enclosed by the asymptote OA, the locus, and the slope representing the crack length. 

( 1 04 c cγ −

)0c
)

( 24 cγ −
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6.0 INFLUENCE OF STIFFNESS OF APPLIED LOAD ON CRACK EXTENSION 

It has been shown that the stiffness of the load application system does not influence the Griffith 
criterion for (the onset of) crack extension.  The stiffness of the applied load does affect fracture 
propagation.  Assume, for example, as did Griffith, that the applied load is independent of plate 
boundary displacement when crack extension occurs.  If the initial crack length was 2co, then the 
load, on reaching B, in Figure 7, would follow the path BB'B".  At an extension corresponding to 
OG, then the energy supplied to the plate by the applied load during crack extension is proportional 
to the area FBB'G; the energy required for slow crack extension to an average plate strain of OG is 
proportional to FBCG; the excess energy, proportional to BB'C, will produce crack acceleration, the 
kinetic energy of the system increasing with crack extension, leading rapidly to rupture of the plate.  
If the plate is loaded through a system of stiffness K, as in Figure 5, then the applied load will 
decrease with crack extension.   

Assume then that the applied load decreases along BHDJ. At a crack extension corresponding to 
average strain OG, the excess energy is proportional to area BHC, considerably less than for the 
‘dead-load’ system, but also causing crack acceleration.  With such a loading system, the crack 
would continue to accelerate as it extended, generating maximum kinetic energy at the crack length 
2c2 corresponding to the line OD.  The crack would continue to grow as the applied load fell along 
DJ, but since the energy released by the load in region DJ is less than that required to satisfy the 
criterion for fracture, kinetic energy is abstracted from the system until the crack eventually stops at 
condition J, at a length 2c3 corresponding to the line OE.  At the point J, the kinetic energy BCD has 
been transformed into the surface energy, DJE, necessary to establish the crack length 2c3.  For 
further crack propagation, the load must be raised along OJ to E, adding the strain energy JELK 
necessary to satisfy the fracture criterion.  With such a system, the crack would initially propagate 
unstably, but would eventually come to rest before rupturing the plate.  Rupture would involve 
successive re-loading of the plate. 

With an applied load of high stiffness such as represented, for example, by the slope BM, any crack 
propagation immediately causes the applied load to fall to a value below that required for further 
propagation (i.e., points on the locus BCDE).  If the load drops to M, for example, an amount of 
energy proportional to the area BCM must be added to the system before the crack will extend to the 
length 2c1 (point C on the locus).  In such a high stiffness system, in effect, the crack will propagate 
only if the necessary energy is added to the system by outward displacement of the rigid boundary 
under load.  Thus, while the stiffness of the applied load does not influence initiation of fracturing in 
a Griffith material, it can have a marked effect on propagation of fracture. 
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Figure 7 Influence of loading system on crack propagation 

7.0 VELOCITY OF FRACTURE PROPAGATION IN A GRIFFITH MATERIAL 

As indicated above, analysis of a propagating crack must involve consideration of the kinetic energy 
of the material associated with the advancing crack.  The potential energy equation (16), modified 
for the case of a moving crack, becomes, after Mott (1948), 

 
2 2 2 2 2

2

v4  constant
2

c k cP c
E E

π σ ρ σγ∆ = − + =  (28) 

The last term of (28) represents the kinetic energy associated with a crack (instantaneous) length 2c, 
moving with a velocity  is the density of the material.  The constant k is an (unspecified) 
numerical factor.  Other parameters are as defined previously.  Mott (1948) derived the kinetic 
energy term from dimensional considerations, as outlined in the appendix.   For a given stress level, 
σ, ∆P (the increase in potential energy above the initial ground state of the uncracked plate) is now a 
constant, as it includes all the energy components of the conservative system.   

v p⋅

Dulaney and Brace (1960) have derived the crack velocity (vo) -  (half) crack length (c) relationship 
as follows: 

At the onset of fracture propagation, when the crack had the initial length 2co, the static Griffith 
criterion was satisfied.  Thus, from (18), with c = c0 , 

 
2

024 c
E

π σγ =  (29) 
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Substituting from (29) for the first term in (28), we obtain 

 
2 2 2 2 2 2

0
2

2 v
2

c c c k cP
E E E

π σ πσ ρ
∆ = − +

σ  (30) 

A boundary condition for the velocity is 

 0v 0, when dc c c
dt

 = = = 
 

 

Application of the boundary condition to (30) gives 

 
2 2 2 2 2 2

0 0 02 0c c cP
E E E

π σ πσ πσ
∆ = − + = = constant  (31) 

Substituting (31) into (30), we obtain 

 
2 2 2 2 2 2 2 2

0 0
2

2
2

c c c c k c v
E E E E

πσ π σ πσ ρ
= − +

σ  (32) 

Re-arranging, collecting terms, etc., (32) yields the following expression for v: 

 02v 1 cE
k c
π
ρ

 = −  
 (33) 

 0v v 1m
c
c

 = −  
 (33)a 

As the crack length (c) becomes much larger than the initial length (co), the velocity tends to the 
maximum value (vm), where 

 2vm
E

k
π
ρ

=  (34) 

In this case (34) becomes 

 v 0.38m
E
ρ

=  (35) 

Thus, a Griffith crack propagating across a plate, as shown in Figure 3, will attain a maximum 
velocity of the order of one-third of the velocity of sound, ( )/E ρ , in the medium. 
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Figure 8 shows the crack velocity as a function of crack half-length, as predicted by 33(a). 

