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	 1.  Normalized road and dasymetric density across the San Francisco Bay Area. Road 

density is a measure of distance to the nearest road for each pixel. Normalization 
scales this to the range 0 to 1. Dasymetric density uses census-block and 
land-cover information to estimate population density per 30-m pixel. Population 
density values near the high end of the scale (near 1 person per 30-m pixel) 
suggest artifacts generated from inaccuracies in the land-cover information..................3
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	 3.  Population density predicted from a probabilistic neural network using normalized 
road density and training-set sizes of 1,000 and 50,000 points. The average of the 
curves suggests how the goodness-of-fit varies with training sets of intermediate 
sizes. The blips in the curves for normalized road density greater than about 0.6 are 
likely due to noise in the data. For these data a large increase in the number of 
training points does not lead to a large improvement in goodness of fit.............................4

	 4.  Scatterplot showing the geometrically uneven distribution of data points. The 
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Abstract
Machine learning describes pattern-recognition algo-

rithms—in this case, probabilistic neural networks (PNNs). 
These can be computationally intensive, in part because of the 
nonlinear optimizer, a numerical process that calibrates the 
PNN by minimizing a sum of squared errors. This report sug-
gests efficiencies that are expressed as cost and benefit. The 
cost is computer time needed to calibrate the PNN, and the 
benefit is goodness-of-fit, how well the PNN learns the pat-
tern in the data. There may be a point of diminishing returns 
where a further expenditure of computer resources does not 
produce additional benefits. Sampling is suggested as a cost-
reduction strategy. One consideration is how many points to 
select for calibration and another is the geometric distribution 
of the points. The data points may be nonuniformly distrib-
uted across space, so that sampling at some locations provides 
additional benefit while sampling at other locations does not. 
A stratified sampling strategy can be designed to select more 
points in regions where they reduce the calibration error and 
fewer points in regions where they do not. Goodness-of-fit 
tests ensure that the sampling does not introduce bias. This 
approach is illustrated by statistical experiments for computing 
correlations between measures of roadless area and popula-
tion density for the San Francisco Bay Area. The alternative to 
training efficiencies is to rely on high-performance computer 
systems. These may require specialized programming and 
algorithms that are optimized for parallel performance.

Introduction
Patterns in a GIS data layer, in a remotely sensed image, 

or on the landscape can be visually obvious to the human eye. 
Machine-learning (Poggio and Smale, 2003) is a mathematical 
discipline that describes generalized patterns so that comput-
ers can mimic the human skill of pattern recognition. This 
report considers one type pf machine-learning: probabilistic 
neural networks (PNNs) (Masters, 1993, 1995). PNNs have 
the advantage (Ripley, 1996) over alternative forms of neural 
networks, such as Feed Forward Neural Networks (FFNs), of 
being relatively easy to train. Machine-learning has a demon-
strated value in recognizing complex patterns in large envi-

ronmental data sets. Conrads and others (2002) and Roehl and 
Conrads (1999) describe the use of neural networks and data 
mining for the modeling of estuary and river systems. Risley 
and others (2003) describe a combination of unsupervised and 
supervised learning techniques to model water temperature 
in streams over an 80,000 square kilometer region in western 
Oregon.

Practical considerations in applying machine learning are 
whether the programs can run on a desktop computer system, 
or whether a high-performance computer system is required. 
The system used in this study for performance measurements 
has a Pentium 4 dual-core processor (3.20 and 3.19 GHz) with 
1.00 GByte of RAM. For this system there are formulations of 
machine-learning that can expend tens and even more hours of 
calibration time. This report suggests alternatives for efficient 
training, improving the utilization of computer resources by 
requiring the machine-learning algorithm to work no harder 
than it has to in order to learn and generalize the pattern in 
the data. This is expressed in terms of cost-benefit measures, 
where cost is execution time and the benefit is framed in terms 
of statistical measures of goodness-of-fit. The PNN software 
for these experiments is from Masters (1995).

Part of the computational demand of machine-learning 
is due to a numerical process called optimization. Numerical 
optimizers are used across a wide variety of machine-learning 
algorithms (Bishop, 2006; Cucker and Smale, 2001; Hastie 
and others, 2001). Using a training set, the optimizer teaches 
the machine-learning algorithm the data pattern by finding 
parameters that describe the minimum of an error function. 
This is analogous to finding the best least-squares estimate 
as in ordinary regression, except that in this case the error 
function can be highly nonlinear. The computational burden to 
minimize the error function tends to increase dramatically with 
the number of points in the training set. It may be that a small 
set of training data can minimize the error function as well 
as a larger training set. If so, then the algorithm can learn the 
pattern in the data using a smaller rather than a larger training 
set and in a shorter rather than in a longer time. The numerical 
experiments below quantify, for a particular example, compu-
tation time as a function of sample size. The experiments also 
suggest how to evaluate convergence—a measure of when a 
calibration set contains enough information to give a reliable 
fit. 

