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ABSTRACT

This report describes some simple spatial statistical methods to explore the
relationships of scattered points to geologic or other features, represented by points, lines,
or areas. It also describes statistical methods to search for linear trends and clustered
patterns within the scattered point data. Scattered points are often contained within
irregularly shaped study areas, necessitating the use of methods largely unexplored in the
point pattern literature. The methods take advantage of the power of modern GIS toolkits
to numerically approximate the null hypothesis of randomly located data within an
irregular study area. Observed distributions can then be compared with the null
distribution of a set of randomly located points. The methods are non-parametric and are
applicable to irregularly shaped study areas. Patterns within the point data are examined
by comparing the distribution of the orientation of the set of vectors defined by each pair
of points within the data with the equivalent distribution for a random set of points within
the study area. A simple model is proposed to describe linear or clustered structure
within scattered data.

A scattered data set of damage to pavement and pipes, recorded after the 1989
Loma Prieta earthquake, is used as an example to demonstrate the analytical techniques.
The damage is found to be preferentially located nearer a set of mapped lineaments than
randomly scattered damage, suggesting range-front faulting along the base of the Santa
Cruz Mountains is related to both the earthquake damage and the mapped lineaments.
The damage also exhibit two non-random patterns: a single cluster of damage centered in
the town of Los Gatos, California, and a linear alignment of damage along the range front
of the Santa Cruz Mountains, California. The linear alignment of damage is strongest
between 45° and 50° northwest. This agrees well with the mean trend of the mapped
lineaments, measured as 49° northwest.

INTRODUCTION

Scattered point data are common in the geological sciences; earthquake
epicenters, the locations of mineral deposits, and oil plays are examples of geologic data
that are represented as point data. Two questions are common with these data: “Are the
points related to some other geologic feature?” and “Do the points themselves exhibit a
pattern?”

One of the difficulties of statistically analyzing scattered datasets is that the data
often occur within irregular study areas. A null hypothesis of randomness, in this case a
set of randomly located points, is often the starting point for any analysis. Complete
spatial randomness for points is defined as a set of points whose locations are an
independent random sample taken from a distribution of equal probability across the
study region (Diggle, 2003). This implies that the location of a given point is
independent of the location of any other point. In other words, the points do not interact
with one another.

A typical method of generating distribution parameters of point data sets
satisfying complete spatial randomness within an irregular study area is Monte Carlo
simulation, where randomly located points are added to a study area and the properties
are averaged over 100 or more simulations (Diggle, 2003). While this method is robust,
it often requires programming effort to meet the needs of the particular analysis, requires
computing power, and does not necessarily offer any insight into the problem.
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Some distributions can also be estimated more directly than by the use of Monte
Carlo simulations. Such direct methods commonly require less computing time, less
programming effort, and ultimately offer more insight into the problem at hand. As will
be seen, for example, distributions based on a null hypothesis of complete spatial
randomness can be conveniently estimated in at least two cases by using powerful raster
processing tools available in modern GIS software packages.

The first case, the problem of investigating the spatial relationship of scattered
point data to other objects, was described by Okabe and Fujii (1984). The second case,
the problem of investigating the randomness of a scattered dataset itself, can be derived
from principles developed in solving the first case. The following sections are devoted to
exploring methods of approaching both problems, using a dataset of damage to pavement
and pipe breaks caused by the 1989 Loma Prieta earthquake as the point dataset, and a set
of mapped areal photographic lineaments as the objects which may be spatially related to
the earthquake damage.

DATA AND SOFTWARE

The 1989 M,, 6.9 Loma Prieta earthquake (U.S. Geological Survey, 2007), the
epicenter for which was located roughly 100 kilometers south of San Francisco,
California, caused damage to many types of public works, including roads and sidewalks,
throughout Santa Clara Valley (figure 1). The location and type of damage were mapped
via extensive fieldwork and database compilation (Schmidt and others, 1995). 1427
observations, taken from fieldwork, the records of utility and transportation institutions,
and local governments, were recorded for a 663 square kilometer area. Schmidt and
others (1995) exhaustively searched roads and parking lots within the study area,
measuring contractional damage indicators for ground level damage, pavement breaks
and curb breaks. They added to this field data by incorporating damage for sub-surface
gas and water line ruptures, data shared by local utility, transportation, and governments.
In all, five types of damage were recorded (asphalt, channel lining, concrete, gas line,
water line), in addition to the sense of deformation (if any), the freshness of the damage,
and whether or not the damage was at or below the ground surface. Damage to structures
was not included because it depends upon building construction, materials, and design,
and the damage cannot be constrained to the Loma Prieta event. Sidewalks, pavement,
and other public infrastructure works are more commonly built to uniform specifications
and can therefore be used to detect ground motion in a consistent manner. In this report
only the location of the damage is considered in the analyses; analyses based on subsets
of the data would be a reasonable next step for further research. For further information
discussing the 1989 Loma Prieta earthquake the reader is directed to U.S. Geological
Survey Professional Papers 1550-1553.

The (unpublished) digital version of damage recorded in Santa Clara Valley is
used as the example scattered data for analysis in this report. While the data were
collected by plotting the locations on 1:24,000-scale topographic maps (before the
widespread use of GPS), subsequent digitizing and registration to scanned topographic
maps indicates a relatively high level of positional accuracy, where data points often plot
on the correct side of the street. While not all points were checked, this observation
suggests the data points are accurately located to within a few meters.



a0 0 50 Kilometers
|

"

Figure 1. Location afthe Santa Clara walley in the San Francisco Bay area, California, T34 Damage used
mn this report from the Loma Prieta earthqualke was recorded within the shudy area shown inred.

Hitchcock and others (1994) mapped a series of areal photographic lineaments as part of
a Quaternary geologic mapping study to investigate seismic activity along the eastern
range front of the Santa Cruz Mountains, where the mountains abut Santa Clara Valley.
The lineaments are based on several types of geomorphic and photographic features, such
as topographic scarps and depressions, stream sinuosity, vegetation lineaments, and tonal
changes in the ground surface. The lineament database used in the next section is an
unpublished digital rendition of geology from plate 2 of Hitchcock and others (1994).

The GIS software used to test and implement the methods described in this report
was the commercial package Arc/Info, and the associated product ArcMap (ESRI™).
Arc/Info has built-in tools to generate many of the analytical results used in this report,
including density maps, buffers, nearest-neighbor distances, point-in-poly operations, and
database merges and queries. Appendix Il contains pseudo-code for the analytical
operations performed in this report.

The commercial statistical software package Splus (Insightful™) was used for the
statistical analysis, including graphical displays, analysis of distributions, and goodness-
of-fit tests.



METHODS AND RESULTS

In order to compare the observed pattern of a scattered point dataset to a null
hypothesis of a pattern of complete spatial randomness one must be able to describe the
null distribution for the study area in question. This is often done in the literature by
means of quadrat analysis, where the study area is broken up into squares of equal size
(quadrats) and the frequency of the points per quadrat generates a Poisson distribution
under complete spatial randomness (Diggle, 2003; Upton and Fingleton, 1985). One is
not always fortunate enough to have a rectangular study area, however. The natural
world often precludes rectangular study areas by imposing natural boundaries (e.g. rivers
and lakes, forests, cliffs and other steep terrain), and existing datasets were not always
created to conform to a rectangular study area. If one does not wish to be limited in
analyzing scattered datasets, methods must be developed to describe the distributions of
complete spatial randomness for irregular study areas.

