Fly Ash: From Cradle to Grave

Edited by Margaret S. Ellis and Ronald H. Affolter

Tutorial/Workshop, June 10, 2007, 12:15 p.m.-2:15 p.m.
32nd International Technical Conference on Coal Utilization & Fuel Systems
The Power of Coal
The Clearwater Coal Conference
June 10-15, 2007
Sheraton Sand Key, Clearwater, Florida, USA

U.S. Department of the Interior
U.S. Geological Survey
U.S. Department of the Interior
DIRK KEMPTHORNE, Secretary

U.S. Geological Survey
Mark D. Myers, Director

For product and ordering information:
World Wide Web: http://www.usgs.gov/pubprod
Telephone: 1-888-ASK-USGS

For more information on the USGS—the Federal source for science about the Earth,
its natural and living resources, natural hazards, and the environment:
Telephone: 1-888-ASK-USGS

Any use of trade, product, or firm names is for descriptive purposes only and does not imply
endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual
copyright owners to reproduce any copyrighted material contained within this report.
Table of Contents

Introduction ..3
Agenda ..4
Tutorial..5

 Introduction, Project Summary, and Trace Elements By Ronald H. Affolter6
 Laboratory Setup, How Elements are Analyzed, and Quality Assurance/Quality Control (QA/QC) By Jamey D. McCord ..24
 Petrology of Feed Coal and Fly Ash By James C. Hower ..37
 Characterization of Feed Coal and Fly Ash Using X-Ray Diffraction and Microbeam Methods By Michael E. Brownfield ...52
 Leaching Studies by Batch, Sequential, Toxicity Characteristic Leaching Protocol (TCLP), and Synthetic Precipitation Leaching Protocol (SPLP) By Cynthia A. Rice68
References ...78
Contact Information ..79

1U.S. Geological Survey, Denver, Colorado USA
2University of Kentucky, Lexington, Kentucky USA
Introduction

The principal mission of the U.S. Geological Survey (USGS) Energy Resources Program (ERP) is to (1) understand the processes critical to the formation, accumulation, occurrence, and alteration of geologically-based energy resources; (2) conduct scientifically robust assessments of those resources; and (3) study the impact of energy resource occurrence and (or) production and use on both environmental and human health. The ERP promotes and supports research resulting in original, geology-based, non-biased energy information products for policy and decision makers, land and resource managers, other federal and state agencies, the domestic energy industry, foreign governments, non-governmental groups, academia, and other scientists. Investigations include research on the geology of oil, gas, and coal and the impacts associated with energy resource occurrence, production, quality, and utilization. The ERP’s main focus on coal is to support investigations into current issues pertaining to coal production, beneficiation and (or) conversion, and the environmental impact of the coal combustion process and coal combustion products (CCPs). To accomplish, the USGS combines its activities with other organizations, including donor organizations, to address domestic and international issues relating to the development and use of energy resources.

Coal quality, composition of stack emissions, and coal combustion products (CCPs) have become major environmental concerns as the rate of coal utilization increases nationally. With increasing emphasis on environmental issues, information on the quality of coal, which includes ash yield, sulfur content, and heat value, as well as major-, minor-, and trace-element content, has become as important as information on the quantity of the resource. Therefore, it is important to determine how these elements are distributed in the feed coal, the resulting changes in composition as coal is processed, and the chemical composition of the CCPs. Because (1) coal-quality data are important to the resource classification system (as applied by the USGS), and (2) utilization of coal may be regulated for its possible effect on the environment, any evaluation of future coal resource potential should therefore consider quality as well as quantity.

It is a widely accepted fact that the environmental “footprint” of coal utilization will have to continue to be reduced in the future. One of the basic building blocks to accomplish this goal is the development of sound databases that document the relation between geological controls on coal quality and the resultant CCPs. An integrated approach to coal quality work-- a “cradle to grave” approach-- focuses on more than one aspect of the coal, such as how and (or) where different coal quality characteristics form and what happens to them through the process of mining, production, transport, utilization, and waste disposal.

In order to determine these characteristics, an extensive suite of coal-quality analyses, mineralogical, petrology, and leaching investigations are performed on samples (both pre- and post-combustion) taken during different phases of the coal-utilization process. The feed coal, fly ash, and bottom ash sampling times are closely coordinated so that feed coal samples can be matched as closely as possible with the corresponding CCP samples. The goals of these types of study are to follow the flow of coal through the power plant, and finally to the disposal or utilization of the various CCPs. The results help to evaluate the relation of coal composition to the resultant CCPs, because the content, distribution, and
behavior of elements during and after the combustion process depend in large part on the content and distribution of trace elements in the feed coal. With an adequate amount of data from these studies, general predictive models could be developed so that issues like ash disposal and CCP utilization are addressed with greater precision.

This type of research fosters a greater understanding of the fate and partitioning of elements during coal combustion, and leads to data that can be used to more accurately evaluate how coal-quality parameters affect air emissions and waste-disposal efforts. This tutorial will (1) examine how these studies are conducted under the Coal Quality and Utilization issues task and the importance of providing improved, comprehensive, science-based data sets that can be utilized by policy and decision makers; and (2) discuss the history of collecting quality USGS data on trace elements, laboratory methods and procedures, petrology, mineralogy, and leaching characteristics of CCPs.