Cost-Benefit Analysis of Computer Resources for  
Machine Learning

By Richard A. Champion, Jr.



2    Cost-Benefit Analysis of Computer Resources for Machine Learning

An alternative is a more powerful computer system, either 
a sequential system with a faster processor or a system with 
parallel architecture. In sequential computer architectures, 
instructions are executed one at a time in a single logic stream 
until the program finishes. In parallel computer architectures, 
instructions split into parallel logic streams that are indepen-
dently executed. A variation is message passing, where, at 
programmer-defined intervals, the separate logic streams share 
information. See Pacheco (1997) for a discussion of Message 
Passing Interface (MPI). Parallel programming paradigms 
may require restructuring of serial code, translation from one 
computer language to another, or the development of paral-
lel algorithms. An ideal programming paradigm would allow 
serial code to take advantage of a parallel processor with 
minimal program reorganization. The reality is that extensive 
programming may be necessary to make best use of the paral-
lel system. See Mattson and others (2004) for parallel system-
programming paradigms.

The optimization algorithm for the machine-learning 
used here is based on a mathematical algorithm called simu-
lated annealing (Albright, 2007). The C++ source code for the 
optimizer is taken from Press and others (1992). The optimizer 
searches for a global minimum of an error function in mul-
tidimensional space. Ordinary Euclidian space has three or 
more dimensions or coordinates per point. Multidimensional 
space can have any finite number of dimensions. If there are 
five independent variables, then the error function would be a 
hypersurface in this space. Because searches in higher dimen-
sional spaces tend to be slower than searches in spaces of 
lower dimensions, the computer time to calibrate a machine-
learning algorithm increases with the number of variables. 
Also, there are quirks in the geometry of the error surface 
(Masters, 1993, 1995) that lead to an increase in execution 
time. Calculus techniques (Newton’s and conjugate gradi-
ent methods) require strong assumptions about the geometry 
of the error surface and the location of the minimum. These 
methods also assume a specified starting point for iteration 
that is near the minimum, where “nearness” is intentionally 
left vaguely defined. In simulated annealing, the optimizer ran-
domizes the initial points and applies the calculus techniques, 
given each randomized starting point. The optimizer finally 
accepts as the global (best overall) minimum the result that is 
at least as good as the rest. This requires extensive iteration 
and is computationally intensive. The use of a parallel system 
for machine-learning would require a parallel version of the 
optimization algorithm (Aarts and Korst, 1989).

A Cost-Benefit Experiment Using 
Geospatial Correlation

This section describes a statistical experiment to investi-
gate efficiencies in the calibration and use of PNNs using an 
example. Efficiency is described as cost and benefit, where 
cost is training time and benefits are statistical measures of 
goodness-of-fit. For PNNs the calibration time and the gen-

eralization time—the time for the PNN to predict outcomes 
from data that it has not yet seen—are related. Reducing the 
calibration time also reduces the time required by the PNN 
for modeling. The experiment is based on geospatial correla-
tion. Because more people tend to live in areas where there are 
more roads and fewer people tend to live where there are fewer 
roads, the approximate quantitative relationship between popu-
lation and roadless density can be guessed in advance. This 
allows the experiment to primarily consider the cost-benefit 
aspects of training. The data sets are of similar vintage and 
quality, and are known to contain noise (fig. 1). This provides 
an opportunity to calibrate a PNN in the presence of noise. 
The points in the data set tend to cluster near the origin and are 
thin elsewhere. This provides an opportunity to consider how 
to design algorithms for stratified sampling of training points.

Roadless density is a measure of how road-free an area is 
(Watts and others, 2007). The roadless data (U.S. Geological 
Survey, The Road Indicator NORM ED Data sets) were taken 
from the Northern California data set, clipped to the San Fran-
cisco Bay Area, and normalized from 0 to 1. The original met-
ric is Euclidean distance, in meters, to the nearest road. The 
population density is derived by reallocating population from 
census-block groups to individual pixels by a process called 
dasymetric mapping (Sleeter, 2004). The dasymetric data are 
from 1990 and are truncated to the range 0 to 1. This range 
was selected by considering the average population density for 
San Francisco (U.S. Census Bureau, 2007), which for 1990 
and 2000 is about 0.2 persons per 30-meter pixel. The value 
of 1 person per pixel was selected as an upper credible bound 
that keeps the valid data while excluding much of the noise. 