The question “Are the points in a given scattered dataset related to some geologic
phenomenon?” can be addressed by considering the geologic phenomenon as fixed, and
the points as realizations of some process that is perhaps influenced by the phenomenon.
Points are considered “events” that occur with some probability within the study area.
For the null hypothesis of complete spatial randomness, the study area is considered
homogenous; that is, a point has equal probability of being located anywhere within the
study area, independent of features (e.g. topography, soil type, vegetation). Now suppose
that this assumption is violated: some geologic phenomenon creates inhomogeneities
within the study area or some geologic process causes the points to locate non-randomly
within the study area. If the points and the geologic phenomenon are related, one might
expect either a positive or negative spatial association between them, in which the points
would either have a tendency to be attracted to, or avoid, the phenomenon. In other
words, in the end-member cases the points will either be co-located with the phenomenon
or as far from it as allowable given space constraints. The strategy, then, is to find a null
distribution for the distance from the geologic phenomenon, under the assumption of
complete spatial randomness, within the given study area, and compare this with the
observed distribution. If the observed distribution of distance from the geologic
phenomenon is different from the null distribution, then one can determine if two are
positively or negatively correlated.

The question “Are the points themselves randomly located within the study area?”
amounts to determining whether or not the scattered point dataset can be distinguished
from complete spatial randomness. A new method of examining whether a scattered
dataset deviates from complete spatial randomness is described. This method relies on
the orientation specified by pairs of points within the dataset.

Complete spatial randomness depends on the sample points being independent of
one another. No point may have an effect on the location of another point. Stated
differently, if there are two processes influencing the location of points, then the effect
from one may influence the statistical results calculated for another, and this would
violate the assumption of independence (of course it would be very unusual to have only
one process operating in any natural system, but one would like the dominant process to
overshadow the rest). Before any analysis begins the dataset should be examined for
obvious effects from secondary processes.



Association of damage points with areal photographic lineaments: an example from the
Loma Prieta earthquake

“Are the points in a given scattered dataset related to some geologic
phenomenon?” is addressed for the example of comparing damage incurred during the
1989 Loma Prieta earthquake in Santa Clara Valley, CA (figure 2),
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—tudy area encompasses these two towns. Fault data from Grayvmer and others. 2006,
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to a set of areal photographic lineaments mapped within an irregular study area along the
range front of the Santa Cruz Mountains (Hitchcock and others, 1994), near the towns of
Los Gatos and Saratoga (figure 3). The study boundary is determined by using the full
extent of the available geologic mapping presented by Hitchcock and others (1994), a
somewhat irregular strip of mapping along the range front of the Santa Cruz Mountains.
The example demonstrates the method for determining a spatial association
between linear features and a scattered point dataset, but the method is easily extendable
to point features or area features (Okabe and Fujii, 1984; Okabe and others, 1988). For
convenience, references to damage in the rest of this report will mean the damage from
Loma Prieta earthquake in Santa Clara Valley as describe by Schmidt and others (1995),
and the study area covered by the damage data will be referred to as the “damage study
area.” Similarly, references to lineaments will mean the lineaments mapped by
Hitchcock and others (1994) and the study area encompassing the lineaments will be



referred to as the “lineament study area.” The lineament study area is completely
contained within the damage study area (figure 3).
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Figure 3. Btudy area for damage data and the lmeamnent data. The shidy area for the lineaments 15 a sub-area
of the study area for the damage.

The lineament data have been cited as evidence to support the interpretation and
mapping of reverse faults along and outboard of the range front of the Santa Cruz
Mountains (Hitchcock and others, 1994; Hitchcock and Kelson, 1999). This
interpretation is supported by geophysical evidence of a steep-sided subsurface basin
adjacent, and parallel to, the range front (Langenheim and others, 1997). However, while
some of the lineaments mapped are based on observed geologic features such as
topographic scarps, others are based on vegetation or tonal changes seen in areal
photographs. The latter types of evidence are not necessarily indicative of fault activity.
A spatial association of the damage with the lineaments would strongly suggest the
features that define the lineaments are related fault activity. If the damage is, on average,
closer to the lineaments than would be the case for complete spatial randomness, then the
lineaments and the damage tend to be co-located and are thus spatially related.

To answer the question of whether or not the damage is associated with the
lineaments a model of randomness must be constructed with which to compare the
observed data. Such a model can be developed by using the distance of each damage
point to the nearest lineament. If the damage and the lineaments tend to be co-located,
the damage ought to occur on or near the lineaments. If they avoid co-locating, the



damage ought to be as far as possible from the lineaments. A spatially random
distribution of damage locations would show no association with lineaments throughout
the study area.

The distribution of the distance of the damage to the lineaments can be obtained
by measuring the distance of each damage point to the nearest lineament (considering
only the subset of the damage data that falls within the lineament study area (as defined
by Hitchcock and others, 1994)). The problem then becomes how to generate the
probability density function of the distance to the lineaments for a random process. Once
this is accomplished the two distributions can be compared.

Assume the lineaments are fixed; that is, they are mapped correctly and properly
located. This is not an insignificant assumption, but here the mapped features are taken as
given. Then, over the lineament study area, one can compare the distributions of the
distance of damage points to the nearest lineaments with the distance expected for a
randomly distributed set of points.

To obtain a random distribution, one need only consider the probability of a point
falling in a particular sub-region of a given study area (Okabe and Fujii, 1984). Since a
random point has equal probability of falling at any particular place in the study area, the
probability that it will fall in a given sub-region is simply the area of the sub-region
divided by the total area (figure 4).

Probability {p; in circle} = a,/4
Pi

Figure 4. The area of the square is defined to be 4,

and the area of the circle is defined as a,. The probability
that a randomly located point, p;, within the square falls
within the circle is a,/A.

Now consider the sub-region of the study area defined as any point greater than x
and less than x+h distance from the nearest lineament (figure 5). The probability of a



Figure 5. The lineaments (black lines) in the lineament study area (dashed outline, area = 4) are buffered,
showing the sub-region that is between 250 m and 500 m from the nearest lineament (dark grey, area = a;).
The probability that a randomly located point, p;, will fall within the buffered region is the area of the
buffered region divided by the total area, or Pr{250<p;<500}=a,/4, where the numbers represent the
distance to the nearest lineament, in meters.

random point being between x and x + h distance from the nearest lineament in the
lineament study area is simply the area defined by the buffer around the lineaments from
x to x +h divided by total area. If the probabilities for many buffers (for example, in 200
m increments) are combined for a sequence of distances from zero to the farthest distance
in the study area, the result is an approximation of the probability density function for the
distance to the nearest lineament for a random set of points.

This distribution can be numerically approximated by rasterizing the lineament
study area and keeping track of all cells a given distance from the nearest lineament
(figure 6). The ratio of the area of the sub-regions between x and x + h distance from the
nearest lineament to the total study area is simply the number of pixels between x and x
+ h distance from the nearest lineament divided by the total number of pixels in the study
area (the units cancel). This numerical approximation of the random distribution can be
compared to the observed distribution of the distance of the damage points to the nearest
lineament. Since the resulting probability density functions are non-gaussian, a Smirnov
test (Rock, 1988) can be used to test whether or not the two distributions are different.

The above method is appropriate provided one assumption is satisfied: that it is
assumed the observed process is, or at least could be, homogeneous over the study area.
That is, the process is the same at any location in the study area. For example, as a first
approximation, damage is assumed to be equally likely regardless of the type of soil that
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Figure 6. The lineament study area is rasterized (converted to pixels), and each raster cell (pixel) is assigned
a value equal to the distance of the center of the pixel to the nearest lineament (in meters). By plotting the
distribution of distances, one can approximate the probability density function of distance to the nearest
lineament for a randomly located set of points.

is present. If the process is homogeneous (does not depend on soil type), it is then
reasonable to compare this observed distribution with a random distribution that meets
the same assumption of homogeneity. A study area that includes sub-areas that affect the
process differently is called inhomogeneous.

The mapped damage is an example of an inhomogeneous point pattern, because
the damage data consists of pavement breaks (these occur exclusively on paved areas i.e.:
streets and sidewalks) and pipe breaks (also almost always occurring beneath streets,
because utilities tend to follow public streets and rights-of-way). Practically speaking,
this damage cannot occur outside of an area covered by a street. The process is therefore
inhomogeneous over the both damage and lineament study area. The total sample space
is the subset of the study areas that are covered by streets and sidewalks.