Agenda

12:15 p.m. Introduction, Project Summary, and Trace Elements—By Ronald H. Affolter

12:35 p.m. Laboratory Setup, How Elements are Analyzed, and Quality Assurance/Quality Control (QA/QC)—By Jamey D. McCord

12:55 p.m. Petrology of Feed Coal and Fly Ash—By James C. Hower

1:15 p.m. Break

1:20 p.m. Characterization of Feed Coal and Fly Ash Using X-Ray Diffraction and Microbeam Methods—By Michael E. Brownfield

1:40 p.m. Leaching Studies by Batch, Sequential, Toxicity Characteristic Leaching Protocol (TCLP), and Synthetic Precipitation Leaching Protocol (SPLP)—By Cynthia A. Rice

2:00 p.m. Questions and Answers—By Ronald H. Affolter
Tutorial
Introduction, Project Summary, and Trace Elements
Introduction, Project Summary, and Trace Elements

By
Ronald H. Affolter
U.S. Geological Survey, Denver, Colorado

Ron Affolter is a geologist with the U.S. Geological Survey who works on coal quality and database issues involving the characterization of the chemistry, mineralogy, and overall quality of U.S. and world coals. Ron has been an integral member of several multidisciplinary research teams providing coal quality data and quantity interpretations for the Colorado Plateau and Illinois Basin coal Assessment projects. He is currently a task leader for both the Coal Quality: Geologic Controls and Utilization Issues task and the Laboratory Analytical Issues and Quality Databases task. He is also the supervisor for the U.S. Geological Survey’s Geochemical Laboratory in Denver, CO and 2nd Vice Chairman for the Coal Geology Division of the Geological Society of America (GSA).
History of Collecting Coal Quality Data Within the U.S. Geological Survey

U.S. Geological Survey Energy Resource Program (ERP) 5-Year Plan

Coal Quality: Geologic Controls and Utilization Issues Task

Trace Element Studies

History of Coal Quality

Since 1970, the U.S. Geological Survey has pursued a program to evaluate the chemical composition of coals in the United States.

Collection of samples involved a cooperative effort among many different State and Federal agencies, private corporations, mines, and utilities.

Data consist of geologic, stratigraphic, and chemical information collected from drill holes, face channels, mine cuttings, power plants, and outcrop samples.
Documentation and chemical analyses for most coal samples processed during this program are available to the public in more than 2,000 reports listed in part by Finkelman and others, (1991); Affolter and Hatch, (1995); and Ellis (1995).

These reports list location, depth, thickness, and the basic geology of the sampled coal beds and summarize proximate and ultimate analyses and major-, minor-, and trace-element composition of the coal samples.

Bed summaries are also available on the COALQUAL Database CD-ROM (Bragg and others, 1997) and individual samples on the National Geochemical (PLUTO) Database (Baedecker and others, 1998).

Coal Quality

Because coal quality data are essential components of the U.S. Geological Survey's resource classification system (Wood and others, 1983), any evaluation of coal resource potential must consider quality as well as quantity.
Mercury Concentration in Coal Samples from the Colorado Plateau Region

World Coal Quality Inventory (WoCQI)
The Mission of the Energy Resources Program (ERP)

The ERP promotes and supports research resulting in original, geologically based, non-biased energy information products for policy and decision makers, land and resource managers, other federal and state agencies, the domestic energy industry, foreign governments, nongovernmental groups, academia, and other scientists.

The U.S. Geological Survey Energy Resources Program (ERP) 5-Year Plan

- Understand the processes critical to the formation, accumulation, occurrence, and alteration of geology based energy resources.
- Conduct scientifically robust assessments of those resources.
- Study the impact of energy resource occurrence and (or) production and use on both environmental and human health.
Coal

- Improve the understanding of the coal endowment of the United States.

- Maintain state-of-the-art data management and data distribution systems in order to organize, provide ease of use, archive, and deliver critical ERP information both internally and externally.

- Partner with other organizations, including donor organizations, to address domestic and international issues regarding energy resources.

Proposed Direction

Given increasing attention on the impacts of coal utilization, coal-quality research must address a more comprehensive suite of coal quality-related issues beyond fundamental coal quality parameters (such as ash yield, sulfur content, and heating value) and develop the possibility for a predictive capability addressing the effect of variations in spatial occurrence and coal utilization processes.
The ERP should focus research efforts to support investigations into the current issues pertaining to coal production and beneficiation, and the impact of the coal combustion process and coal combustion products (CCPs).

Also provide information and data on a variety of coal quality parameters including sulfur, nitrogen, major-, minor-, and trace-elements, and coal mineralogy.

Coal Quality: Geologic Controls and Utilization Issues Task

- Compile quality chemical information on the coals currently being mined and utilized throughout the United States. Evaluation of the distribution of element contents with emphasis between the feed coal and various coal combustion product (CCP) components.

- Relating that information to the geologic framework and possible environmental problems.
Coal Quality: Geologic Controls and Utilization Issues Task--Continued

- Studies should focus on how or where different quality parameters form and (or) occur, what happens to them through mining, production, transport, and, most importantly, utilization.

- Batch, flow through column, and sequential leaching studies to evaluate either disposal scenarios or to selectively dissolve mineral matter and help support microprobe, scanning electron microscope (SEM), and X-ray diffraction (XRD) analysis of selected inorganic elements.
Slide 19

Mine

Utilization

Landfill

Modified from EERC (2006).

Fly Ash: From Cradle to Grave, 2007 Clearwater Coal Conference Tutorial

Slide 20

Fly ash concrete used in decking and piers of the Sunshine Skyway Bridge, Tampa Bay, Florida*

Gypsum produced by wet scrubbers was used in the manufacture of wallboard*

Fly Ash: From Cradle to Grave, 2007 Clearwater Coal Conference Tutorial
Elements of Environmental Interest