To assess the cost of training, the PNN is calibrated using 
training sets of various sizes. The calibration time is plotted as 
a function of number of points in the training set, and a func-
tional form is fit through the data. The calibration time appears 
to be quadratic (fig. 2). This experiment uses about 0.005 to 
.266 percent of the points in the complete set (size: approxi-
mately 7,000 by 7,000 pixels). Increasing this fraction to, say, 
10 percent would be significantly more costly for the available 
computer system. 

The question is whether increased cost buys a worthwhile 
improvement in goodness-of-fit. Figure 3 shows selected 
population density curves predicted from normalized road 
densities using the PNN. A prediction curve was computed for 
each of the sample sizes indicated as a data point in Fig. 2. All 
curves tracked closely, so figure 3 shows only the averaged 
curves and the individual curves for 1,000 and 50,000 training 
points. Increasing the number of training points increases the 
demand on computer resources and the training time. How-
ever, a large increase in the number of training points does 
not significantly change the predictions, that is, it does not 
give much improvement in goodness-of-fit, except perhaps to 
squeeze out some additional noise. There is a precipitous drop 
in population density as the roadless density increases. The 
curves are frequently near zero (except for occasional spikes) 
after the drop. This suggests an actual correlation—not noise 
alone—on the left side of the plot, with some real effect and 
noise near the right side.
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Figure 1.  Normalized road and dasymetric density across the San Francisco Bay Area. Road density is a 
measure of distance to the nearest road for each pixel. Dasymetric density uses census-block and land-
cover information to estimate population density per 30-m pixel. Normalization scales values to the range 0 
to 1. Population density values near the high end of the scale (near 1 person per 30-m pixel) suggest artifacts 
generated from inaccuracies in the land-cover information.

Figure 2.  Calibration time as a function of the number of training points. The training time is 
approximately quadratic (indicated by the exponent 2.19) and explains more than 98 percent 
of the variance in the performance data.
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Discussion and Future Experiments
The statistical experiments have illustrated an approach 

to the efficient use of computer resources for calibrating and 
running a neural network model. The approach consists of 
deriving calibration and convergence curves for training sets 
of various sizes. The sampling process started with small train-
ing sets and worked up to larger training sets. In the course 
of the analysis, it was shown that the functional form of the 
calibration curve was, in this case, quadratic (fig. 2). This 
gives a cost, in terms of calibration time, of including more 
training points. In the course of the analysis the goodness-of-
fit changed with the number of training points (fig. 3). This 
is the benefit of using more points in the training set. This 
gives a convergence criterion, which in this case was decided 
by judgment. The example, geospatial correlation is simple 
and the conclusion that the two variables—roadless density 
and population density—are highly correlated is clear from 
the GIS visualization (fig. 1). Essentially, a small sample of 
calibration points may be sufficient to properly calibrate a 
PNN, and the cost-benefit, in terms of computer resources, can 
be substantial. This example also shows that, even in a simple 
case, there is a calibration scenario that can be tediously slow 
on a desktop computer system.

Additional experiments might test techniques for fur-
ther efficiencies in more realistic and complex problems. 
This requires a definition of multivariate function and local 
approximation. A real multivariate function is of the form:

: m nf R R→

 This is a mathematical way of saying that f is a function 
of m independent and n dependent variables. In the example 
of geospatial correlation, the function was univariate with m 
and n both 1. If m=2 and n=1, then the PNN will fit a data 
cloud to a surface in three dimensional space. In the univariate 
(one independent and one dependent variable) case the PNN 
model is a curve described by connected arcs. This is a local 
approximation, because the curve is described in pieces. Each 
additional piece requires new interconnections in the neural 
network, and in some cases the increase in network complex-
ity will lead to a large increase in run time. The question is 
how many arcs are needed to properly describe the curve. An 
insufficient number will give a curve that is overgeneralized, 
while too many give a network that may require a long run 
time. Experiments with image data (not shown here) suggest 
that the run time of the model increases with the number of 
training points, with the prediction cost apparently linear.