 
Figure 8 Crack velocity as a function of crack half-length 

The crack velocity rapidly approaches a high value (e.g., v 0.6 vm≅ for 02.5c c= ).  For a material 
with a sonic velocity around 12,000 ft. per second, the velocity will reach a value of almost 3000 ft. 
per second when the crack has extended only 2.5 times its original length.  At such velocities, the 
time interval between crack initiation and complete tensile rupture of a specimen of 3-4 inches in 
diameter would be of the order of 100 microseconds only. 

Berry (1960) has also derived (33) for the Griffith crack.  He points out (1960, 1961) that there is a 
fundamental inconsistency in the crack-velocity analysis as outlined above, in that the Griffith 
criterion 18(a), to (29), represents an (unstable) equilibrium condition.  The crack velocity, in fact, 
will remain identically zero for all crack lengths if the applied stress is sufficient only to reach the 
equilibrium condition.  In other words, it is incorrect to assume that the third term of (28) exists 
unless the Griffith stress is (infinitesimally) exceeded, so as to generate an excess of energy over that 
required for (unstable) static equilibrium.  Berry demonstrates, however, that (33) is the correct 
limiting expression for the velocity, when the Griffith stress is infinitesimally exceeded.  If the load 
is applied so that the Griffith stress is instantaneously exceeded to a greater degree, then the crack 
acceleration is somewhat greater — to the same limiting value, , of  (35). vm

It will be shown later that there are important differences between the velocity behavior of the ideal 
Griffith material and that of many real materials. 
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8.0 MODIFICATION OF THE GRIFFITH CRITERION FOR REAL MATERIALS 

The original Griffith criterion considered the highly idealized situation in which a single, critically 
stressed, crack begins to extend and propagate throughout the solid.  It is implicitly assumed that 
there are no other cracks in the material or, equivalently, that any other cracks remain elastic (i.e., do 
not propagate) and, hence, do not contribute to the incremental energy changes of the system. 

This assumption does not hold for real materials, and it is necessary to modify the original criterion 
to obtain a more valid description of actual behavior.  Real materials contain many ‘flaws’ and stress 
raisers that play the role of Griffith cracks (i.e., to raise the stress intensity sufficiently to overcome 
inter-atomic or intermolecular bonds and to serve as a source of potential energy instability).   The 
onset of unstable crack extension at one location does not necessarily imply that the same crack will 
continuously extend to total rupture. 

Consider, for example, the situation depicted in Figure 9, in which a major crack, AA, is extending 
under a mean applied tension σ through a material containing a large number of smaller, initially 
non-propagating cracks.  It may be shown from elastic theory that the highly stressed region ahead  
of the crack tip increases in extent as the main crack extends. 

 
Figure 9 Crack propagation in an extensively pre-cracked material 

Thus, small cracks in the path of the main crack are subjected to increasingly high stresses as it 
approaches.  At a given instant, for example, a small crack BB may be subjected to a mean stress, 

Bσ , high enough to start extension of the crack, both away from and toward the main crack.  The 
small crack may be located off the axis of the main crack, resulting in a ‘step’ in the rupture path 
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when the two intersect.  In addition, there will be many such cracks ahead of the main crack, and 
their number will increase with growth of the overall rupture path.  Each mini-crack instability 
contributes to the energy balance equation, affecting both the surface-energy-demand term and the 
strain-energy-release term.   

Glücklich and Cohen (1967) have suggested that, in the plane stress case, the two terms are modified 
as follows: 
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where  are the changes in surface energy, and stored energy of the loaded (pre-
cracked) plate, respectively, for the multiple-crack-growth situation, 

, mc mcS U∆ ∆

bi is the (typical) half-length of the small cracks that propagate, 

n is the number of the small cracks, 

v is the volume ahead of the main crack within which the stress is sufficient 
to cause propagation of the small cracks , and 

s = n/v is the density of small cracks. 

Other terms are as defined earlier for the simple single-crack Griffith analysis.  [E, the overall 
modulus of elasticity of the plate, will have a value appropriate to that for an extensively cracked 
plate.  It is assumed that this value does not change significantly due to cracking in the region ahead 
of the main crack.] 

The increase in energy release is proportional to 2
nb∑ [not to ( )2

nb∑ ] — i.e., the sum of the 
energies released by growth of all the small cracks is much less than the energy released by a single 
long crack of the same total length.  The increase in surface energy demand, being proportional to 

is the same for the multitude of small cracks as for a single long crack of equivalent length. As 
the volume, , over which minor cracking develops, increases with main crack length, the 
phenomenon of pre-cracking ahead of a main crack results in a rapidly increasing energy demand, 
while having relatively little effect on the energy released.  The energy demand term may be 
represented approximately in the non-linear form 

nb∑
v

 ( )4 c
mcU cασ∆ =  (38) 

where the exponent α  increases progressively with main-crack growth, from the value 1α ≅  at 
initiation of the main crack.   Figure 10 outlines the energy changes for multiple cracking crack-
growth under a constant mean applied tension.  Comparing Figure 10 with Figure 2, depending on 
the exponent α , major instability may not immediately result from the start of main crack extension.  
At the stress level, σa, a crack of half-length ca, will extend unstably to the half length ca, beyond 
which it is no longer unstable and will quickly cease to propagate.  If the higher mean stress, σb is 
applied, then a crack would remain unstable to a greater half-length ( c ). 'b



Fundamental Considerations Relating to the Strength of Rock 21 

 

 
Figure 10 Change in potential energy of a pre-cracked Griffith plate model with 

growth of a crack, length c 

Thus, to continue unstable crack extension beyond ca, it would be necessary to increase the mean 
applied stress.  A material that is extensively ‘pre-cracked’ (or, equivalently, that contains a high 
density of stress-raisers) thus can exhibit the phenomenon of ‘stable crack-growth’.  The solid does 
not rupture spontaneously as soon as a critical stress is reached; instead, the crack may grow slowly 
as a series of transient instabilities under increasing load. 