Changing the sample space changes the probability of a random point falling a
given distance from a line because it changes the total area available to the random point.
In order to calculate the probability for the inhomogeneous point process the area of the
streets and sidewalks must be found.

Finding this subset of the lineament study area would require coupling extensive
data at the county level for street footprints, if such data could be obtained. A scanned
1:100,000 USGS topographic map of the streets for the lineament study area gives a
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reasonable approximation of the area covered by streets and sidewalks, as can be seen in
figure 7,

mmm |inEament study area
4 Other

damage type
@ asphalt channel lining, concrete; concrete, asphalt
B gas-ling water-ling; water-line, concrete; water-line, gas-line

— lineaments

500 0 500 Meters
L L I |

Figure 7 Detailed view of the scarmed USGE topographic map of streets overlain on the digital erthopheto
gquadrangle for a portion of the study area. Note how the scanned streets correspond reasonably well to the
area of streets on the digital orthophoto beth in location and in area. Mote also the errors from areas of recent
development (lower right), where the streets are missing in the scan. The damage is located near, butnot
perfectly on, the streets, the result of errors in digitizing,

which compares the scan to the 1995 digital orthophoto quarter-quadrangle for a portion
of the area. While certainly not error-free, the scan appears to approximate the area to
within 10% to 20%. In the subsequent analyses the scan will be used to generate the
subset of the lineament study area for examining the inhomogeneous point process.

12



Note that the lineaments are assumed to be fixed, and the damage is taken as the
process that is either related to these fixed features or not. The question could have been
posed conversely; are the lineaments located more closely to the mapped damage than a
random process for generating lineaments? In this case the damage points are the more
stable features. Based on geomorphologic evidence, the lineaments represent features
that span a range of ages (Hitchcock and others, 1994). If they are tectonic features, then
one would expect them to span multiple events. In this case the damage represented by a
single event would not necessarily be associated with every lineament, but with a subset
belonging to one or more fault strands experiencing activity in the Loma Prieta event.
Therefore the question is posed such that the particular event is compared with the
general tectonic framework.

DECLUSTERING THE DATA
The method described above assumes that the damage is not significantly affected
by another process. A density plot* of the damage data (figure 8, top) shows the linear
concentration of damage along the range front of the Santa Cruz Mountains apparent in
figure 2, and the tight clustering of damage near the town of Los Gatos. Previous authors
(Hitchcock and Kelson, 1999; Langenheim and others, 1997; Schmidt and others, 1995)
have noted the linear nature of the damage, and Schmidt and others (1995) noted the
apparent clustering of damage, with 54% of the damage occurring in the Los Gatos 7.5’
quadrangle. What is apparent in the density plot, and perhaps less apparent in figure 2, is
the magnitude of the clustering relative to the linear concentration of damage. The
cluster of data near Los Gatos is by far the dominant signal in the point pattern, with the
density of points almost four times larger than the density along the linear concentration
of damage. The cluster is at the southwest end of the Los Gatos embayment, a concavity
in the range front near the town of Los Gatos (figure 2). In addition to lineaments,
several mapped faults are also present within the region of the cluster. Is the cluster of
damage due to local faulting, or another process, such as the shape of the embayment,
which perhaps concentrated and focused seismic waves? The interpretation of the
statistical results depends on the answer to such questions, and the questions are typically
not easy to answer. If the clustering in the damage data (near Los Gatos) is due to a
process independent of that which is potentially generating the lineaments, then the
clustering will bias the resulting statistical analysis.
In order to account for the possible bias of the cluster, it was modeled as a circular anomaly
and the effect removed from the data. This was accomplished by examining the
characteristic location and shape of the cluster observed in the density plot. The density plot
shows the cluster of damage has a locus within the town of Los Gatos. Furthermore, the
cluster is a roughly circular phenomenon that appears almost isolated from the rest of the
damage. This can be seen in a cross-section of the density plot of figure 8 (top) that transects
the cluster (figure 9). A gaussian curve fit to this cross-section models the cluster well to two

! Density plots in one dimension are “smoothed” histograms, created by counting the number of data points
within a moving window (rather than within a fixed bin as the histogram does), and applying a weighting
function to the points so that points at the edge of the window contribute less to the total count within the
window. In two dimensions the moving window is in the shape of a circle, typically tapering at the edges
using a gaussian or quadratic kernel. See Silverman (1986) for a complete description of density plots.
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Figure 8. Density plots of the observed damage point dataset (top) and the declustered damage
point dataset (bottom). MNote the hot spot indicating a clusterin the southwestern comer of the

study area (top; small circle on maps denotes the model cluster radius). This clusteris significantly
reduced in the declustered dataset. Color scale is logrithmic.

14



120

100

80

60

40 |

20

Concentration of damage, number per 400 meter radius circle

‘ . — . . . — . — . — . . . — . —
100 350 600 850 1100 1350 1600 1850 2100
Distance across feature, meters

Figure 9. Circles are values from the density map taken along a cross-section. Black line is a gaussian curve (mean 1100,
standard deviation 250) fit to the data. Note that the gaussian curve fits the data well to two standard deviations, indicating
damage in this area forms a cluster, and little effect is seen beyond two standard deviations (grey vertical lines).

within the town of Los Gatos? and a radius of about 500 m. There are 310 points within
this area, and they seem to be attributable exclusively to the cluster, with little effect seen
outside the model’s radius.

The 310 points within a 500 m radius of the center of the modeled cluster were
removed, generating a dataset referred to for the remainder of this paper as the
declustered dataset. The density plot of the declustered dataset is shown in figure 8
(bottom). The resulting dataset should be free of the effect of the dramatic clustering in
the town of Los Gatos. However, it is possible that the clustering and the linear
concentrations of damage are related to the same process as the lineaments, and that
using the declustered dataset will reduce the sample size and introduce some bias. Since
the nature of the cluster is not clear, both the original dataset and the declustered dataset
will be examined in this report, and the results compared.

RESULTS: Association of damage with lineaments

As a first step, the point data is assumed to be homogenous over the lineament
study area. To numerically approximate a random distribution of locations assuming a
homogenous process (the probability is the same throughout the study area), the

2 coordinates are (590285, 4120396) UTM zone 10 NAD27
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lineament study area was rasterized at 5 m, and the distance of the center of each raster
cell to the nearest lineament was recorded. This created a distribution against which to
compare the observed distribution of damage.

In general the shape of these histograms is asymmetric and skewed to the right.
This is caused by two competing effects: the increase of area with distance away from an
object (the area between 1 and 2 radii from a point, for example, is less than the area
between 2 and 3 radii from the point), and the confines of the study area. Thus these
histograms will increase until the restrictions imposed by the study boundaries limit the
area available at large distances from the object. For a circular study area and a single
point at its center, the histogram of the area at a given distance from the point will
increase until the radius is reached. For an irregular study area with multiple objects, the
amount of area available within the study area (typically) gradually tapers off with
increasing distance from the objects.

Figure 10 shows the histograms and density plots of the random and observed
distributions. The median of the observed distribution, approximately 119 meters, is less
than half the median of the random distribution, which is 240. Also note that the
frequency of observed distances falls off much more rapidly towards the asymmetrical
tail of the distribution than the random distribution. From this one can infer that the
damage points are likely to be associated with the lineaments. In general, the damage
points are simply closer to the lineaments.

A more formal statistical test can be performed to demonstrate that the
distributions are different. Figure 11 shows the cumulative distributions for both the
random and the observed data sets. Again, assume that the points within the damage
dataset are independent of each other; and that there is no tendency of clustering or
avoidance among the points themselves. Any spatial association between the damage
and lineaments is interpreted to be due to external influences, and in this case tectonic
processes are the likely candidate. A two-sided Smirnov test, which is based on the
difference between the two cumulative distributions, confirms the two distributions are
different at greater than the 99% confidence level. From the data it can be seen that the
observed damage points are more closely associated with the lineaments than the random
dataset, thus the two tend to be spatially related.

