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Summary  Many collections of Eocene Fossil leaves from Antarctica contain a rich store of insect trace fossils, 

indicating that insects were an important component of the unique forests that grew in polar regions.  However, 

insect body fossils themselves are rare and so insect traces provide an excellent opportunity to examine both the 

palaeoentomology and the palaeoclimate of Antarctica.  The fossils studied include Eocene leaves from both 

Seymour Island and King George Island on the Antarctic Peninsula.  A database of all insect traces on the Antarctic 

fossil leaves was compiled and analysed in terms of the diversity of palaeoherbivory.  The fossil leaves are diverse 

with several different plant species present such as Nothofagaceae and Cunoniaceae.  The range of traces found 

includes leaf mines, galls and general leaf chewing, of which both marginal and non-marginal examples are present. 

The preliminary results of the comparison with modern day environments in South America will be shown, 

providing a greater indication of the types of insects that may have created such traces in Antarctica in the past. 

Citation: McDonald, C.M., J.E. Francis. S.G.A. Compton, A. Haywood, A.C. Ashworth, L.F. Hinojosa. Herbivory in Antarctic Fossil Forests: 

evolutionary and palaeoclimatic significance, in Antarctica: A Keystone in a Changing World – Online Proceedings of the 10th ISAES X, edited 

by A.K. Cooper and C.R. Raymond et al., USGS Open-File Report 2007-1047, Extended Abstract 059, 4 p. 

Introduction 

Today, most of continental Antarctica is permanently covered by snow or ice, with only a small proportion of 

ice-free terrestrial habitats.  The majority of terrestrial habitats are covered in snow for most of the year with widely 

variable, unpredictable conditions, both short term and seasonally (Convey, 1997).  Therefore, it is not surprising 

that there are only two insects known to be living in Antarctica, both flightless midges (Diptera: Chironomidae) 

(Ashworth & Kuschel, 2003).  They occur along the northwest coast of the Antarctic Peninsula where the 

conditions are warmer and wetter than elsewhere.   

However, millions of years ago Antarctica was completely different, with areas covered in diverse vegetation 

similar to the forests of New Zealand and southern South America.  Such ecosystems support a large number of 

insect species, therefore, the same might have been true for Antarctica, but few insect body fossils have been found 

due to difficulty in preservation, with only small fragments recovered in most studies. Presently, only limited 

information on the insect fauna has been published, such as a single leg segment of a weevil (Ashworth et al., 

1997).  Two species of fossil listroderine weevils (Coleoptera: Curculionidae: Rhytirhinini, Listroderina) were 

found in the Transantarctic Mountains.  It is thought they were the descendants of Gondwanan species that lived in 

Antarctica continuously from the Late Cretaceous until they became extinct in the Neogene (Ashworth & Kushcel, 

2003).  This is also supported by the discovery of a fossil of a higher fly (Diptera: Cyclorrapha) from the same 

formation (Ashworth & Thompson, 2003).   

Due to the rarity of insect body fossils from Antarctica it is possible to gain a better understanding of the insect 

fauna by examining indirect evidence of the insects’ presence.  For example, the evidence of an insect’s behaviour 

preserved as fossils, known as trace fossils.  There are three main categories of trace fossils that are shown on 

leaves:  general chewing marks both marginal and non-marginal, leaf mines and galls.  There is a large diversity of 

plants in the terrestrial fossil record and, as insects are the major group of herbivores, the trace fossils provide a 

unique and direct record of the plant-insect interactions in the past (Grimaldi & Engel, 2005).  The trace fossils can 

indicate the type of insect that made the trace, at least to order, if not to family level, by the shape, size and position 

of the damage.  This allows insect damage to be distinguished from other causes of damage such as mechanical 

damage or from other large herbivores. 

There are several documentations of the vegetation of Antarctica for the past, especially during Cretaceous and 

Tertiary (Hunt and Poole, 2003)., but few mention the presence of insect traces  However, if temperate rainforests 

were once present in Antarctica, then the palaeoecological reconstruction would not be complete without 

considering the insect fauna that could have been present.  Therefore, the main aim of the project is to identify the 

presences of insects in Antarctica in the past by examining fossil leaf collections from different localities from the 

Eocene.  The trace fossils found will then be compared with modern ecosystems to identify the causal insects and 

the palaeoclimate they lived in.  
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Localities 

The fossil leaves examined were collected from deposits on two islands off the Antarctic Penninsula, both 

Eocene in age. King George Island in the South Shetland Islands is situated at a latitude of 62
o
S, similar to that in 

the early Tertiary (Lawver et al., 1992).  The island lies on the western, fore-arc margin of the former magmatic 

arc.  Fossil leaves from several locations on King George Island were studied, such as Fossil Hill, Point Hennequin 

and Vaureal Peak.   