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>Tertiary coal</th>
<th>Cretaceous coal</th>
<th>Pennsylvanian</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ppm whole coal</td>
<td>Mean Value</td>
<td>Mean Value</td>
</tr>
<tr>
<td>Antimony</td>
<td>0.63</td>
<td>0.48</td>
<td>1.1</td>
</tr>
<tr>
<td>Arsenic</td>
<td>7.4</td>
<td>1.6</td>
<td>11</td>
</tr>
<tr>
<td>Beryllium</td>
<td>1.1</td>
<td>1.2</td>
<td>2</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.1</td>
<td>0.1</td>
<td>0.43</td>
</tr>
<tr>
<td>Chromium</td>
<td>10</td>
<td>4.5</td>
<td>15</td>
</tr>
<tr>
<td>Cobalt</td>
<td>3.5</td>
<td>1.5</td>
<td>7</td>
</tr>
<tr>
<td>Lead</td>
<td>4.2</td>
<td>6.5</td>
<td>30</td>
</tr>
<tr>
<td>Manganese</td>
<td>60</td>
<td>22</td>
<td>70</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.12</td>
<td>0.06</td>
<td>0.15</td>
</tr>
<tr>
<td>Nickel</td>
<td>4.6</td>
<td>3.7</td>
<td>20</td>
</tr>
<tr>
<td>Selenium</td>
<td>0.72</td>
<td>1.2</td>
<td>2.8</td>
</tr>
<tr>
<td>Uranium</td>
<td>1.7</td>
<td>1.3</td>
<td>1.8</td>
</tr>
</tbody>
</table>

ppm = parts per million

Previous Studies

- **Kentucky** - Multiple sources from Illinois and Appalachian Basins
- **Indiana** - Powder River Basin, Wyoming (7 mines-Wyodak/Anderson coal zone)
- **Washington** - Blend of Powder River Basin (Spring Creek) and Washington coal
Temporal Variation of Elements in Feed Coal and Fly Ash from a Kentucky Power Plant

Variation in Arsenic Content by Sampling Scheme
Variation in K$_2$O Content by Sampling Scheme

Distribution of Arsenic, Barium, Na$_2$O, and MgO In Various Types of Samples
Old sampler

New sampler

Current Studies

- Indiana power plant
- Ohio power plant
- Wyoming power plant
- New Mexico (planning)
- Colorado (planning)
- Alaska?
- Texas?
Benefits and Extensions of this Proposed Work

- There seems to be a lack of solid data, especially with regard to trace elements in the by-products. These studies could aid coal by-product utilization research.
- The creation of improved, practical databases to assist policy makers in making more informed decisions.
- Maintain high analytical standards (QA/QC) for the Energy Program Geochemistry Laboratory.
- Address coal ash disposal issues.

QA/QC=Quality Assurance/Quality Control

Benefits to Contributors
Data on Feed Coal and CCPs

- Trace element
- Proximate/ultimate, forms-of-sulfur, ash fusion temperatures, heat value
- Mineralogy (XRD, SEM, Microprobe)
- Petrography
- Leaching
- Interpretation of data
- Special samples
There are Many Challenges, Especially Getting Cooperation from Mines and Utilities for Obtaining Representative Samples

- Private energy companies
- Environmental groups
- Consultants
- Educators, universities
- Utilities
- Other government agencies – DOE, EIA, NPS, BLM, NRC, EPA, SEC, OSM, State Geological Surveys (COOP)
- ASTM International
- American Coal Ash Association (ACAA)
Laboratory Setup, How Elements are Analyzed, and Quality Assurance/Quality Control (QA/QC)
Laboratory Setup, How Elements are Analyzed, and Quality Assurance/Quality Control (QA/QC)

By
Jamey D. McCord
U.S. Geological Survey, Denver, Colorado

Instructor

Jamey D. McCord

Jamey McCord is a physical scientist for the Central Region Energy Resource Team in Denver, Colorado. He has been with the U.S. Geological Survey for 12 years and is responsible for overseeing lab operations and maintaining the laboratory information system (LIMS). His primary focus is on coal, oil, and gas geochemistry.
USGS Energy Program Geochemistry Laboratory Capabilities

- Rock and coal
- Water
- Plant
- Gas and oil

Analysis Offered

- ICP (Inductively Coupled Plasma)
- ICPMS (Inductively Coupled Plasma Mass Spectrometer)
- GFAA (Graphite Furnace Atomic Absorption)
- Hydride / Cold vapor
- Sulfur by direct read
- Chloride by direct read
- Ash-Moisture-LOI (Lost on ignition)
- Custom analysis and method development

Dragoset and others (2003)
ICPAES (Inductively Coupled Plasma)

ICPAES is used to analyze major and trace elements in coal. It is capable of attaining values in the low parts per billion (ppb) range.

ICPMS (Inductively Coupled Plasma Mass Spectrometer)

ICPMS is capable of analyzing coal to low parts per billion (ppb). It is also used for rare earths and limited isotopic ratioing.
After the coal is received it is ashed and put through the appropriate digestion for the desired analyses.

Different Digestions for ICP/ICPMS

Major Digestion
- Weigh 0.1 gram ash (LOI 750°C)

Trace Digestion
- Weigh 0.2 gram ash (LOI 500°C)

Sinter Decomposition
- Weigh 0.1 gram ash (LOI 500°C)

LOI = Lost on ignition
Mercury Analysis

HG analysis is done two ways:
- Direct read on the DMA (Direct Mercury Analyzer)
- Hydride generation on the FIMS (Flow Injection Mercury System)

Chloride Analysis

Tox-100 Direct Read Chloride Analyzer detects chloride down to 10 ppm compared to IC (Ion Chromatography) detection limits of 500-1,000 ppm.

ppm = Parts per million
Sulfur Analysis

LECO SC-432 for direct analysis of sulfur in coal. A coal industry standard for years.

Selenium Analysis

AA-200 used with a heating mantel and a flow injection system for selenium analysis. Detection limits are around 1ppm in coal.

ppm = Parts per million
Low Temperature Ashing

Low temperature ashing is done to preserve the crystal structure of minerals while removing organic matter that would interfere with X-ray diffraction analysis.

X-Ray Diffraction (XRD)

We have two X-ray diffraction units to provide mineralogical analysis. The Panalytical Expert-Pro is new and is making a big impact on how long it takes to analyze samples.
Example of XRD Scan from New and Old

The new XRD will bring speed and better mineral determinations.

Geochemical Testing

Geochemical Testing is the contract laboratory used by the USGS Energy Resource Team to grind and split samples and to provide proximate and ultimate analysis.