Now consider the inhomogeneous case, where damage is assumed to be
homogeneous only within the area covered by streets. In the previous analysis it was
assumed that the entire lineament study area was homogeneous, but this is not the case
since the damage dataset only records damage in areas covered by streets. To take this
into account the null hypothesis must be developed excluding the sub-areas that cannot
contain damage to pavement and pipes breaks.

Using the approximation of the lineament study area provided by the scanned
USGS map discussed in the previous section, the same calculations (finding the distance
to the nearest lineament for each cell) were performed. The result is the distribution of
the null hypothesis of spatial randomness under the condition that only areas covered by
streets can contain a damage point. Figure 12 compares the two null hypotheses of
randomness, that considering the entire study area and that considering only the area
covered by streets. This comparison shows the difference between the two null
hypotheses of complete spatial randomness, the first which considers the entire study
area, and the second which considers an area restricted to the streets that occur within the

16
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median.
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Figure 11. Cumulative distributions for the distance to the nearest lineament for a random set of points (solid, lower curve) and for the observed
damage dataset (dashed, upper curve), for the lineament study area.

study area. The median of the latter distribution is 249, and the histograms are seen to
match closely. Figure 13 shows a quantile-quantile plot comparing the distributions. In
this case the difference between the two distributions is not great. Apparently the streets
offer a robust sampling of the lineament study area, and the change to the distribution of
the null hypothesis is minimal. Therefore the comparison of the observed damage to the
null hypothesis of complete spatial randomness performed in the previous section is
unchanged.

The previous analysis of comparing the observed damage to a null hypothesis of
complete spatial randomness assumes that the cause of the damage is related to processes
causing the lineaments, namely faulting along the range front of the Santa Cruz
Mountains. If the large cluster of damage near Los Gatos, discussed in the previous
section, is caused by a different process, say the focusing of seismic waves, then damage
in this cluster could be adding bias to the statistical results. To address the question of
whether or not the cluster is biasing, or even driving, the analysis, the analysis was
repeated using the declustered damage dataset.

A repeat of the analysis confirms the original results, although the observed
distribution for the declustered dataset is not quite as sharply peaked, as shown in the
histograms in figure 14 where it is compared with the distribution for the homogeneous
lineament study area. The median has shifted from 119 meters to 154 meters. This
indicates that the clustering does have an effect. The median of the declustered data set is
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Figure 12. Histogram plots of the homogeneous (entire study area) and

inhomogeneous (area covered only by streets) distributions of the distance
to the nearest lineament, in meters. Dashed lines are medians.
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Figure 13. Quantile-quantile plot comparing the distribution of the homogeneous (entire study area) and inhomogeneous (streets only) distributions of the
distance to the nearest lineament within the lineament study area. The distributions are very close to one another.

still closer to the lineaments than a randomly located set of points, but less dramatically
s0. The cumulative curves are shown in figure 15, and a two-sided Smirnov test again
confirms that the distributions are significantly different from each other at the 99%
confidence level. The damage points are located more closely to the lineaments than a
randomly located set of points, even after the clustering effect has been mitigated and the
inhomogeneity has been accounted for.

Investigating the lineaments by treating them as zones

Previous paragraphs have treated the lineaments as independent, individual lines.
If instead one wishes to treat the lineaments as representing zones, then one must first
convert the lineaments to zones, areas over which the process that generated the
lineaments operates. Once zones are identified, points can be compared with them.
Reasons for treating the lineaments or damage as zones might be that they are thought to
be an expression of a stochastic process that operates over a zone, for which the existing
lineaments or damage are one realization of that process.

To convert the lineaments to zones, one must first decide how to define the zones.
A simple way would be to specify some distance, d, from the lineaments, less than which
is defined as within the lineament zone. One could then buffer the lineaments at the
distance d to create the polygonal zones. The damage could be examined to see if a
majority was located within the lineament zones. However, this is a binary version (only
two options are considered: less than distance d, and greater than distance d) of the
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damage cluster. Dashed lines show the median.
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Figure 15. Cumulative distributions for the distance to the nearest lineament for a random set of points (solid, lower curve) and for the observed
damage dataset (dashed, upper curve), for the declustered lineament study area.

original problem addressed in the previous section, where the entire range of distances of
damage from the nearest lineament was considered. The binary case is a simplified
version that considers only a single distance, d. Therefore if one defines the zones by
means of a buffer, nothing is gained over the original analysis.

An alternative to buffering the lineaments is to calculate the lineament density, as
was done for the damage density in the previous section. In the case of linear features,
the total length of features within a specified window is calculated across the map. The
units are length per area. Again, the analyst must determine the size of the window. The
density of lineaments in the lineament study area was determined using a 400 m window
and a cut-off density of one standard deviation above the mean lineament density. This
was chosen to satisfy the author’s judgment that the lineament zones should surround
areas with abundant lineaments, yet not extend too far beyond the outer edge and into the
adjacent empty space. Larger window sizes generate zones that extend beyond the
concentration of lineaments into adjacent empty space, and smaller window sizes do not
adequately combine dense areas into zones. Figure 16 shows the zones of lineaments
defined as areas that are above the mean density of lineaments in the study area (top left),
and as areas that are one standard deviation above the mean density of lineaments in the
study area (top right). The first definition is compared with a buffer of 200 m from the
lineaments (bottom left). This definition of a zone and the buffer are very similar, and
are both judged to extend too far beyond the outer lineaments in the lineament groupings.
The second definition of a zone, all areas one standard deviation above the mean
lineament density, is deemed superior, and is shown with the lineaments (top right) and
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Figure 17. Lineament zones (grey) defined by being greater than one standard deviation above the mean density of features, are

shown with lineaments (blue) and damage (green). Note how the damage falls primarily within the lineament zone in the detailed
mnset. The assoctation of damage with the lineament zones, as defimed, is statistically significant.
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the damage (bottom right) overlain. While the zones are ultimately defined based on the
judgment of the analyst, the procedure used to define the zones is quantitative and
repeatable. This allows for a quantitative comparison between datasets, something that is
not possible if the procedure used to define the zone boundaries were based solely on
judgment (as in a visual assessment).

The area where the density of lineaments is greater than one standard deviation
above the mean within a 400 m moving window defines the zones of lineaments within
the lineament study area. The area within the lineament zones makes up approximately
31% of the total lineament study area. The zones can now be compared with the damage
data. Since, as determined in the previous section, the streets seem to offer a robust
sample of the lineament study area, the complication of using an inhomogeneous study
area is not considered in the following analyses.

One would expect that with 31% of the area covered, about 31% of the points
should fall within the covered area. We can use the binomial distribution to test the
hypothesis that the points are randomly distributed in space. Considering all damage that
falls within the lineament study area, 652 out of 1046, or approximately 62%, of damage
points fall within the lineament zones (figure 17). The probability that at least 652 out of
1046 points fall within the damage zone is essentially zero (less than 4.5 x 10™%), thus we
must reject the hypothesis that the damage is randomly distributed. The damage clearly
shows a spatial association with at least some of the zones defined by the lineaments.

The same analysis can be performed using the declustered dataset, to mitigate the
influence of clustering processes on the analysis, as discussed previously. For the
declustered lineament study area, the lineament zones make up 30% of this area. In the
declustered dataset there are 353 out of 735 damage points, or approximately 48% of the
points, that fall within the lineament zones. This leads to 222 expected points within the
lineament zones under the assumption of complete spatial randomness (based on the
binomial distribution). Again, the probability of 353 or more damage points falling
within the damage zone is essentially zero (less than 6.4 x 10™*%), and the damage clearly
shows a spatial association with at least some of the zones defined by the lineaments.