The stable crack-growth model shown in Figure 10 predicts that the applied load must be increased 
continuously without limit for continued crack growth — i.e., no macroscopic instability will ever 
occur.  In an infinitely large solid, this may be true; in reality, several effects may intervene to cause 
unstable rupture. 

Thus, with a test specimen of finite length, as the crack approaches the outer edges, growth of the 
pre-cracking volume becomes limited, and the mean stress in the volume rises rapidly.  This has the 
effect of placing an upper limit on the exponent α  in (38) and causing a more rapid increase in the 
energy-release rate.  Together, these two effects will produce a major instability. 

It may be conjectured that the surface energy term, γ , could exhibit some form of ‘rate-of-loading’ 
dependence.  Thus, as the applied load is increased, the amount of excess energy released during the 
transient instabilities may tend to increase.  In turn, this tends to result in more rapid rate of crack 
extension during the instability. If the processes of energy absorption during generation of the new 
surfaces are such that the energy required is the lower the more rapidly created the surfaces, in effect 



Fundamental Considerations Relating to the Strength of Rock 22 

 

this will reduce exponent α .  Beyond a critical size of main crack and a critical rate of applied-load 
increase, the exponent could fall to a value where major instability results. 

The mechanisms of stable crack growth are not well understood and probably differ for different 
materials.  Nevertheless, all involve the common requirement that the energy absorbed by the 
processes of crack extension increases more rapidly than the energy released by the same crack 
extension. 

Figure 11 illustrates an alternative representation of the potential energy changes for the extending 
Griffith crack shown in Figure 4.  Whereas Figure 4 represents (16), Figure 11 represents 18(a), the 
derivative with respect to crack length (c) of (16). 

 

Figure 11 Variation in the rate of change in potential energy ( ) /P c∂ ∆ ∂    of the 
plate-load system of Figure 3 with variation in crack 
length  ( ) /P c∂ ∆ ∂  

The point at which the net curve crosses the abscissa corresponds to the crack length at which 
instability occurs.  The region above the abscissa corresponds to stable conditions, the region below 
to unstable conditions.  Thus, at a constant mean-applied-stress of σb, all cracks equal to or greater 
than 2cb in length will extend unstably.  To follow the Griffith crack locus shown in Figure 6 (i.e., to 
slowly extend a Griffith crack, or to constantly remain on the point of instability) is equivalent to 
changing the applied stress level such that the crack extension condition continuously follows the 
abscissa, , in Figure 11. ( ) / 0P c∂ ∆ ∂ = 
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For the stable crack growth situation shown in Figure 10, the zero slope straight line, 4γ , of Figure 
11, is changed to a line of continuously increasing slope, up to a (half) crack length, say, of cd, at 
which the pre-cracked volume becomes limited, as shown in Figure 12.  It is assumed, as in Figure 
10, that the strain energy terms are negligibly affected. 

 
Figure 12 Variation in the rate of change in potential energy with variation in 

crack length for a pre-cracked plate system 

In the case shown in Figure 12, at a stress level of aσ , the system is stable for all crack lengths (i.e., 
the solid line marked [ aσ ] is positive everywhere); hence, no crack growth occurs. At the higher 
stress level, bσ , (See solid line marked [ bσ ] ), a crack of (half) length would start to extend, 
accelerating to (half) length c

bc

b′  and continuing, at a decelerating rate, to (half) length cb′′

bc ′

. At this 
point, the crack would stop. [The excess energy released over the length range ( )bc −  would be 
used to supply the energy deficiency over the range ( cb bc′ ′′− ), i.e., the shaded areas above and below 

the abscissa are equal.} There is insufficient energy available to extend the crack 

further — the specimen does not break.  At the still higher stress 
( )∂ ∆ /P c∂ = 0

cσ  (see solid line marked [ cσ ] ), 
the system is unstable for all (half) crack lengths greater than cc . The specimen would rupture 
‘spontaneously’ if it contained cracks of (half) length or greater. cc
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9.0 INFLUENCE OF INHOMOGENEITIES ON FRACTURE PROPAGATION 

Most rocks consist of more than one mineral constituent, with grains of variable orientation and 
pores between the grains.  Tensile rupture by crack propagation in rocks is consequently 
considerably more complex than even the pre-cracked model a crack may start at A in Figure 13, for 
example, and may traverse the specimen along a very irregular path. 

 
Figure 13 Irregular crack paths in rock loaded in tension 

Propagation along the direct path AB would involve cleavage through grains of various orientations, 
requiring higher ‘surface energy’ than required to propagate the same projected length along a more 
tortuous path.  At C, for example, the crack may tend to follow a grain boundary, say to D.  Further 
propagation along the boundary would require a higher stress than that required to restart the crack at 
C, traversing the grain along CE.  A new crack may then start, say at G, running toward F, leaving 
the step EF, a pore space may be intersected, etc. In such a complicated fracture process, the term 
‘surface energy’ tends to be an inadequate description for the multitude of energy-absorbing 
mechanisms that can develop as tensile rupture propagates through rock.  ‘Work of Fracture’ (WF), 
one of the alternative terms used frequently, seems more appropriate.  It may be defined as “the 
energy required to extend rupture by unit length along the mean plane of rupture” — AB in Figure 
13.   