Geochemical Testing has been quality control tested by the USGS Energy Resource Team and has been a part of the lab audit.
Organic Lab Capabilities

- API (Amer. Petroleum Inst.) gravity and weight percent sulfur
- Whole oil GC-FID (Gas Chromatography Flame Ionization Detector)
 - nC3 thru nC40
- Column chromatography
 - Saturate, aromatic, resin and asphaltene (SARA)
- GC-FID (Gas Chromatography Flame Ionization Detector)
- Bitumen, saturate and aromatic fractions
- GC-MS (Gas Chromatography Mass Spectrometer) biomarker analysis
 - Whole oil
 - Bitumen, saturate and aromatic fraction
- Isotope ratio mass spectrometry (IRMS)
 - Whole oil bitumen, saturate and aromatic fraction
- Petrography and vitrinite reflectance
- Soxhlet extraction (bitumen)
- Elemental analysis

Quality Control in the Laboratory

The Energy Program Geochemistry Laboratory uses a three-tiered approach to quality control (QC).

- **The First Tier**
 Method Performance: QC samples are analyzed by laboratory personnel. At this level, laboratory personnel use the QC sample data to control the analytical process for each batch of samples. If the acceptance criteria are not met, the analysis is discontinued until corrected.

- **The Second Tier**
 Data Review and Blind Sample Programs: Laboratory personnel use data from these programs to monitor method performance throughout the laboratory and for long term tracking.

- **The Third Tier**
 Performance-Evaluation Studies: These studies are managed by private laboratories, local, State, and Federal agencies, all external to the Energy laboratory. Data from these studies can be used to compare laboratories or to select a laboratory for analytical work. Summary reports from many of these studies will be available on the Energy Program Geochemistry Laboratory web page.
First Tier: Method Performance

- Energy laboratory personnel trying to determine elements in any sample evaluate two areas of performance: (1) instrument and (2) method. Accurate instrument operation can be verified by analyzing known standards at different concentrations. Blank water, which has negligible concentrations of the constituents of interest, is also analyzed to evaluate and eliminate potential sources of bias.

- The analyst uses QC samples to assess whether the method is working properly. Data produced from these samples are the most useful for customers to evaluate the lab’s entire analytical process. In addition to blank samples, standard reference materials are the primary tools for evaluating method bias and variability. Laboratory replicate data are also used to evaluate and obtain method variability information.

- Standard Reference Materials (SRMs) are obtained through internal and external sources, such as NIST, CANSPEX, USGS, and EPA. The SRM is thought to be sufficiently tested to be used to assess method performance. Several SRMs of differing concentrations and elements are analyzed alongside everyday samples. The SRM data are evaluated to assess bias for each analysis. Additionally, as the data are compiled, long-term estimates of method variability can be obtained.

Second Tier: Data Review and Blind Sample Program

Data Review Program. All Energy laboratory analytical results initially are stored in the Laboratory Information Management System (LIMS) database. A QC check is done by the laboratory manager to review all analytical results in the database. Examples of QA checks include the following:

- Duplicate within limits
- SRMs fall within limits
- Internal blinds tests
- Internal standards
- Historical trends checked if available
- Correlation is within limits
- Proper amount of QA used in job

Blind Sample Programs. The blind sample programs are administered by both internal and external personnel to the Energy laboratory. The internal program quantifies bias caused by random laboratory contamination. The external blind checks method performance and reproducibility.
Third Tier: Performance-Evaluation Studies

The Energy laboratory participates in the following national and international inter-laboratory performance-evaluation studies: USGS Branch of Quality Systems Evaluation Program for Standard Reference Samples; CANSPEX

Outside Audit and Blind Program

- The laboratory has gone through an outside audit to ensure its operations are consistent with the requirements of good laboratory practices specified in ISO 17025, ASTM D4621-99, and D4182-97.

- The laboratory also participates in a blind sample program and various round-robin sample programs to assure analytical quality.
Energy Program Geochemistry Laboratory

- Geology
- Mineralogy
- Chemistry

Dragoset and others (2003)

All used to help with questions and arising problems in the coal, oil, and gas environment.
Petrology of Feed Coal and Fly Ash
Instructor

James C. Hower

Jim Hower is an adjunct professor at the University of Kentucky with his primary work conducted in the Environmental & Coal Technologies Group at the Center for Applied Energy Research. With the cooperation of the Kentucky Geological Survey and the U.S. Geological Survey, he maintains research in the petrology and geochemistry of coals. Much of the research is directed toward the utilization of coal and of products derived from coal. Recent research has focused on the mercury content of fly ash carbons. Jim is the editor-in-chief of the *International Journal of Coal Geology*, was an author of the *Atlas of Coal Geology* (AAPG and The Society for Organic Petrology), and is the Eastern Region Director for the Combustion Byproducts Recycling Consortium (http://wwwri.nrcce.wvu.edu/CBRC/), a national program funded by the U.S. Department of Energy.
Fly Ash Petrography

- Inorganic
 - neoformed
 - glass
 - 70 to >90% of most FA
 - mullite
 - spinel
 - Inorganic
 - coal derived
 - Quartz

- Organic
 - neoformed
 - isotropic coke
 - anisotropic coke
 - Organic
 - coal (or fuel) derived
 - inertinite
 - petroleum coke

Glass, including glassy edge of partially vitrified shale fragment (left)
Fly Ash Petrography--Continued

- Spinel (magnetite)
- Isotropic coke
- Glass

Fly Ash Petrography--Continued

- Mullite

Fly Ash: From Cradle to Grave, 2007 Clearwater Coal Conference Tutorial
Fly Ash Petrography--Continued

Quartz (top);
Vitrified rock fragment (right)

Fly Ash Petrography--Continued

Anisotropic coke

Inertinite
Fly Ash Petrography--Continued

Partially combusted coal

Fly Ash Petrography--Continued

Petroleum coke

Biomass (Rice hull ash)