One can also compare the lineament zones with zones of damage generated from
the declustered dataset, where the zones for the damage are defined using the same
parameters: a 400 m search radius, and a cut-off of one standard-deviation above the
mean. The zones are overlain in figure 18. The lineament zones make up approximately
30% of the lineament study area, while approximately 53% of the area of the damage
zones overlies the lineament zones. While a formal statistical analysis of the probability
of the proportion of irregular shapes overlying one another within an irregular area is
beyond the scope of this paper, a few qualitative observations can be made regarding the
overlapping zones. The first is that 53% overlap seems rather significant, because under
complete spatial randomness for a set of points one would expect about 30% overlap.
The second observation is that the area of overlap shown in the inset seems to be the most
significant overlap in the lineament study area. No clear linear pattern exists across the
study area to suggest damage follows along a particular set of lineaments that could be
inferred to be a fault. Rather, the zones overlap in patches, with perhaps the suggestion
of a weak linear trend from southeast to northwest.

Key decisions in the flow of the analysis in this section are based on the judgment
of the analyst. These judgments include optimal window sizes and cut-off values used in



generating the density plots, and the method used to decluster the data. In this sense the
analyses are exploratory in nature. However, as emphasized, the quantitative procedures
defined for the analyses provide a quantitative foundation for repeating, and therefore
comparing, analyses among different datasets. Furthermore, seeking a quantitative
procedure by which to define fuzzy concepts such as “lineament zones” or “clusters of
points” helps focus attention on the logic behind the scientific intuition that is often used
to guide analysis. It is hoped that the procedures discussed have this effect.

METHOD: comparing the damage data to complete spatial randomness, and looking
for alignment of damage

The previous section has suggested that the damage is preferentially located in
zones similar to those defined by mapped areal photographic lineaments. The following
sections are meant to present general methods of analyzing a point pattern, of which the
damage data is one example. The question of randomness of the damage data will be
explored without considering the previous results so that these new methods may be
illustrated.

The map pattern of the damage in the Santa Clara Valley from the Loma Prieta
earthquake appears to be concentrated in a linear band outboard of, and parallel to, the
range front of the Santa Cruz Mountains. There are also quite a number of damage points
scattered throughout the damage study area. Is there a quantitative test that can be
brought to bear that rules out the criticism that the damage points are randomly located?
Can linear structure be quantitatively defined within the scattered damage points?

To answer these questions a model of randomness (null hypothesis) must be
constructed against which to compare the observed data. For a sample of points
distributed over an area, what is meant by an alignment of points? One interpretation is
that line segments defined by pairs of points tend to be aligned preferentially. Points
clustering about an imaginary line would result in pairs of points aligned in a particular
direction over a range of distances, whereas points scattered about an area would result in
pairs of points with no particular alignment, given the constraints of the study area.
Figure 19 shows two synthetic datasets defined over a 1 km by 1 km region. The first
point set consists of ten points randomly located within the area, defined by combining
ten random numbers, from 0 to 1, for the x-coordinates with ten random numbers, from 0
to 1, for the y-coordinates. The second point set consists of ten aligned points, defined by
combining ten random values, from 0 to 1, for the x-coordinates and assigning the y-
coordinates according to the equation y = 0.6x+0.2 (an arbitrary line within the study
area). Each pairing of points within the study area defines a vector, and the distribution
of the directions defined by vectors, referred to from here on as direction vectors, can be
used to examine structure within a point set; namely, whether or not the points are
randomly distributed throughout the study area, and whether or not other structure can be
detected. Direction vectors are simply the vectors defined by the pairs of points in a
point set, and have length and direction defined as for any vector. Direction, in this case,
refers to the compass direction in which the vectors point; the head and tail of the vectors
are less significant for this analysis. In this paper the focus is on the orientation
component of the direction vector and not the length.
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Figure 19. Location of 10 randomly placed points (left) and ten points placed randomly along a line (right) according to y=0.6x+0.2 (an arbitrary
line). The direction vectors connecting the random points will not show a preferential direction; the direction vectors connecting the aligned points
will.

Figure 20 shows the distribution of the direction vectors for both the random point set
and the aligned point set shown in figure 19. The distribution has been quantized into 5°
bins and the bin mid-points connected by lines instead of using histogram bars. This
emphasizes the shape of the distributions, and allows them to be added together easily.
Note how the random point set results in direction vectors distributed roughly uniformly,
whereas the aligned point set produces direction vectors that are aligned in one direction.
Strictly speaking, the study area must be circular for the random distribution of the
direction vectors to be perfectly uniform, but practically the deviation from a uniform
distribution caused by a square study area is less than 5 percent. A Monte-Carlo test of
100 simulations and 2000 points revealed that distributions of both the circular and
square study area were well within each others’ respective g05 and q95 (quantile)
interval.

For a given point set with n points, and defining the direction vectors as any
pairing of points other than a point with itself, there are n(n-1) total direction vectors.
Half of these direction vectors are equivalent but of opposite sign e.g. direction vectors
for points P, and P, are defined as P; — P, and P, — P;. For some analyses it may be
useful to consider the full set of direction vectors. Here north is defined as 0 degrees, and
only the direction vectors between -90 and 90 (northerly) are considered, of which there
are n(n-1)/2 in the point set.
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A set of randomly scattered points will, more or less, fill a study area. The shape
of the study area, however, may limit the amount of scattering possible for a set of
randomly located points. The direction vectors will therefore be biased by the shape of
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Figure 20. Frequency of direction vectors, in 5 degree intervals of compass direction, for the random point set and the aligned point set. The direction
vectors of the random point set show a roughly uniform distribution, whereas the direction vectors of the aligned point set show a peaked distribution
in the direction of the line along which the points fall.

the study area. A circular area containing randomly scattered points produces no
preferential direction for pairs of points, on average, and the resulting distribution for
pairs of points is the uniform distribution. However, for an irregular area the random
distribution of direction vectors is not so straightforward. This is because any irregularly
shaped area may afford the opportunity for more points in one sector, biasing the
resulting direction vector distribution. For irregularly shaped areas methods must be
developed for defining the random distribution of direction vectors.

One way to accomplish this is by Monte Carlo simulation: generate random points
within the study area, measure the distance and direction for all pairs of points, repeat the
experiment many times and average the result. This approach involves some
programming and a fair bit of computer time, but has the advantage of producing an
experimentally robust probability distribution where confidence intervals can be
estimated.

Another approach is to calculate the probability using a numerical approximation
of the theoretical solution. This approach is advantageous because it is straightforward
and rapid once the method is understood. This approach is best explained in two parts.
The first part involves finding the probability density function for a fixed point paired
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with each member of a randomly located point set within a study area, and the second
involves combining many of these into an overall probability density function for the
entire area.

Consider a fixed point, B, within the study area (figure 21). Within the study
boundary there is a fixed amount of territory that is between angle 8 and angle € + h
from B. This territory consists of two wedge-shaped areas opposite each other on either

side of B. A point, P, added to either of these wedge-shaped areas would result in a
direction vector, defined by the point pair (Pl, P, ) having an angle of between € and

f+h, 6< A(Pl, P, )< & +h. If the second point, B, is added to the study area at random,

it is as likely to land at one location within the study area as any other. Therefore the
probability of a point landing in the area defined by the wedges is equal to the area of the

wedges divided by the total area under study. This is shown in figure 21 as i, where a
is the combined area of both wedges and A is the total study area. Dividing the study
area up into n wedges for n desired slices of h degrees each and recording the ratio of a'&

for each point pair (Pl, P, ) will result in a probability density function for the fixed point,
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Pri0<p,p<0+h}=a,/4A

Figure 21. Given a fixed point, p,, in the damage study area (outlined in black), the probability that a
randomly located point, p;, will form a direction vector, p;p;, with a compass direction of between 0 and 6+h
is the area of the sub-region that is within the stated compass direction (dark grey) divided by the total area
of the study area, Pr{0<p;p<0-+h}=a,/A.

This probability density function can be numerically approximated by estimating
the area of each wedge. This is accomplished by rasterizing (representing the study area
by a finite number of pixels) the study area and counting the pixels (which have a known
area) between @ and @ + h degrees from B, for all cells in the raster dataset. So, by
rasterizing the study area, a probability density function for the angle from a fixed point,
R, can quickly be constructed by comparing F, to every other cell in the raster dataset.