The rate of variation of  WF  per unit advance in the direction AB may appear as shown by the solid 
line d...M in Figure 14. 

The rupture path is assumed to have extended stably to the projected length cd, at which point it 
encounters a pore space or pre-existing crack such that no energy is required to extend the length to 
ce.  With a constant stress or dead weight loading system, the rupture would accelerate quickly from 
cd to ce, generating kinetic energy represented by the shaded area dcd cee. [The constant applied-
stress (energy-release) line is shown dotted.]   Immediately beyond the pore space, the rupture 
encounters a ‘hard’ or ‘strong’ grain.  Over this increment, WF is appreciably in excess (by the 
shaded area efg) of that released by the constant stress system.  The deficiency (efg) is abstracted 
from the kinetic energy of the rapidly advancing rupture — i.e., the rupture slows down.   
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Figure 14 Energy release - Work of Fracture:  Interaction during tensile rupture 
of a rock specimen loaded by a constant stress system 

If the deficiency exceeds the total kinetic energy (i.e., if area dcd  cee > area efg), then the rupture will 
stop, and it will be necessary to add energy to the system — i.e., raise the applied stress level to 
further propagate the fracture.  If the reverse is true, then the rupture will slow down prior to 
accelerating again, toward rapid disintegration over the relatively ‘soft’ (i.e., low WF) regions 
ghiklm. 

If the work of rupture is supplied through a perfectly rigid loading system, then, by definition, the 
applied load always will be exactly equal to that required for rupture propagation — i.e., the energy 
released by the loading system exactly balances the work of fracture at all stages of rupture.  In 
Figure 14, the energy-release-rate curve everywhere overlies the work of the fracture curve. Rupture 
proceeds at precisely the applied displacement rate of the loading system. 

Actual rupture of real systems generally falls between the above two extreme idealizations.  Even 
where a specimen is loaded through rigid grips, for example, the unfractured portions of the 
specimen release stored energy when rupture is initiated.  This can result in significant fracture 
propagation if, for any reason, WF tends to decrease after initiation. 

The behavior of real systems is illustrated by Figure 15 
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Figure 15 “Energy Release-Work of Fracture” interaction during tensile rupture 

of a rock specimen under realistic loading conditions  [same specimen 
as in Figure 14] 

As with the dead-load system, the rupture encounters a pore-space or pre-existing crack at d.  The 
excess energy release, shaded area dcf cee is now somewhat lower because the applied load de-
creases with fracture extension, due to the finite stiffness of the applied load.  The fracture 
accelerates to a length ce, then starts to decelerate, reaching a length cf, at which the deficiency of 
energy release, the shaded area eff', balances the excess generated over the extension cd - ce.  The 
applied force then is increased to further extend the fracture through the hard grain, from cf to cg.  At 
this point, the system again becomes temporarily unstable, developing kinetic energy equivalent to 
the shaded area ghi, as the applied load drops less rapidly with fracture extension than the rate of 
change in WF.  Again, the fracture decelerates and eventually halts, at length cn, such that the area 
ghi equals area .  The sequence is again repeated when the length cii nj′ k is reached.  Eventually (not 
shown in Figure 15), as the edges of the specimen are approached, a macroscopic instability ensues, 
and the specimen ruptures. 

The excess energy released by a ‘soft’ loading system may be sufficient to propagate a fracture 
through ‘hard’ zones, for example, to the point where total disintegration may occur, without 
increase in the applied load.  With a relatively stiff loading system, the corresponding excess energy 
may be sufficiently lower that the fracture is arrested at a shorter length.  The applied load would 
then need to be further increased to produce final disintegration.  Glücklich and Cohen (1967) 
suggest that this loading stiffness effect could be sufficient to cause significant differences between 
the ‘strengths’ of a given material measured in a soft and a stiff system.  There is yet little evidence 
to indicate the importance of the effect in rock testing. 
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10.0 ROCK FRACTURE IN COMPRESSION 

Many of the practical problems of rock mechanics involve disintegration or structural collapse of the 
rock due to the application of compressive loads.  As mentioned earlier, however, compressive 
disintegration results from the action of tension and shear forces generated within the loaded rock by 
the applied compression. 

Griffith (1924) attempted to extend his theory of rupture to explain the observed strength of brittle 
materials in compression by assuming that tensions equal to the cohesive strength  σm (Figure 1) 
were generated locally at the ‘flaws’ within the material.  Accepting the Griffith hypothesis that the 
uniaxial tensile strength of a brittle solid is determined by flaws within the solid, then if, as in an 
isotropic material, the strength is the same for all directions through the solid, the flaws must be 
randomly distributed through it.  In direct tension, the most critical orientation of a flaw (assumed to 
be representable as an elliptical crack) is normal to the applied tension, as this produced the greatest 
amplification, or ‘concentration’, of the applied stress, allowing the theoretical cohesive strength to 
be reached. 

If the Griffith crack is located within a compressive stress field, localized tension around the crack is 
possible only: 

(1) when the crack is oriented at an angle to the principal directions of applied stress; 
and 

(2) when the applied stress field is not hydrostatic.  