Tire-derived fuel ash (right) with coal-derived carbons
Fly Ash Chemistry

- Volatile trace elements display different characteristics in the ash-collection system
 - Arsenic, lead, zinc, and others will tend to be more highly concentrated in back rows of electrostatic precipitators (ESP)
 - Flue gas temperature decreases in direction away from boiler
 - Fly ash particle size decreases towards back rows
 - Therefore, cooler temperature (T) and greater surface area
- Most volatile elements, Hg is exception, tend to be associated with inorganic fly ash constituents

Fly Ash Chemistry--Continued

Example from an eastern Kentucky power plant burning mid-S hvAb coal

As Distribution (ppm)

ESP
136
157
322
133
145
342
Gas flow
158
201
321
107
166
274

Example from an eastern Kentucky power plant burning mid-S hvAb coal
Selenium shows trends that are less distinct than latter elements

- Some power plants do show distinct increase towards cooler rows
- Others, as on next slide, show a distinct peak in warmer row
- More detailed study is underway

Se Distribution (ppm)

<table>
<thead>
<tr>
<th>Location</th>
<th>239</th>
<th>18</th>
<th>19</th>
<th>19</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical</td>
<td>23</td>
<td>20</td>
<td>21</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>ESP</td>
<td>239</td>
<td>20</td>
<td>19</td>
<td>19</td>
<td>2</td>
</tr>
</tbody>
</table>

Fly Ash: From Cradle to Grave, 2007 Clearwater Coal Conference Tutorial
Fly Ash Chemistry--Continued

Mercury capture by fly ash is complex, depends on:

- Speciation of Hg in flue gas
- T at collection point
- Amount of carbon in fly ash
- Type of carbon in fly ash

Factors influencing Hg speciation include:

- Coal rank influences on combustion temperature
- Amount of Cl in coal (greater in eastern US coals)
 - Enhances oxidation
- Amount of Ca in coal (greater in western US coals)
 - Inhibits oxidation
- Fe-oxides (greater in eastern coals) may catalyze oxidation of Hg
Fundamental Relations of Mercury with Fly Ash

Studies have demonstrated relations among:

- Amount of fly ash carbon and Hg capture
 - More C = More Hg
- Decreasing flue gas T and Hg capture
 - Lower T = More Hg
- Fly ash carbon type and Hg capture
 - Increased Hg from inertinite to isotropic coke to anisotropic coke

Fundamental Relations of Mercury with Fly Ash--Continued

![Graph: Unit 1 Fly Ash Carbon vs. Hg](image)

Hover and others (1999)
Fundamental Relations of Mercury with Fly Ash--Continued

Studies have demonstrated relations among:

- Amount of fly ash carbon and Hg capture
 - More C = More Hg
- Decreasing flue gas T and Hg capture
 - Lower T = More Hg
- Fly ash carbon type and Hg capture
 - Increased Hg from inertinite to isotropic coke to anisotropic coke

10.5/0.07
19.6/0.10
7.4/0.50
364 °C

12.7/0.08
7.0/0.53
7.2/0.55
172 °C

Key:
C (ultimate analysis)/Hg (ppm)
Fundamental Relations of Mercury with Fly Ash--Continued

Appalachian coal: C vs. Hg
Relationship with carbon and temperature

Note greater concentration of Hg in cooler baghouse hoppers compared to concentration in mechanical hoppers, despite higher C in latter

Hover and others (2000)

Fundamental Relations of Mercury with Fly Ash--Continued

Studies have demonstrated relations among:

- Amount of fly ash carbon and Hg capture
 - More C = More Hg
- Decreasing flue gas T and Hg capture
 - Lower T = More Hg
- Fly ash carbon type and Hg capture
 - Increased Hg from inertinite to isotropic coke to anisotropic coke
 - Surface area increases along same trend
Fundamental Relations of Mercury with Fly Ash--Continued

- Collected mechanical fly ash at 70 MW unit 3 at East Kentucky Power’s Dale Station
- Screen ash at 140 mesh (106 microns)
- Concentrate C with triboelectrostatic separation
- Isolate C forms through density-gradient centrifugation (right)
- Petrographic and chemical analyses of DGC splits

Hover and others (2000)
Maroto-Valer and others (2001)

Dale: DGC concentrate vs. Hg content

Sample

Inertinite
Isotropic coke
Anisotropic coke
Intermediate

Sample

parent 2 5 6 7 8 11 12

Hg (ppm)

Sample vs Hg (ppm)
Fundamental Relations of Mercury with Fly Ash--Continued

Study of single-seam/single-mine coal burned at 220-MW utility boiler (USGS NaCQI-funded study)

Hg Distribution by Hopper

Mardon and Hower (2004)

Hg in fly ash has a reasonably good thermal stability, remaining in fly ash until 300-400°C range. Good indicator for stability in industrial utilization of fly ash.

Rubel and others (2006)
Summary

- Fly ash has constituents that can be identified microscopically.
 - Combination of inherited and neoformed constituents from coal and, in some cases, from other fuels or contaminants.
- Composition of fly ash is a function of chemistry of feed coal and other fuels, flue gas temperature at collection point, and fly ash petrology among other factors.
Characterization of Feed Coal and Fly Ash Using X-Ray Diffraction and Microbeam Methods
Characterization of Feed Coal and Fly Ash Using X-Ray Diffraction and Microbeam Methods

By
Michael E. Brownfield
U.S. Geological Survey, Denver, Colorado

Instructor
Michael E. Brownfield

Michael Brownfield is a geologist with the U.S. Geological Survey in Denver, Colorado where he conducts studies on modes of occurrence of elements in coal and coal combustion products utilizing X-ray diffraction and microbeam techniques. Recent studies have focused on the characterization of feed coal and coal combustion products at an Indiana power plant burning Powder Basin coal and the characterization of coals and the modes of occurrence of elements (including Hg) from the Eocene Puget Group, John Henry No. 1 mine, King County, Washington.
Characterization of Feed Coal and Fly Ash

- Coal is a complex combustible rock made up of organic and inorganic mineral components.