The second part of the explanation extends this idea to all points in the study area.
Let each raster cell (pixel) within the study area represent a point, denoted P or B.. For

each point, R, consider the direction vectors for all paired points (F{,Pj),aqutF}, in the study

area. This yields the probability density function for the angle of a direction vector
created by adding a new point,P. Summing across all points P, within the study area

yields the probability density function for the angle of direction vectors created by all

pairs of a set of random points (Pj P )Within the study area.

An approximation of the probability density function for the direction vectors of
pairs of random points within the irregular study area can be constructed by rasterizing
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the study area at the desired level of precision and calculating the directions for all pairs
of points. Since each raster cell has the same area, the units cancel and one need only
consider the number of points within a given direction to the total number of points
within the study area.

Now that a method exists to generate a probability density function of the
direction vectors for a randomly located set of points within an arbitrarily-shaped area,
the resulting theoretical distribution can be compared to an observed distribution. Since
both distributions are circular and non-gaussian, a Chi-square test based on circular ranks
test can be employed to see if the distributions differ significantly (Fisher, 1995).

RESULTS: comparison to complete spatial randomness and alignment of

damage

To test whether the damage points are non-randomly located, a distribution of the
direction vectors for randomly scattered points was compared to the empirical
distribution of direction vectors for the study area. This test is comparing the damage
data with complete spatial randomness, so the entire dataset, rather than the declustered
dataset, should be used. The reason for this is that the relation of damage to one or more
processes would legitimately indicate a departure from random behavior; additional
processes controlling damage locations does not affect the outcome of the test. The
distribution of direction vectors for a random set of points was constructed using the
numerical approximation method discussed in the previous section. A histogram of the
direction vectors, with a density line superimposed, is shown in figure 22 (bottom). Note
how the shape of the study area causes a preferential alignment in the northwest
direction.

The distribution of direction vectors for the observed damage locations are shown
in figure 22 (top) as a histogram and density plot. There are over one million direction
vectors for the sample of 1427 damage locations. Note that the two histograms differ
somewhat in shape, but more importantly the mode in the random distribution is
displaced from the mode in the observed distribution.
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Figure 22. Combined histogram and density plots (black lines) for the observed distribution of direction
vectors (top) and the theoretical distribution of direction vectors (bottom). Note that the observed
distribution is multimodal, whereas the theoretical distribution is (largely) unimodal. The y-axis is based
on the density plots, which normalize the area under the density curve to one.
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Figures 23 and 24 compare the distributions to each other, using a quantile-
quantile plot and cumulative plot, respectively. As the quantile-quantile plot (figure 23)
shows, the two distributions differ noticeably, with the observed distribution having
much fewer direction vectors in the range of -90° to about -50° than the random
distribution. This difference also stands out on the cumulative distribution plot (figure
24), which is the distribution that is used for the Chi-square test based on the circular
ranks test to compare two distributions. Judging visually, there is a clear distinction
between the two distributions.

90 -60 -30 0 30 60 90
empirical distribution of direction vectors, degrees

theoretical distribution of direction vectors, degrees
0
|

Figure 23. Quantile-quantile plot comparing the observed and theoretical random
distributions formed by the direction vectors.

The non-parametric Chi-square test based on circular ranks was performed to
quantify the difference between the two distributions (Fisher, 1995). The test showed a
highly significant difference, beyond the 99% confidence level. However, such tests can
be sensitive to very large sample sizes. For example, Rock (1988) points out that the
significance levels for large (>100) samples are approximated for the Smirnov test, the
non-parametric test used to distinguish two different distributions in the previous section,
so supporting evidence for the degree of difference between the distributions would be
helpful.

A Monte Carlo simulation that placed points within the study area at random
locations was performed to test the veracity of the numerical approximation method and
to confirm the results indicated by the Chi-square circular ranks test. 1427 points,
equivalent to the sample size of the damage observations, were distributed at random
locations throughout the study area, and the distribution of the direction vectors
calculated. 100 simulations were performed, and the average, 0.05, and 0.95 quantiles
recorded at five degree intervals. Figure 24 displays the results of the Monte Carlo
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Figure 25 (close-up). Close-up of figure 25, showing that the difference between the theoretical distribution calculated numerically is close to the mean
monte-carlo simulation, and within the 0.05 and 0.95 confidence envelopes.

simulation, including the 0.05 and 0.95 quantiles that serve as confidence envelopes. The
distribution of the direction vectors for the average Monte Carlo simulation and the
numerically calculated distribution are indistinguishable in the figure, and upon close
inspection show only very minor deviations from each other (figure 25 shows a close-up
of the graph, to better distinguish the numerically-calculated theoretical distribution of
complete spatial randomness and the mean Monte Carlo distribution of complete spatial
randomness). This indicates that the numerical solution is a viable alternative to Monte
Carlo simulation for this type of analysis. The 0.05 and 0.95 quantile confidence
envelopes are also quite close to the average distribution, indicating that there is little
variation within the random distribution of direction vectors, at least with the sample size
given. The observed distribution is clearly outside of the 0.05 and 0.95 confidence
envelopes, supporting the results of the Chi-square circular ranks test. The damage data
is clearly not randomly distributed.

Three potential problems with the investigation must be mentioned. The first is
preferential sampling due to the limitation of damage being confined to public areas,
primarily streets. Since streets are commonly arranged in grids, there is the danger of
sampling finely parallel to the streets and coarsely at an angle to them, introducing
anisotropy into the sampling process. However, a street map of the study region
revealed no such systematic pattern to the street network, and the previous investigation
showed minimal bias in the lineament study area. The study area is large enough to
encompass several communities, each with separate street patterns that do not coincide in
direction with each other. A related problem is that sampling along streets can introduce
a linear pattern in the data for small local areas. This is noticeable within the large cluster
describe in the previous section. The third potential problem is the possible association
of damage with surface geology. While there is undoubtedly a relationship between the
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two, the surficial geology is also closely related to the tectonics of the area, with alluvial
fan units forming along the mountain front and giving way to broad mudflats towards the
shore of the bay. This creates a trend in the spatial arrangement of the Quaternary
geologic units. The damage points do not appear to be preferentially associated with any
particular geologic unit. Indeed, they seem to cut across the grain of the Quaternary
geology. Since there is no obvious relationship between the two independent of the local
tectonic influence, and the two likely co-vary because of this, it is assumed that the
Quaternary geology has an insignificant effect on the location of the damage.

The results indicate that the observed distribution of damage in the Santa Clara
Valley differs from that of randomly distributed locations. Furthermore, the observed
distribution shows distinct peak at the mode, 40° northwest (figure 22). This peak is
narrower than the broad mode of the random distribution. This suggests preferential
alignment of points at 40° northwest.

The numerical method used to test the null hypothesis of a random distribution of
direction vector orientations is a viable alternative to Monte Carlo simulation, and may be
preferred because it is easy to calculate.

DISCUSSION: Development of a process model and a method of spatial filtering

Visually the pattern of damage in Santa Clara Valley seems to be preferentially
aligned in a northwest direction along a single, major line near the range front, with
perhaps some smaller, secondary alignments further from the range front, and some
scattered points throughout the study area (figure 2). The density plot (figure 8, top) also
shows that a significant cluster appears in the dataset near the town of Los Gatos and the
distribution of direction vector orientations for the damage locations also shows a
prominent spike at approximately 40° northwest. It appears at least three patterns are
combined within the damage data. The damage forming the cluster pattern was separated
previously. Is there a quantitative model that can be applied to the dataset to separate the
declustered damage into two subsets, one representing a linear pattern and the other a
random pattern?

Visual inspection of the declustered damage, and the distribution of the resulting
direction vector orientations, suggest a simple end-member model for damage, namely
that damage is either aligned in a northwest direction, or scattered randomly throughout
the study area. This combination of patterns would result in the direction vectors being
defined by a mixture of pairs of random points, pairs of aligned points, and pairs of one
random and one aligned point.