Using the analytical solution by Inglis (1913) for stresses around an elliptical crack in a uniformly 
loaded plate, Griffith examined the tensions generated around the crack tip.  Assuming that the crack 
remained open in the compressive field, he noted that the magnitude of the tension changed both 
with position along the crack edge and with orientation (see Figure 16) of the crack axis to the 
direction of maximum applied compression ( 1σ ).  Specification of the required tension stress (i.e., 
the cohesive strength σm) for fracturing posed a fundamental problem, as both the real value of σm  
and the actual shape of the ‘flaws’ were unknown.  [In the original analysis of the tensile rupture, 
Griffith had, in effect, merely demonstrated that any value of σm could be achieved with a realistic 
value of applied tension, provided the flaw (i.e., crack) was sharp enough.  He did not specify any 
required dimensions or cohesive strengths.] 

To overcome this difficulty, he assumed that the [inclined] critical flaw in the compression field was 
of the same [unknown] shape and size as the [normal] critical flaw in the direct tension field.  For 
this case, the ratio between the maximum tension around the compression crack and that around the 
direct tension crack is independent of the crack shape.  Assuming, then, that the same value of σm 
must be achieved in both cases, he could express the condition for the onset of crack initiation in 
compression in terms of the tensile rupture criterion expressed by 10(a) and 10(b).  Proceeding in 
this way, he derived the two-part condition for the onset of rupture as follows.   
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Figure 16 Griffith crack in a compression stress field 

Rupture begins 

(i) when ( )   ( )2
1 3 0 1 3 1 38 0 3 ; if σ σ σ σ σ σ σ− + + = + > 0

In this case, the plane of the initial crack is oriented to the direction of σ3 at 
angle ψ, where 
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(ii) when 1 0 1 33 0; if σ σ σ σ= +  >

 In this case, the initial crack orientation is 

 
2
πψ =  (39)b 

In (39), tensile stresses are assumed positive, 1 3 ; oσ σ σ>  is the uniaxial direct tension strength of the 
material; and ψ is the orientation of the crack (along which rupture starts) to the direction of 1σ . 
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The criterion expressed in (39) includes the tensile rupture criterion, as the limiting case of (39b).  It 
also indicates that, for a range where the major principal stress (σ1) is tensile and the minor principal 
stress ( 3σ ) is compressive, but less than one-third of the absolute value of 1σ , then rupture will 
occur as in direct tension — i.e., the relatively small compressive stress has no influence.  It is 
interesting that the criterion indicates that the rock will begin to rupture in uniaxial compression 
( 1 0σ = ) when the applied compression (σ3) reaches a value 8 times as high as the direct tensile 
strength (σ0).  Although somewhat low, the ratio is of the correct order of magnitude.  [Compression 
strength values for rock specimens usually range from 15-20 times the direct tension strength.] 

The fact that (unequal) applied compressions produce tensions close to the tips of an inclined crack 
can be readily understood by noting that the shear stresses (τψ in Figure 16) produced parallel to the 
crack axis by the compressions will tend to cause displacement of each side of the crack in the 
opposite sense (left-hand side downward, right-hand side upward in Figure 16).   This will result in a 
tensile ‘tearing tendency’ slightly off each tip. 

11.0 CRITICISM OF GRIFFITH COMPRESSION CRITERION 

Surprisingly, in deriving the Compression Fracture criterion, Griffith did not consider at all the 
question of the energetics, or stability, of compression fracture.  It seems he implicitly assumed that, 
once initiated, compression fracture extension would be an unstable process, leading directly to 
collapse (although he intimated that the situation might need more study when noting that the 
compression fracture may not propagate along the plane of the major crack). 

Subsequent work (Brace and Bombolakis 1963; Hoek 1968) has demonstrated that, indeed, the 
compression criterion of (30) is a crack initiation criterion only, which does not result in energy 
instability.  Thus, failure to examine stability considerations has led to an erroneous fracture criterion 
— by the very person who introduced the concept of fracture as due to an energy instability! 

It must be said, however, that study of energy stability for the compression situation (i.e., as shown 
in Figure 16) is considerably more complicated than for the direct tension situation.  The 
compressive crack is not initiated along the axis of the pre-existing crack, and it has been found 
(Brack and Bombolakis 1963; Hoek and Bieniawski 1966) that it changes orientation continuously 
as it is propagated [under increasing stress difference ( )1 3σ σ− ].  The extending crack tends to align 
itself parallel to the direction of maximum applied compression  (see dotted lines in Fig. 16); this is 
the most stable orientation (i.e., the one for which the compressive stress field produces the least 
tension at the extending crack tip) for a crack.  Wawersik (1965) has shown that the tensile stress 
concentration produced by crack extension parallel to an applied principal compression tends, in the 
limit, to zero.  Thus, although tension cracking in a compressive stress field can occur in the manner 
indicated by Griffith, it does not lead to an unstable energy situation.  Compression collapse cannot 
occur by this mechanism alone.  Hoek and Bieniawski (1965) have studied experimentally the 
propagation of cracks from an open elliptical crack in a glass plate.  The results are reproduced in 
Figure 17. 
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Figure 17 Length of stable crack propagated from an open elliptical flaw under 

compressive stress conditions (after Hoek and Bieniawski 1965) 

These results confirm the conclusion that the crack extension is a stable process.  They also reveal 
how effectively a small minor compressive stress (σ1) suppresses crack extension due to the 
compressive stress concentration effect of σ1 at the tip of the extending crack. 