Geometry of the Data Cloud

One efficiency might be gained by devising a sampling 
technique that pays attention to the geometry of the data cloud. 
Figure 4 is a scatterplot suggesting the geometric distribution 
of the data points for normalized road and population densi-
ties. Because of the large data volume and the concentration 

Figure 3.  Population density predicted from a probabilistic neural network using normalized road density 
and training-set sizes of 1,000 and 50,000 points. The average of the curves suggests how the goodness-of-
fit varies with training sets of intermediate sizes. The blips in the curves for normalized road density greater 
than about 0.6 are likely due to noise in the data. For these data a large increase in the number of training 
points does not lead to a large improvement in goodness of fit.
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of data points near the origin, the scatterplot shows the data 
variation in a geometric region of high data concentration. The 
training data for the experiment above were selected using a 
simple random-number generator across the range of normal-
ized road density values (from 0 to approximately 0.8). This 
approach selects more data points from the dense areas of the 
data cloud and fewer points from the thinner areas. Trying 
to squeeze out the noise in the fitted curve by increasing the 
sample size gives more points where they may not be needed 
for better calibration (the dense portions of the cloud) and 
perhaps not enough extra points in the areas where they may 
improve the calibration (the thin portions of the cloud). A 
better sampling technique would more uniformly distribute 
the points among the thicker and thinner portions of the data 
cloud.

Bayesian Samples and Stopping Points

Suppose that after various attempts at efficiency suggest 
that a large, rather than a small, training sample is actually 
required for accurate calibration. There may be a stopping 
point at an appropriate point of diminishing returns, but this 
point needs to be identified. Because machine-learning makes 
no assumptions about the functional form of the data or the 
distribution of error in the data, the convergence criteria must 
be based on heuristics and judgment. Suppose that rather than 
taking a calibration sample of 50,000 data points, 10 indepen-
dent samples of 10,000 data points each are taken. In the above 
experiment calibration with 10,000 points takes about 1 hour, 
while calibration with 50,000 points takes about 26 hours. One 

question is whether selecting five training sets of 10,000 points 
each (for a total of 5 hours of calibration time)—and properly 
pooling the outcomes—would give as much information as 
one set of 50,000 calibration points. Additional questions are 
whether 26 calibration runs of 10,000 points each give more or 
less information as one run of 50,000 points, and whether, in 1 
to 26 calibration runs of 10,000 points each, there is some way 
of assessing the improvement at each step to decide a point of 
diminishing returns has been found. If so, then iteration can 
be terminated. This would require an overall goodness-of-fit 
statistic that could be combined with earlier statistics as the 
runs progress. This is an example of bootstrapping (Effron, 
1979). If calibration is formulated as an iterative process, then 
it might be able to measure diminishing returns using Bayes-
ian sequential statistics (Gelman and others, 2004).

Retraining

Adding more training points to squeeze down noise in 
calibration data may give a more interconnected network than 
is actually needed to accurately describe the curve, which may, 
in turn, give a longer run time. Thus the prediction as well as 
the calibration time may depend on the geometry of the data 
cloud: a scattered data cloud—one with a high noise level—
leads to more computation than does a compact data cloud—
one with a lower level of noise. This suggests that faster run 
times can be achieved by training the PNN on a small low-
noise data set rather than on a larger set that includes a higher 
level of noise. There is no general way, other than judgment, 

Figure 4.  Scatterplot showing the geometrically uneven distribution of data points. The clustering 
of data near the origin indicates that the highest population densities are found in the areas 
containing the highest density of roads.
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of distinguishing noise in a data set from real variation. But 
once the PNN is trained, the pattern is described as a curve 
rather than as a data cloud. This suggests that run time can 
be reduced by retraining. After fitting the curve, the PNN can 
be used to recalculate the curve at specified grid points. For 
example, the curves from figure 3 were plotted from fewer 
than 50 coordinate pairs (x,y). Retraining on the smaller data 
set gives a similar curve, but a faster run time, than the model 
produced with the larger training set. In this case, the improve-
ment in run time is not dramatic, but in the multivariate case it 
might be.

Multivariate Experiments 

As in the example of geospatial correlation, it should also 
be possible to formulate a constrained optimization algorithm 
to balance cost and benefit. However, it may be that the cost 
function for a multivariate function is worse than quadratic, 
for example, a higher order polynomial. The functional form 
would need to be decided by statistical experiment. For the 
univariate case the benefit (goodness-of-fit) can be assessed by 
visualization—plotting the curves to check for convergence. 
This may not be as straightforward in the multivariate case, 
and so a different way of assessing goodness-of-fit would 
have to be considered. There might also be clustering of data 
points in some regions of the higher dimensional space, so 
that there needs to be a multivariate version of a sampling 
algorithm. Once a multivariate function has been fit to the 
data, retraining could be used as before. If, for example, 
given a multivariate function of the form ( ), ,z z u v w=  and 
appropriate partitions of the u, v, and w axes, then retraining 
of the network could be done as before using the coordinates

( ), ,, , ;i j k i j ku v w z . The results of retraining could either be 
applied directly as a neural network or via table look up. 
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