- During combustion, elements present in the organic and mineral components of the coal are transformed into new gaseous and solid phases.

- In fly ash, elements may be uniformly distributed, enriched in certain grains or areas of grains, or present as coatings on grains or absorbed onto grain surfaces.

Characterization of Feed Coal and Fly Ash--Continued

- Particle size, coal rank, amount of ash, coal mineralogy, and trace element content are important variables in controlling the combustion of coal and the mobility of elements in coal.

- For fly ash, the composition of the feed coal, combustion conditions, size of the fly ash particles, and fly ash mineralogy influence the distribution and mobility of trace elements.
Mineralogy of Feed Coal and Fly Ash

Determination of minerals in coal and fly ash is important because minerals can affect:

- Coal combustion and fly ash utilization and disposal
- Location (modes of occurrence) and leachability of elements in coal and fly ash
- Acidity (pH) during interaction with water

Many of the examples in this discussion of mineralogy of feed coal and fly ash are from a study involving a power plant that was utilizing feed coal from the Wyodak-Anderson coal zone in the Powder River Basin, Wyoming.

Brownfield and others (2005)
X-Ray Diffraction Analysis

Coal ash, for X-ray diffraction mineralogical studies, is derived by two methods:

- Low-temperature ashing (LTA) and
- Digesting the coal with aqueous sodium hypochlorite (NaOCl) or chlorine bleach

X-Ray Diffraction Analysis--Continued

X-ray diffraction methods:

- X-ray diffraction data of bulk LTA and fly ash samples are digitally collected and analyzed. Relative abundance of minerals can be determined using reference intensity methods.

- Quantitative mineral data are determined on LTA ash and fly ash with Rietveld Refinement XRD methods (Larson and Von Dreele, 1994) using General Structure Analysis System (GSAS) and Materials Data Inc. (MDI) software. Rutile (TiO$_2$) can be added as a standard to determine amorphous material.
X-Ray Diffraction Analysis--Continued

- X-ray diffractogram of low-temperature ash (LTA) from the Wyodak-Anderson, Powder River Basin, Wyoming
- Mean ash yield = 5.5 weight percent

Fly Ash: From Cradle to Grave, 2007 Clearwater Coal Conference Tutorial

X-Ray Diffraction Analysis--Continued

Quartz
Subhedral crystal of calcite

Fly Ash: From Cradle to Grave, 2007 Clearwater Coal Conference Tutorial
X-Ray Diffraction Analysis--Continued

- X-ray diffractogram of fly ash derived from a Wyodak-Anderson feed coal, mined from the Powder River Basin, Wyoming
- Mean amorphous content = 60.4 percent, determined using General Structure Analysis System (GSAS) Rietveld software
X-Ray Diffraction Analysis--Continued

- X-ray diffractogram of bottom ash from the Wyodak-Anderson coal, Powder River Basin, Wyoming
- Bottom ash contains lesser amounts of amorphous material because of the increase in cooling time
X-Ray Diffraction Analysis--Continued

SEM image of a bottom ash grain from an Indiana power plant utilizing the Wyodak-Anderson coal from the Powder River Basin, Wyoming.

Microbeam Analysis

Two electron microbeam instruments are utilized in the collection of coal and fly ash chemical and modes of occurrence data:

- Electron Probe Microanalyzer (EPMA), commonly known as a microprobe
- Scanning Electron Microscope (SEM)
Microbeam Analysis--Continued

Sample preparation:

- Polished epoxy-bound sections of coal and fly ash are prepared for the Electron Probe Microanalyzer and Scanning Electron Microscope.

- Low-temperature ash and sodium hypochlorite-treated samples are mounted on conductive carbon tape.

The microprobe can collect both quantitative and semiquantitative chemical data:

- Quantitative chemical data (generally within ± 1 percent) on macrocrystalline phases greater than 5µm) using EPMA wavelength dispersive spectral (WDS) analysis is conducted using standards

- Semiquantitative analysis using energy dispersive X-ray analysis (EDS)
Microbeam Analysis--Continued

X-ray intensity mapping with the microprobe:

- Very good in determining relative abundances and distribution of elements in a fly ash or bottom ash grain
- Can take as much as 8 hours to map a fly ash grain

Chromium, nickel, and silica in a ferrite-rich fly ash grain

Scanning Electron Microscope analysis (SEM):

- Imaging: using backscattered electron images (BEI) or secondary electron images (SEI)
- Semiquantitative analysis using Energy dispersive X-ray analysis (EDS)
- X-ray element intensity mapping, SEM scans are faster when compared to the microprobe

Fly Ash: From Cradle to Grave, 2007 Clearwater Coal Conference Tutorial
Microbeam Analysis--Continued

SEM Imaging

Euhedral beta-form quartz from digested coal.

Authigenic quartz that replaced plant matter, from digested coal.

Microbeam Analysis--Continued

SEM Imaging

Euhedral crystal of zircon (ZrSiO₄) from digested coal.

Irregular cleavage fragment of K-feldspar from digested coal.
Microbeam Analysis--Continued

SEM Imaging

Secondary electron image (SEI) showing cinnabar (HgS), iron–magnesium oxide, and quartz in a polished sample of washed coal (specific gravity of 1.5 g/cm³) from the Franklin No. 12 coal bed in the John Henry No. 1 mine, King County, Washington.

Microbeam Analysis--Continued

SEM Imaging

Secondary electron image (SEI) arsenic sulfide (realgar, AsS) from a washing plant reject sample from the Franklin 7–8 coal bed, John Henry No. 1 mine, King County, Washington.
Microbeam Analysis--Continued

SEM Imaging

Ca+Mg-rich fly ash grain derived from a Wyodak-Anderson feed coal.