A second important objection to the Griffith compression criterion is the assumption that the original 
(included) crack will remain open.  It seems obvious that it will tend to close in the compressive 
stress field.  McClintock and Walsh (1962) have examined theoretically the significance of crack 
closure.  It is apparent that, if the closed crack is subjected to a normal stress, σn  (Figure 16), then 
shear stress τψ, tending to produce the tangential tension σm, will be counteracted by a frictional shear 
resistance ( r nτ µσ= ), where µ is the coefficient of friction across the closed crack surfaces.  The 
shear stress effective in producing tension will then be ( nψτ µσ− ).  The net result is that, for the 
compression region of the Griffith criterion, as represented by (39a), the parabolic condition is 
replaced by a linear criterion, which is essentially equivalent to the Coulomb criterion of failure.  
The McClintock-Walsh (1962) modification does not consider the problem of stable crack 
propagation.  The crack will still extend essentially as in the Griffith compression criterion, albeit at 
a still higher stress level. 

The Griffith crack is but one example of an inhomogeneity in the rock.  Pore spaces, soft inclusions 
in a hard matrix, and hard grains (inclusions) in a soft matrix are other examples.  In all of these, it 
seems that the stress field produced by the inhomogeneity is such as to promote tensile cracking 
essentially parallel to the major applied compressive stress.  In addition, in all cases, the cracks are 
stable and tend to propagate for a short distance only from the point of initiation.  It is not surprising, 
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therefore, that extensive short-range cracks, all more or less parallel to each other within grains or 
from grain boundaries, are frequently observed in rock specimens.  The condition is often present in 
rocks as they are taken from the field before any loads are imposed in the laboratory.  If, as in the 
case of laboratory tests, or in the field where rock is either adjacent to a free surface or confined by 
compression, the rock is not subjected to an overall tension (σ1), normal to the major applied 
compression (σ3)  [Note: tension stresses positive], then the sum of the local tensions (in the 
direction of σ3) by the inhomogeneity (or flaw) must be balanced by equal local compression forces 
acting in the same direction, as shown along AB in Figure 18.  (The same is true across any vertical 
section) in order to be in equilibrium with the free surface stress 1 0σ = . [Addition of a confining 
pressure 1 0σ ≠  will merely bias the local stresses so that the resultant force is in equilibrium with 
σ1].  This, again, indicates that the tensions induced by inhomogeneities or flaws situated in a 
compression crack extension result in stable crack extension.  In cases where end-loading conditions 
(i.e., across surfaces CAD, EBF) are non-uniform, the tension region may extend continuously over 
a large central region of the specimen, the ‘balancing compression’ being concentrated close to the 
ends.  [See, for example, the tangential tension stress distribution for the Brazilian test situation.]   In 
such cases, axial cracking parallel to  σ3 may extend much farther.  It could accelerate and penetrate 
into the compression region before stopping, much as described earlier for unstable transient crack 
growth in tension.  Axial splitting of compression test specimens, which is so frequently observed, is 
probably the result of the development of non-uniform axial loading during the test. 

 
Figure 18 Schematic distribution of localized tension and compression forces 

along a vertical section of a laterally unconfined specimen loaded 
vertically in compression 
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In summary, then, axial cracking parallel to the direction of major compression is likely to occur in 
most rocks.  The extend of such cracking in macroscopically uniform compressive loading system is 
likely to be limited, and is rapidly attenuated in the presence of confining stress.  Axial cracking will 
not produce unstable collapse in uniform compressive stress fields.  Some other mechanism must be 
responsible for collapse in compression.  Axial shortening due to shear displacement along planes 
inclined to the major compression is an obvious possibility, assuming shear displacement is possible.   

Cook (1965) has considered the problem of unstable propagation of a shear crack in a uniform 
compressive stress field.  The procedure parallels that used by Griffith in the analysis of tensile 
rupture.  It is implicitly assumed that the shear stress developed at the tip of the crack is sufficient to 
exceed the cohesive strength σm by shearing. 

Starr (1928) showed that the increase in strain energy (∆U) in a plate due to the introduction of a 
crack that undergoes shear displacement in the applied plan (shear) stress field is given by   

 
2 2cU

E
πτ

∆ =  (40) 

where τ is the shear stress parallel to the frictionless crack,  

c is the half-length of the crack, and  

E is the modulus of the plate material. 

It is assumed in (40) that there is no discontinuity of normal stress across the shear crack. 

Cook (1965) modified (40) to take account of friction along the crack in compressive shearing, 
replacing τ in (40) by τeff, the effective shear stress, given by  

 eff nτ τ µσ= −  (41) 

where σn is the compressive normal stress, and  

µ is the coefficient of friction between crack surfaces. 

 
Equation (40) then becomes 

 ( )2 2
nU

E
π τ µσ σ−

∆ =  (42) 

Proceeding as with the original Griffith criterion, we have 

 4 sS cγ∆ =  (43) 

where sγ  is the “Work of Fracture in Shear”. 
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Unstable shear fracture will occur when 
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c E
π τ µσ∂ γ

∂
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− ≤ 
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That is, instability develops when 

 ( ) 2 s
n

E
c
γτ µσ

π
− =  (44)b 

The criterion of (44b) will be reached first at the crack orientation for which, in a given applied 
compression field, ( n )τ µσ− is a maximum.  This orientation is shown to be given by the expression 

 11 1tan
2

ψ
µ

−=  (45) 

where ψ is the angle between the crack axis and the direction of major compression, as in Figure 16.  
τ and σn can, of course, be expressed in terms of σ1 and σ3, and ψ (or, equivalently, µ).  The shear 
criterion (44b) again is equivalent to the Coulomb criterion, differing from the McClintock-Walsh 
criterion and the original Coulomb criterion only in the value of the constant — i.e., the right-hand 
side term in (44b). 