To investigate this behavior, consider the synthetic dataset of random and aligned
points from figure 19, combined into one plot in figure 26.
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Figure 26. Location of 10 randomly placed points and ten points placed randomly along a line according to
y=0.6x+0.2 (an arbitrary line). The direction vectors connecting the random points will not show a preferential
direction; the direction vectors connecting the points along the line will.

The direction vectors for this point set will result in a total of 190 direction vectors
(20*19/2), 45 of which are generated by pairings of aligned points (10*9/2), 45 of which
are generated by pairings of random points, and 100 of which are generated by pairing a
random point with an aligned point. Figure 27 (top left) is equivalent to figure 20, and
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figure 27 (top right) adds the direction vectors for the random-aligned pairings. The
direction vectors in figure 27 (top right) add together to create the distribution of
direction vectors for the whole point set, shown in Figure 27 (bottom left). Note that the
distribution of direction vectors for the random-aligned pairings is roughly uniform. One
way to think of this result is that a single point, when added to a random point set, will
produce direction vectors that appear random. The direction vectors for the random-
aligned pairings is the combined direction vectors for each aligned point with the random
point set.

One can consider the direction vectors associated with the pairing of the aligned
points as a signal, and the rest of the direction vectors as noise. This can be defined by a
noise factor, k, where n, is the number of aligned points, and therefore

1) kn, =n

is the total number of points in the point set. In general, increasing n will cause
percentage of signal in the direction vector distribution to decrease towards

1
2) W
so as the size of the point set increases, the proportion of direction vectors
1
considered noise approaches 1_F (see Appendix I for proof). If the signal-to-noise

ratio (in this case the ratio of the direction vectors considered signal to the total number
of direction vectors) can be estimated from the direction vector distribution, n, can be

estimated by the relationship defined above:

k = 1_ , where R = M
R kn, (kn, —1)
andby /), n, =—=
n
3 _—
) 1
R

where R is the proportion of direction vectors considered signal to the total number of direction
vectors, N, is the number of aligned points, N is the total number of points in the set, and kisa
constant.

For large values of n the equation simplifies further,
since

na(na _1) ~ na(na _l)

" kn,(kn, —1) n? '
then for large values of n




4) i ~ l = na(na _1)

R
R N, (na - l)

For example, consider the direction vector distribution for the point set above, as
if the structure of the point set were unknown. The distribution suggests an alignment of
points at north 55° east, and randomly distributed direction vectors otherwise. The mean
frequency of the data, excluding the peak direction of 55° east, is 4.11 direction vectors
per 5°. Assuming this applies to all directions, there are 148.11, or 148, direction vectors
that are in the noise category, and therefore 42 direction vectors in the signal category.

The ratio of direction vectors considered signal to the total number of direction vectors is
therefore 42/190. By equation 3, the number of aligned points in the point set is

20/+/190/42 =9.4, or 9 points. Considering the direction vector distribution for each
individual point, the points with their direction vector mode at 55° east are logical
candidates to be the aligned points. In this synthetic example there are 10 points with
equal frequency of direction vectors for 55° east, with no clear way of distinguishing
them. The model considers only the average random response, and has not accounted for
the individual character of this dataset. In this synthetic example the number of aligned
points is under-predicted because the model assumes that there is a random component to
all directions. In this small sample, no random point fell in the aligned direction, and
thus the random signal was absent in the aligned direction. Since the calculated number
of aligned points is approximate, bringing additional information to bear on borderline
cases would be the next step in any investigation.

Clusters of points can also produce a peak in the direction vector distribution.
Figure 28 shows the distribution resulting from taking the 10 random points in a 1 km by
1 km area described above, and adding one point to the point data set at ten times the
range (10 km away). In this modified dataset the random points behave like a cluster,
and the added point is an outlier. As can be seen from the figure, the direction vector
causes a peak in the distribution of direction vectors. Two clusters sufficiently distant
from one another essentially form a line between each other, and therefore cause a peak
similar to collinear points. As with the lineaments, clusters of points can the bias the
results of the analytical method discussed in the previous paragraph.

The previous example has shown that the direction vector distribution for a point
set can be thought of as different components adding together to create the total
distribution. Given a direction vector distribution, one can construct simple models of
linear structure and attempt to separate the components of the direction vector
distribution. For a simple model of aligned points and random points, one can estimate
the number of aligned points, and, using the direction vector distribution for each
individual point, develop a set of candidate aligned points. In this case the direction
vector distribution can be used as a filtering process.

For the observed damage dataset, the declustered data is used to avoid the
problem the large cluster in the town of Los Gatos will cause. Small clusters in the data
will still have an effect, but the largest effect will be minimized. The histogram of the
distribution of direction vectors for the declustered dataset is shown in figure 29 (small-
dashed line; in this figure, as in figure 20, the distribution has been quantized into 5° bins
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Figure 28. Distribution of direction vectors for the set of ten randomly located points and an
additional outlier point located at ten times the range of the random points. The distribution
of direction vectors for the random set (thin solid line) is compared with that of the outlier-
random direction vectors (dashed line) in the top figure, and both are compared with the
direction vector distribution for the entire dataset (thick solid line) in the bottom figure.

and the bin mid-points connected by lines instead of using histogram bars, in order to
emphasize the shape of the distribution and to be able to subtract one distribution from
the other). It has a similar shape to the complete observed damage dataset. The largest
number of random direction vectors possible, without exceeding the observed number of
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direction vectors at any given point, is fit to the distribution of direction vectors for the
declustered dataset (figure 29, large-dashed line), and subtracted from it, to obtain the
residual distribution (figure 29, solid line). The residuals have a clear peak from 55° to

40° northwest.
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Figure 29. Distribution of direction vectors for the declustered damage dataset, a random dataset, and the residuals of the distribution of the
declustered data minus the distribution from the random data. The largest subset possible of direction vectors forming the random distribution

was fit to the declustered distribution.

Figure 30 shows the results of choosing the damage points with their individual
direction vector mode between 55° to 40° northwest. That is, for any point P, consider
all direction vectors for that point: {(P,R),(R,,R,),(R,P.),....(R,P;).....(R,R,)},
excluding (P,P), and select the mode of this distribution as the mode of the direction

vectors for the point P,. Figure 30 considers points whose mode is between 55° to 40°

northwest. When separated into groups according to their mode, the alignment of points
is moderately linear, strongly linear, weakly linear and somewhat clustered. The 157
points having a direction vector distribution mode of 50° northwest, shown in the upper
right of figure 30, show the strongest linear pattern. There are 51,751 residual direction
vectors for this direction. Estimating the expected number of points from the direction

vectors using a model of linear and random points leads to n, = /51751 = 227,
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Figure 30. Declustered dataset showing observed damage points with the mode of their individual direction vector distribution at 55, 50, 45, and 40
degrees northwest (modal damage) Note that 50 degrees northwest shows a confined linear pattern, and 40 degrees notthwest shows a clustered pattern.



overpredicting the observed 157 points having a direction vector distribution mode of 50°
by about 30%. If one considers the entire peak from 55° to 40° northwest, the direction

vectors must be added together in equation 4. The estimated number of direction vectors
for a peak signal from 55° to 40° northwest is 206377, out of a total of 1246572 direction

vectors in the entire distribution. This results in an estimate of n, = +206377 ~ 454.

The total number of damage points with a mode from 55° to 40° northwest is 741. The
discrepancy between observed and predicted aligned damage is probably because the
damage is not perfectly aligned, as the model demands, but are more dispersed, which
causes fewer direction vectors to be aligned in one direction. It therefore takes more
points to generate the same number of direction vectors in the aligned direction. It also
indicates that the model of a linear alignment of points plus a random set of points is not
completely applicable to the declustered damage dataset. This is most apparent for the
points with a direction vector distribution mode of 40° northwest, where outlier points in
the northern portion of the study area can be seen responding to clusters of points in the
southern portion. The declustering algorithm reduces, but does not eliminate, this effect.
From the declustered data a clear linear trend emerges for 50° northwest, and a
reasonably linear trend for 55° northwest. For the directions 45° northwest to 40°
northwest the trend is less linear and includes some signs of clustering patterns.