Collections from Seymour Island were also examined.  Seymour Island sits within the James Ross Island Basin, 

a back arc basin (Elliot, 1988).  The sedimentary sequence exposed on Seymour Island is more than 2 km thick and 

represents the uppermost part of the infill of the James Ross Basin.  The youngest beds, which outcrop on the 

northern part of the island, were grouped into the upper Palaeocene Cross Valley Formation and the Eocene, La 

Meseta formation and are placed together as the Seymour Island Group (Marenssi et al., 1998).  All leaves belong 

to collections of the British Antarctic Survey. 

Summary of Results 

Fossil Leaf Data 

The fossil leaves from both localities are impression and compression fossils which vary in preservation quality.  

The majority of leaves studied were angiosperms but several conifer species were also present.  For the King 

George Island flora, the leaves are preserved either as carbonised compressions lacking cuticle, as pure impressions 

or as mineralised impressions.  Leaf remains are preserved as dispersed organs or as leaf mats and range from entire 

to large fragments of the leaves.  The leaves from Seymour Island are present mostly as fragmentary impressions; 

some fragments are large, being up to 75% of the leaf, but complete leaves are rare.  Leaf margins and venation for 

both fossil floras are variably preserved which affects the visibility of traces, specifically leaf mines. 

The leaves were previously described and organized into morphotypes by Hunt and Poole (2003) for the King 

George Island and Tosolini et al. (personal communication) for the Seymour Island flora using the terminology 

described by the Leaf Architecture Working Group (1999).  This was also used in this study to describe specimens 

not identified previously, but poor preservation of higher order venation and high fragmentation made identification 

difficult for the Seymour Island collection.     

A total of 1241 specimens were examined from King George Island and 1027 from Seymour Island to assess 

insect traces.  From both localities samples had to be discounted from further analysis due to high fragmentation (6 

samples from King George Island and 297 samples from Seymour Island).  From King George Island, 156 leaves 

could be identified to a specific morphotype that was previously assigned (Hunt and Poole 2003) with a total of 40 

different leaf morphotypes identified. Similarly, for Seymour Island, 273 leaves could be identified to a specific 

morphotype with also a total of 40 different morphotypes.  The most abundant morphotypes were in the Family 

Nothofagaceae and the Family Cunoniaceae although Lauraceae and Dictyllophylum species were also present in 

large numbers. 

Insect Trace Fossil Data 

The main categories used to catalogue the insect trace fossils were general leaf chewing (both marginal and 

non-marginal),, mines and galls.  The last category “other” was created for trace fossils which could not be grouped 

into the above herbivory types.  The traces were organized into distinct trace types called morphotraces which were 

described and separated depending on plant morphotype, as well as features such as size, shape and position on the 

leaf surface 

The trace fossil that provides the most common palaeontological evidence of plant-insect interaction is the 

presence of general leaf chewing marks (Scott & Paterson, 1984).  General leaf chewing refers to feeding on the 

leaf which can be marginal, both continuous and discontinous, as well as non-marginal bullet holes within the leaf 

laminae.  For both localities, the non-marginal general leaf chewing category had a total of 37 different 

morphotraces.  These varied with size of trace and number of marks.  The shape of the mark was also noted as 

circular, elliptical and oblong. Marginal general leaf chewing had 15 different morphotraces. All were continuous 

and varied with the size of area damaged (Figure 1a).  

Leaf mines are a highly specialised form of feeding behaviour that also gives the insect protection from both 

predators and dehydration.  A leafminer is the collective name given to an insect whose larvae feed inside the 

parenchyma or epidermis tissue of the plant, creating distinctive channels.  The adult insects lay their eggs inside 

the tissue where the emerging larvae can feed and continue to develop (Hering, 1951). Leaf miners are insects in 

the extant orders Lepidoptera, Diptera, Coleoptera or Hymenoptera whose larvae feed inside the leaf, between the 

two laminae.  This produces a characteristic mine with a distinctive shape and form, allowing the insect to be 

identified in the juvenile stage.  The larvae may leave behind faecal material within the mines, which can also help 

with identification of the insect. A total of 5 morphotraces were identified as leaf mines, both blotch and linear 

mines.  For example, morphotrace 4.2 had only one specimen that was a small linear mine which runs vertically 

along several areas starting and ending near the primary vein on a Cunoneaceae leaf (Figure 1b). Morphotrace 4.1 

was a large to medium sized blotch which was between two secondary veins on a Nothofagaceae leaf fragment 

(Figure 1d). 
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Figure 1. a) General leaf chewing on Cunoniaceae leaf. b) Linear leaf mine on Cunoniaceae leaf. c) Single gall on 

Nothofagaceae leaf. d) Blotch mine on leaf. e) Skeleton Feeding example. Scale bar 1cm. 