The value of sγ , the Work of Fracture in Shear, probably is dependent on several factors and is 
unlikely to be a constant.  Thus, in unconfined compression, axial splitting, by developing 
‘ligaments’ in the rock, will tend to reduce the resistance to shear.  With the addition of confining 
pressure and elimination of splitting, the work of fracture in shear may increase rapidly.  At still 
higher confining pressures, some rocks may develop some form of plastic deformation at the crack 
tip, which may reduce the work of fracture. Variation of sγ  in this way could explain the ‘less than 
linear’ increase in compressive ‘strength’ with increase in confinement, particularly at high values of 
confining pressure.  Cook (1965) has expressed the shear failure criterion of (44b) in terms of a 
stress-strain curve in compression in essentially the same way as did Berry for the Griffith Tensile 
Rupture Criterion.  The same form of fracture locus is obtained. 

Complete load-deformation curves have been obtained experimentally for compression tests on rock 
specimens.  In general, the curves tend to have the characteristic appearance shown in Figure 19.  
Examination of sectioned specimens removed from tests at various stages during the complete load-
deformation event indicates that the sudden drop in load-bearing capability exhibited in all tests up 
to quite high confining pressure is associated with microscopic shear fracture along essentially a 
single planar zone. The major shear is preceded in  

(a) unconfined tests, by axial splitting, slabbing of edges, grain rotation, and minor 
shears distributed through the rock; and 
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(b) confined tests, mainly by shears distributed throughout the specimen.  Axial 
cracks and slabbing are generally absent. 

Detailed interpretation of the compressive load-deformation curve is difficult, particularly as the 
peak load is approached.  The rock tends to dilate appreciably at loads above 50% of the peak, 
indicating inelastic deformations.  (The dilation is accompanied by micro-seismic activity; see Fig. 
19.)6  The dilation usually is restricted in the vicinity of the loading platens, so that the applied load 
must become non-uniformly distributed to an increasing extent. 

It appears that no simple quantitative meaning can be assigned to the peak load in compression, 
which is often referred to as “the compressive strength”. 

Disintegration in compression tests proceeds in a very heterogeneous way, often being concentrated 
along a central shear zone located between more or less intact parts of the specimen at each end, 
adjoining the loading platens. Reduction of the data to average ‘stress-strain curves’ is very 
misleading and should be avoided.  It is preferable to record the load-deformation response, noting 
the specimen dimensions, and the mode of disintegration. 

12.0 GENERALIZATION OF ENERGY INSTABILITY CONCEPT OF FRACTURE AND 
COLLAPSE 

Although details of the Griffith approach to fracture may be of uncertain validity, the general view of 
fracture (and eventual collapse) as the result of energy instability in the system can be a very fruitful 
one.  It seems that Griffith's high-stress condition can always be achieved in brittle rocks and so can 
be taken for granted.  The deformation behavior of any system can be examined in terms of the 
Energy Supply (or Release) Rate and the Energy Demand Rate at all stages. When supply exceeds 
demand, the system becomes unstable, either temporarily or permanently.  In the latter case, the 
system will collapse. 

The advent of high-speed digital computers, and the associated development of approximate 
numerical methods of analysis in mechanics, facilitates application of the energy instability approach 
to many situations for which it previously had been impractical. This is particularly true of situations 
involving complicated geometry. 

Hardy (1971), for example, has analyzed the so-called Brazilian test, an indirect tension-test used on 
rocks, as an energy instability problem.  The same approach has been used on other indirect tension 
tests, such as the beam test and the ring test.  It is well known that computation of the ‘tensile 
strength’ on the basis of the peak stress generated in the various tests results in a wide variation (up 
to 600%) of strength values.  This suggests that the calculated peak stress developed prior to fracture 
(usually computed on the basis of linear elasticity) is not a meaningful quantity.  Test results 

                                                 

6 The onset of microseismic activity corresponds, in principle, to the start of the (stable) crack growth predicted by the Griffith 
Criterion for  the ‘strength’ of  brittle materials in uniaxial compression, as discussed in connection with  Figure 16. If we assume 
that the actual strength is 16~20 times greater than the uniaxial tensile strength, and that the Griffith uniaxial ‘strength’ in 
compression is 8 times the tensile strength, then microseismic activity should start at about  40%~50% of the peak load in uni-axial 
compression. This compares well with observations on specimens in laboratory tests.  
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correlated based on an energy instability analysis provide more consistent values for the rock 
‘strength’.  The adoption of Fracture Toughness in preference to tensile strength as a relevant 
engineering measure in metals technology is a development along these lines, stemming from 
Irwin’s (1958) adaptation of Griffith's theory of rupture. 

 
Figure 19 Typical behavior of a cylindrical specimen of rock compressed to 

disintegration in a controlled laboratory test:  (a) complete load-
deformation curve; (b) volumetric strain-deformation curve; (c)seismic 
velocity (transverse to axis of loading) — deformation curve; (d) 
seismic noise rate- deformation curve  (All curves relate to tests on the 
same specimen.) 
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The energy-instability approach is not limited to microscopic events.  It can be used, for example, in 
the analysis of slabbing around tunnels (Fairhurst and Cook 1966), tunnel stability (Daemen and 
Fairhurst 1971), crater formation in blasting (Porter and Fairhurst 1971) and, indeed, any situation 
involving rupture. 