Phosphorus-rich fly ash grain derived from a Wyodak-Anderson feed coal.

X-ray element intensity mapping:

SEM backscattered image (BEI) showing bright anhydrite (CaSO$_4$) and element X-ray intensity maps showing relative abundances and distribution of sulfur (S), calcium (Ca), and magnesium (Mg) from a fly ash grain derived from the a Wyodak-Anderson feed coal, Powder River Basin, Wyoming.
Conclusions

X-ray diffraction and microbeam analysis of feed coal and CCPs are important tools in the characterization of feed coal and fly ash.

Determination of minerals and the chemistry of amorphous materials in coal and fly ash are important because these compounds can affect:

- Coal combustion and fly ash utilization and disposal;
- Location (modes of occurrence) and leachability of elements; and
- Acidity (pH) during interaction with water

Radiographic Analysis

Distribution of uranium in fly and bottom ash particles can be directly observed using fission-track radiography:

- Polished thin sections of grains of fly and bottom ash are prepared and irradiated with neutrons.
- During irradiation, fission fragments recoil from the surface of the thin section and pass into an overlying sheet of muscovite detector material causing linear paths of damage or tracks.
- High fission-track density can be related to areas of high uranium concentration in the sample.
Photograph (left) of a Ca-P rich fly ash grain and its fission track radiograph. Size of images is about 0.25 by 0.15 mm.

Photography (left) of fly ash grains with mineral inclusions and its radiograph (right). Bright mineral inclusions are quartz and contain very low concentrations of uranium. Size of images are about 1.0 by 0.6 mm. Sample is fly ash derived from a Wyodak-Anderson feed coal, mined from the Powder River Basin, Wyoming.
Leaching Studies by Batch, Sequential, Toxicity Characteristic Leaching Protocol (TCLP), and Synthetic Precipitation Leaching Protocol (SPLP)
Leaching Studies by Batch, Sequential, Toxicity Characteristic Leaching Protocol (TCLP), and Synthetic Precipitation Leaching Protocol (SPLP)

By

Cynthia A. Rice
U.S. Geological Survey, Denver, Colorado

Instructor

Cynthia A. Rice

Cyndi Rice is a retired U. S. Geological Survey scientist. She received a master’s degree from the Colorado School of Mines in geochemistry with an emphasis in aqueous geochemistry.

Cyndi has investigated the leaching behavior of trace elements in studies focusing on a power plant that utilized multi-source high and low S coals and a power plant that utilized a sole-source low S coal. More recently, Cyndi has devoted all of her time to environmental issues associated with the development of coalbed natural gas (CBNG). These studies include the characterization of waters co-produced with CBNG in the Ferron Sandstone in Utah and in the Fort Union Formation in the Powder River Basin. In addition, the interactions between CBNG water and the shallow subsurface are focuses of her studies.
Trace Elements in Coal and Coal Combustion Residues

- Important for recycling and disposal
- What factors control trace element leaching and mobility?
- How can we characterize the material to understand trace element leaching and mobility?

Controls on Element Leaching and Mobility

- Solubilities of initial phases
 - Surface coatings, oxides readily soluble
 - Sulfates, carbonates varyingly soluble
 - Arsenates, vanadates, selenates varyingly soluble
 - Silicates, spinel groups sparingly soluble
- Adsorption of elements
 - Cd, Cu, Mn, Ni, Zn adsorb at high pH
 - As, Mo, Se, and V desorb at high pH
- Aqueous chemistry
 - Cationic vs. anionic behavior
- Secondary phase formation
 - Fe and Al oxyhydroxides, ettringite
Fast Reactions: Seconds to Minutes

Oxide Hydrolysis

\[\text{CaO} + \text{H}_2\text{O} \rightleftharpoons \text{Ca}^{2+} + 2\text{OH}^- \]

Coatings and Carbonates Dissolve

\[\text{Al}_2\text{K(SO}_4\text{)}_2 + \text{H}_2\text{O} \rightleftharpoons \text{AlO}^{2+} + \text{K}^+ + 2\text{SO}_4^- + \text{H}^+ \]

Secondary Phase Formation

\[\text{FeOH}^{2+} + \text{OH}^- \rightleftharpoons \text{FeOOH} + \text{H}^+ \]

Intermediate to Slow Reactions: Days to Months

Glass Hydrolysis

\[\text{NaAlSi}_2\text{O}_6 + 2\text{H}_2\text{O} \rightleftharpoons \text{Na}^+ + \text{Al}^{3+} + 2\text{SiO}_2\text{(aq)} + 4\text{OH}^- \]

Secondary Phase Formation

\[2\text{Al}^{3+} + 3\text{SO}_4^{2-} + 6\text{Ca}^{2+} + 38\text{H}_2\text{O} \rightleftharpoons \text{Ettringite} + 12\text{H}^+ \]

CO}_2\text{ Equilibration

\[2\text{CO}_2 + \text{Ca}^{2+} + 2\text{H}_2\text{O} \rightleftharpoons \text{CaCO}_3 + \text{HCO}_3^- + 3\text{H}^+ \]
“Master” Control on Leaching and Mobility

pH

Adsorption Solubility

Aqueous speciation Secondary phases

Trace element leaching and mobility

Trace Elements in Coal and Coal Combustion Residues

- Important for recycling and disposal
- What factors control trace element leaching and mobility?
- How can we characterize the material to understand trace element leaching and mobility?
Variety of Leaching Tests

- Toxicity Characteristic Leaching Protocol (TCLP) EPA method 1311 using acetic acid with $\text{pH} = 2.88$ or 4.93 in 18 hour batch tests to simulate disposal in a municipal landfill

- Synthetic Precipitation Leaching Protocol (SPLP) Batch and column leaching using solution that mimics rainfall and disposal in environment exposed to precipitation