Fossil galls are also visible on the fossil leaves. These are, caused by the extensive growth of the plant tissue 

due to a feeding insect or an ovipositing (egg-laying) female.  This physiological reaction is caused by the 

production of abnormal tissue, either by abnormal cellular increase, by cellular growth and division or by cell 

differentiation (Stephenson & Scott, 1992).  The gall that is produced provides both protection and food for the 

developing larvae.  Insect galls are both highly tissue- and host-specific and so comparisons with extant forms can 

give a broad identification of the insect that caused them. 

Sixteen different gall fossils were found.  The galls that were found on fossil leaves were either raised from the 

surface of the leaf or compressed flat on the leaf.  One distinct gall type, morphotrace 3.2, was only found on one 

specimen and had multiple small doughnut-shaped galls that were concentrated around the apical region of the 

upper epidermis.  In contrast, morphotrace 3.1 was a single small circular gall situated next to the primary vein 

between two secondary veins and only on Nothofagaceae leaves (Figure 1c). 

Only traces with a distinctive plant wound reaction were included in the database. Many plants have developed 

defensive reactions to protect them from invading insects, from physical defences to production of noxious 

chemicals at the site of wounding (Coley & Barone, 1996).  The plant tissue forms a darkened ridge that hardens 

and deters the insects from feeding further.  This ridge can be seen in some specimens, making it possible to 

determine that the damage occurred when the leaf was still alive.  Generally, the wound reaction is best preserved 

on impression fossils where it can be identified by this distinctive darker colour or indentation around the damaged 

area. Absence of wound reaction may have been the result of mechanical damage to the leaf or damage when the 

leaf was abscised and thus not a record of insect activity. 

Skeleton feeding of the leaf occurs when an insect scrapes out the leaf tissue, leaving the vein network intact.  It 

is difficult to distinguish between skeleton feeding and natural decomposition, especially for fossil leaves, however, 

other studies have assumed that if the rest of the leaf is still intact and only one area is missing then it is an insect 

trace fossil (Scott 1992).  Morphotrace 5.1 is an example of skeleton feeding on a Nothofagaceae leaf. The 

surrounding tissue is undamaged and there is a darkened ridge around the edge of the missing tissue, indicating the 

leaf was still alive when damaged. 

Discussion 

Examination of fossil leaves from King George Island and Seymour Island has highlighted a range of insect 

trace fossils, providing evidence that several insect species were present in Antarctica in the Eocene.  In modern 

ecosystems, general leaf chewers can be found within many insect orders, such as the larvae of Lepidoptera and 

Hymenoptera (Suborder Symphyta), as well as adult Coleoptera, Orthoptera and Phasmida (Strong et al., 1984). 

Wratten (1981) observed that some taxa have specific modes of feeding, such as the Orthoptera that bite holes in 

the edges of the leaves, and the Curculionidae (Coleoptera) that are known to scoop out the edges of leaves at 

intervals.        

Extant leaf mines are produced by the developing larvae of insects in the orders Lepidoptera, Hymenoptera, 

Diptera and Coleoptera.  The majority of galls are produced by gall mites (Acari: Eriophyiade), gall gnats (Diptera: 

Cecidomyiidae), Hemiptera (Homoptera) and gall wasps (Hymenoptera: Cynipidae).  Skeleton feeding occurs in 

extant species in the Curculonidae (Coleoptera: Curculionoidea) which are known to chew the surface of the leaves, 

sparing only the network of veins (Strong et al., 1984).    
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However, all the insect orders mentioned contain many families and species that all have different ecological 

requirements and life histories.  Species vary not only geographically, but also with the plant species upon which 

they may be dependent.  Therefore, to identify more specifically the insect that made the traces preserved in the 

fossil leaves, it is necessary to make comparisons with living insects.  The vegetation in Antarctica during the 

Eocene may have been very similar to that of the Valdivian rainforests of southern Chile (Poole et al., 2003). Torres 

et al. (1994) described a total of 6 taxa of fossil woods having affinities with extant trees growing in cold temperate 

rainforest of southern South America, specifically the Valdivian and Magellanic forests.  If the vegetation is 

similar, the phytophagous insect fauna may also likewise be comparable.  Therefore, by investigating the insect 

faunas of modern day rainforests in Chile, a greater understanding of the insects of Antarctica may be obtained.  As 

morphotraces on fossil leaves of the genus Nothofagus were most abundant, the insect fauna of present day 

Nothofagus is now being studied in several sites in southern Chile. Results of an investigation into the herbivorous 

insect fauna on Nothofagus antarctica and Nothofagus pumilio are currently under analysis. 
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