13.0 SIZE-STRENGTH RELATIONSHIPS FOR ROCK 

As noted earlier, relationships (19), and (40), of the general form 

  (46) 2 constantS d =

where  is the rupture stress, or ‘strength’ in compression, and S

d  is a parameter with dimensions of length that characterizes the critical flaw size 

are a consequence of the type of elastic instability assumed to govern structural collapse (or rupture).  
The ‘energy supply’ is released from a volume proportional to (per unit thickness). 2d

Thus, if the size of the critical flaw increased at a rate directly proportional to the size (linear 
dimension L) of the test ‘specimen’, the strength (S) should be related to the size, for geometrically 
similar specimens and applied load distributions, as follows: 

  (47) 2 constantS L =

This relationship appears to be approximately confirmed from test data on coal (Holland 1964; 
Salamon and Munro 1967) — i.e., the strength S decreases as   L-0.5.  Coal is an extensively cracked 
brittle material, and it is reasonable to presume that coal specimens and coal mine pillars will contain 
flaws just as large as the pillar size will allow. 

If, however, the critical flaw size is a constant (i.e., does not increase with specimen size), then it 
may be expected that, provided the specimen is large enough to accommodate a reasonably large 
number of critical flaws, the strength will be independent of size.  Limited tests on the bending 
strength of granite beams, ranging from 1 ft. long x 1 inch thick to 30 ft. long x 12 inches thick, 
indicate a virtually constant strength for all sizes.  Laboratory compression tests on homogeneous 
limestones and marbles from 1/2 inch to 6 inch in diameter also tend to indicate a size-independent 
strength.  In such rocks, it appears that the ‘flaw size’ is determined by the maximum grain size. 

If tests are conducted on a scale such that the region critically stressed is limited to a size 
approaching that of the ‘flaws’ themselves, then the general concept of a flaw located within a 
relatively large (constant modulus) energy supply zone is no longer valid.  In an extreme case, the 
critically stressed region may lie entirely within a (‘hard’) single grain; in a repeat test, it may lie, 
although with lower probability, entirely adjacent to a weak grain boundary.  On this small scale, test 
results are likely to be quite erratic, usually exhibiting markedly increased strengths.  The scale is 
then too small, and, as in the case of single atom-pairs, notions (and formulae) from classical 
continuum mechanics are simply not applicable. 
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APPENDIX 

1.  Change in Strain Energy of a Plate Due to Introduction of a Crack 

A simple derivation of the change in strain energy of the plate with and without the crack has been 
presented by Irwin (reported as Appendix 1 of the paper by Roberts and Wells(1954).  Using 
Westegaard's solution for the displacement around a crack in a biaxially loaded plate in plane stress, 
he shows that the displacement 'v' of the crack edges from the major crack axis (y = 0) due to a stress 
σ  applied on the outer boundary of the infinite plate is given by the expression:  
   

 
2 22 c x

E
σ −

=v  (A1) 

where . c x+ ≥ ≥ −c

 

 
Figure A1   Opening of a Line Crack Due to Constant Stress σ at Infinity 

To close the crack it would be necessary to apply a uniform tension normal to the crack surfaces.  
Since the plate is assumed to be linearly elastic, the crack will close uniformly with increase in the 
crack tension, until the latter reaches the stress σ .  At this value the crack surfaces will meet and the 
crack, in effect, will no longer exist i.e. the plate is everywhere under homogeneous tension σ. 

If the volume of the fully open crack is V per unit thickness, then the work (W) done in closing the 
crack will be 

 ( )1 2W Vσ=  (A2) 
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Noting the symmetry of the crack edge displacement 'v' (Figure A1), we may write 

 22
c

o

W vσ= dx∫  (A3) 

From A2, we have 
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E E
σ π σ

= − =∫  (A4) 

Thus, the difference between the strain energy of the plate with and without the crack is ( ) . 2 2 /c Eπ σ

This method of computation, based on the recognition that the energy change can be computed by 
considering displacements at the crack edges only (rather than throughout the plate), is very useful, 
particularly when finite plates are considered.  Irwin's method allows easy numerical computation of 
energy changes. 

2.   Kinetic Energy of a Moving Crack 

Consider the planar crack, length 2c, (as in Figure A2) moving with the instantaneous velocity, vo, 
along the x-axis.  An arbitrary element dxdy has been displaced by an amount  u, as shown.  The 
kinetic energy of the element, mass ρ, is given by 
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 (A5) 

The total kinetic energy (KE) of the (infinite) plate is then 
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Mott then reasons “The value of u near the surface of the crack is of order /c Eσ  and, thus, the 

integral is, on dimensional grounds, a multiple of ; the numerical factor could easily be 
calculated.”  Hence, the kinetic energy is  

( 22 /c Eσ )
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where k is the numerical factor.  Its value has been computed by Roberts and Wells (1954) ( k 45≅  
for a material with Poisson's ratio 0.25υ = ). 

Roberts and Wells (1954) have determined that, for a material for which Poisson's ratio 0.25υ =   

2 0.38
k
π

≅ . 

 

   
Figure A2  Planar crack, length 2c, moving at velocity Vo 

 
 

 