- Other: Deionized water, variety of reagents such as ammonium chloride, acetic acid, HCl, H_2SO_4, HNO_3, and HF

Strategy for Leaching Tests

- Determine environment of disposal or use:
 e.g. monofill, municipal landfill, mine fill, land application and exposure

- Select appropriate leaching protocol:
 e.g. TCLP, SPLP, batch, column, short time, longer time

- Apply leaching tests to determine representative behavior
Examples from Multi-source Power Plant

- **High sulfur furnace**
 - 2.5 – 3.5 weighted percent sulfur
 - Feed coal, bottom ash, fly ash
 - Precipitator temperature about 130°C

- **Low sulfur furnace**
 - 0.6 – 0.9 weighted percent sulfur
 - Feed coal, bottom ash, 2 fly ashes
 - Precipitator temperature about 470°C
 - 2 fly ashes are coarse and fine

Leaching Experiments

- 18 hour, 20:1 water to solid ratio
- < 1 hour, 20:1 water to solid ratio
- Column: > 64 flow days, water to solid ratio varied
18-Hour Batch Leach of Fly Ash

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
<th>Cu</th>
<th>Zn</th>
<th>As</th>
<th>Mo</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>High S</td>
<td>Avg</td>
<td>11</td>
<td><.0005</td>
<td>0.13</td>
<td>0.04</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>% Total</td>
<td><.004</td>
<td>0.10</td>
<td>0.47</td>
<td>48</td>
<td>0.65</td>
</tr>
<tr>
<td>Low S</td>
<td>Avg</td>
<td>8.3</td>
<td>0.13</td>
<td>0.013</td>
<td>0.06</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>% Total</td>
<td>1.6</td>
<td>0.29</td>
<td>4.4</td>
<td>37</td>
<td>1.0</td>
</tr>
<tr>
<td>Coarse</td>
<td>Avg</td>
<td>4.6</td>
<td>4.2</td>
<td>0.55</td>
<td>0.02</td>
<td>0.099</td>
</tr>
<tr>
<td></td>
<td>% Total</td>
<td>28</td>
<td>4.3</td>
<td>0.49</td>
<td>7.8</td>
<td>0.13</td>
</tr>
<tr>
<td>Fine</td>
<td>Avg</td>
<td>4.6</td>
<td>5.8</td>
<td>91</td>
<td>110</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>% Total</td>
<td>0.73</td>
<td>18</td>
<td>11</td>
<td>14</td>
<td>100</td>
</tr>
</tbody>
</table>

Averages for elements are in ppm

18-Hour Batch Leach of Fly Ash

<table>
<thead>
<tr>
<th></th>
<th>Al</th>
<th>Ca</th>
<th>K</th>
<th>Na</th>
<th>SO4</th>
</tr>
</thead>
<tbody>
<tr>
<td>High S</td>
<td>Avg</td>
<td>11</td>
<td>9.4</td>
<td>310</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>% Total</td>
<td>0.16</td>
<td>25</td>
<td>1.3</td>
<td>6.8</td>
</tr>
<tr>
<td>Low S</td>
<td>Avg</td>
<td>8.3</td>
<td>4.6</td>
<td>53</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>% Total</td>
<td>0.06</td>
<td>13</td>
<td>1.8</td>
<td>4.8</td>
</tr>
<tr>
<td>Coarse</td>
<td>Avg</td>
<td>4.6</td>
<td>58</td>
<td>91</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>% Total</td>
<td>0.73</td>
<td>18</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Fine</td>
<td>Avg</td>
<td>4.6</td>
<td>58</td>
<td>91</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>% Total</td>
<td>0.73</td>
<td>18</td>
<td>11</td>
<td>14</td>
</tr>
</tbody>
</table>

Averages for elements are in ppm

Fly Ash: From Cradle to Grave, 2007 Clearwater Coal Conference Tutorial
18-Hour Batch Leach of Fly Ash

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
<th>Al</th>
<th>Ca</th>
<th>K</th>
<th>Na</th>
<th>SO_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>9.1</td>
<td>0.24</td>
<td>230</td>
<td>1.3</td>
<td>8.4</td>
<td>220</td>
</tr>
<tr>
<td>Max</td>
<td>12</td>
<td>24</td>
<td>420</td>
<td>25</td>
<td>30</td>
<td>670</td>
</tr>
</tbody>
</table>

High S

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>4.7</td>
<td>24</td>
</tr>
<tr>
<td>Max</td>
<td>10</td>
<td>230</td>
</tr>
</tbody>
</table>

Low S Coarse

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>3.3</td>
<td>22</td>
</tr>
<tr>
<td>Max</td>
<td>8.1</td>
<td>1,900</td>
</tr>
</tbody>
</table>

Low S Fine

Minimum and maximum values for elements are in ppm.
Summary

- Trace element leaching and mobility in coal and coal combustion residue depends primarily on pH
- Leaching tests can identify important reactions
- Multiple samples provide best estimate of behavior
- Recent research now provides basis for improved understanding of trace element behavior
References

Contact Information

Ronald H. Affolter, Box 25046, MS 939, Denver Federal Center, Denver, Colorado 80225, 303-236-7752, affolter@usgs.gov

Michael E. Brownfield, Box 25046, MS 939, Denver Federal Center, Denver, Colorado 80225, 303-236-5742, mbrownfield@usgs.gov

Margaret S. Ellis, Box 25046, MS 939, Denver Federal Center, Denver, Colorado 80225, 303-236-7775, mellis@usgs.gov

James C. Hower, 2540 Research Park Dr., Lexington, Kentucky 40511, 859-257-0261, hower@caer.uky.edu

Jamey D. McCord, Box 25046, MS 939, Denver Federal Center, Denver, Colorado 80225, 303-236-2460, jdmccord@usgs.gov

Cynthia A. Rice, Box 25046, MS 939, Denver Federal Center, Denver, Colorado 80225, 303-236-1989, crice@usgs.gov