The linear trend of 50° northwest apparent within the damage data can be
compared with the mean trend of the mapped lineaments. The lineaments are aligned in a
northwest-trending direction (figure 3). If each straight segment of the mapped
lineaments is considered as a vector (so that a single mapped lineament that consisted of
many segments would be considered many vectors, connected head-to-tail), the mean
direction of the lineaments can be found by calculating the mean direction of all of the
vectors. The mean direction of the vectors can be found by adding the vectors and
calculating the direction of the resulting sum. The component vector information is
easily found by extracting the coordinate information from the GIS (appendix 2). The
mean direction for the mapped lineaments is 49° northwest. Thus the prominent linear
pattern within the damage data matches quite closely with the mean direction of the
mapped lineaments, again suggesting a common factor, faulting along the range front of
the Santa Cruz Mountains, links them.

Problems with the model

The method of fitting a model of aligned points plus random points to a scattered
point dataset considers points aligning in a single direction. For practical application to
faulting in geology, this may be somewhat limited, because faults may bend, or show
more than one preferential direction. For investigation of points following a curving line,
or for conjugate sets, the model for this simple analysis breaks down. In this particular
area it is fortunate that nature seems to have fairly regular behavior.

The method is also affected by the width of fault zones. A fault zone adds short-
distance noise to the distribution of direction vectors, and the resulting direction vector
peak in the direction vector distribution is not as pronounced. This leads to an
underprediction in the number of points producing the “signal”.

Lastly, other structures in the scattered point dataset, such as clusters and outliers,
or multiple clusters, can interfere with the signal of aligned points. These structures are
neither linear nor necessarily random, and must be investigated separately.



SUMMARY AND CONCLUSIONS

Three analytical techniques relevant to the analysis of point patterns were
discussed: (1) testing whether or not points are closer to some object than would be the
case with complete spatial randomness, (2) testing whether or not a set of points
exhibited complete spatial randomness, and (3) a method of filtering a point set for a
subset of points that are aligned. The techniques were demonstrated using a dataset of
damage caused by the Loma Prieta earthquake and a dataset of mapped lineaments within
the damaged area.

The first model of random behavior defined the relationship of points to other
objects (point, line, or polygon features), applying techniques previously developed in the
field of urban planning (Okabe and Fujii, 1984). By applying basic probability theory,
the theoretical distribution of the distance a set of randomly located points to the objects,
for an arbitrarily shaped study area, can be constructed and used as a null hypotheses of
randomness for comparison with observed data. The first model of random behavior
defined the relationship of random points to a set of linear features, in this case
lineaments.

Since the above analysis can be sensitive to inhomogeneities in the dataset, such
as clustering, a declustering process was proposed that models a cluster as a circular
phenomenon whose point density decays from the center of the circle according to a
gaussian function. When applied to the damage data, the declustering diminished the
bias present in the damage-lineament analysis. The results demonstrate that the cluster is
the most significant pattern in the data in terms of damage concentration and that the
cluster significantly influenced the results of the initial statistical analysis.

The second model of random behavior defined the relationship of points to each
other. The theoretical random distribution of direction vector orientations, defined by
each and every pairing of points in a set of points, was constructed using numerical
methods. This method of developing a random distribution of direction vectors was
compared with that developed using Monte Carlo methods, and the two were found to
agree quite closely.

The method outlined above was used to demonstrate that the locations of the
damage data are not randomly located throughout the study area. The distributions were
compared using a Chi-square test based on circular ranks, and the null hypothesis of
randomness was rejected. The preferential alignment of the random process was found to
be about 60° northwest, whereas that of the observed process was 40° northwest. This
indicates that the observed process is biased to the north. Furthermore, the random
distribution of direction vectors is unimodal, whereas the observed distribution of
direction vectors is multimodal.

The distribution of direction vector orientations for the damage data suggested
that a theoretical model, composed of the union of a set of points aligned along one
direction and a set of randomly located points, was a reasonable model for the patterns
observed in damage data. Using this as a base model, it was discovered that the cluster
process dominates the signal of the entire dataset and that a linear signal can be seen
when analyzing the declustered dataset, though some of the signal from clustering in the
data is still present. The most significant linear trend is 50° northwest, where the model
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predicted 227 points would be aligned in that direction, and in the observed damage
dataset there were 157. The linear trend in the damage data of 50° northwest matches
quite closely the mean trend of the mapped lineaments, which average 49° northwest.

Numerical methods can be used to develop null models of complete spatial
randomness over (planar) irregularly shaped study areas. These models can be generated
quickly using modern GIS software. They are applicable to determining if a set of points
is associated with some other set of objects (points, lines, or polygons) or determining if a
set of points itself exhibits complete spatial randomness. The direction vectors resulting
from a point dataset can be used to filter a point dataset to find points that are aligned.
This filtering process can be used to separate the point dataset into component patterns of
aligned and non-aligned points, provided a single linear pattern exists and clustering of
points is not excessive.
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APPENDIX |

Given: the union of two independent sets of points defined on a plane, one a set
of randomly located points, the other a set of points that fall along an arbitrary line, such
that the total number of points in the union of the two point sets isn. Direction vectors
are generated by the pairing of points, with one direction vector for each point-pair. The
complete set of direction vectors is generated by the unique pairing of all points.

Prove: the ratio of the number of direction vectors from the aligned point set to

the number of direction vectors from the union of the two point sets approaches as n

K
approaches infinity.

Let n, = the number of points in the aligned set

kn, = n = the number of total points in the union of the two sets

n,(n, —1)/2 = the number of direction vectors in the aligned point set,

here considered signal
kn, (kn, —1)/2 = the total number of direction vectors in the union of the

two point sets

Proof: the ratio of direction vectors considered signal to the total number of
direction vectors for a given point set is

n,(n, -1)
2
kn, (kn, —1)
2
n,(n, ~1)
~ kn, (kn, 1)
_ (-1
~ k(kn, —1)

The limit of this ratio as N — o is

n,——
k

50



APPENDIX II
Technical specifications for various spatial analysis tasks

Declustering point data

1. Convert the (vector) point pattern to a continuous surface by generating a density
map.

2. Digitize a cross-section line across the anomaly (visible on the density map); add
vertices to the line at regular sampling intervals.

3. Convert the cross-section-line vertices to points; extract the value of the density
map at the location of the points.

4. Output these sampled values (Y values) and their respective distance along the
cross-section-line (X values) to a statistical package and model the anomaly.

Approximating the probability distribution of the distance to the nearest line for
complete spatial randomness
1. If the study area is in vector format, convert the study area to raster in order to
generate an approximation of a space-filling set of points.
2. Convert the raster (cells) to (vector) points.
3. Find the distance to the nearest line for each point, which as a set represent the
entire study area (e.g. the NEAR command in Arc/Info). Ensure that each record
includes the line id number and distance. This will allow for further analysis using
subsets of data based on the individual lines.
4. Output the distance data to a statistical package. This distribution of distance is
an approximation of the probability distribution of the distance to the nearest line for
complete spatial randomness within the study area.

Finding the observed probability distribution of the distance to the nearest line for a
set of points
1. For the observed data, find the distance of each observation to the nearest line
(e.g. the NEAR command in Arc/Info). Ensure that each record includes the line id
number, point id number, and distance. This will allow for further analysis using
subsets of data based on the individual lines.
2. Output the distance data to a statistical package. This is the observed distribution
of the distance of points to lines, and can now be compared with the approximation of
the theoretical distribution.

Finding the average orientation of lines based on individual line segments
1. Consider each pair of vertices along the length of a line as a vector.
2. Extract the coordinates of each vertex, in order, along the line, and calculate
AX = (X, —x,)and Ay = (y, —Y,) for each pair.
3. To add the vectors and find the direction of the average vector, calculate

AX
tan ‘l( g A ] and convert the result to the compass direction.
y
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