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A Bernoulli Formulation of the Land-Use Portfolio 
Model 

By Richard A. Champion 

Introduction 
Decision making for natural-hazards mitigation can be sketched as knowledge available in 

advance (a priori), knowledge available later (a posteriori), and how consequences of the 

mitigation decision might be viewed once future outcomes are known (table 1). Two outcomes—

mitigating for a hazard event that will occur, and not mitigating for a hazard event that will not 

occur— can be considered narrowly correct. Two alternative outcomes—mitigating for a hazard 

event that will not occur, and not mitigating for a hazard event that will occur— can be considered 

narrowly incorrect. The dilemma facing the decision maker is that mitigation choices must be made 

before the event, and often must be made with imperfect statistical techniques and imperfect data.  

Table 1.  Natural-hazards mitigation-decision framework. 

Planning choices Natural world outcomes Consequences

Mitigate Hazard event occurs Money spent reduces losses
Hazard event does not occur Money spent but no benefit

Do not mitigate Hazard event occurs Losses from failure to mitigate
Hazard event does not occur No losses, but no money spent
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The Land-use Portfolio Modeler (LUPM) is a computer analysis technique that associates 

numerical values with future natural-hazard outcomes (Bernknopf, and others, 2001; and 

Bernknopf, and others, 2006; Dinitz and others, 2003a). In financial investing, a portfolio is a 

combination of securities chosen to provide income at specified levels of risk and return, given a 

limited investment budget (Markowitz, 1959; and Intriligator, 1971). Analogously, a land-use or 

natural-hazards mitigation portfolio is a combination of mitigation options related to land use 

selected to reduce economic losses from natural-hazard vulnerabilities (Dinitz, and others, 2003b). 

To construct a financial portfolio, the investor identifies a risk preference—a willingness to accept 

potential losses in exchange for benefits—and then selects a combination of securities to optimize 

return given the risk preference. To construct a mitigation portfolio, the decision maker identifies a 

risk preference—such as a willingness to live in a region subject to earthquakes, fires or land slides 

in exchange for the views or the amenities of a desirable environment—and then applies the LUPM 

to weigh future outcomes given a limited mitigation budget. Both financial and land-use portfolios 

use estimates of risk and benefit described on average, with uncertainties of outcome given by 

statistical measures of variation. There are additional challenges for computing statistics for land-

use portfolios that become apparent, for example, data quality. In land-use portfolios, the data may 

be incomplete and vague. Because natural-hazard events tend to be rare, the underlying statistical 

distributions tend to be highly skewed. Examples will illustrate how statistical measures derived 

from skewed statistical distributions may be misleading. Consequently, the statistical algorithms 

illustrated in this report should be considered as first approximations that will require further 

development. 

LUPM calculations have been implemented as experimental software applications in several 

configurations with a variety of interfaces. A geographic information systems (GIS) interface is 

used to show how the occurrence and intensity of natural hazards varies across the landscape. 
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Figure 1 shows the LUPM interface with experimental software running as an add-on for the ESRI 

ArcMap desktop application. In this example the software is being used to evaluate mitigation 

scenarios in the San Francisco Bay Area for earthquakes along the Hayward and Calaveras faults. 

The LUPM interface allows the user to calculate and rank mitigation options for a variety of natural 

hazards—fires, floods, earthquakes—as part of a single program run. Output is in the form of tables 

and charts that describe the scientific and mitigation assumptions; the geographic regions with 

associated economic data; statistics such as losses and effectiveness of mitigation actions; and 

measures of variation and uncertainty. Data, mitigation scenarios, and output are stored so that the 

user can rerun the program to evaluate the effectiveness of a variety of mitigation possibilities. The 

experimental software is described in an unpublished manuscript, “The Land-use Portfolio Model, 

Version 1.0” by Richard Taketa, P. Ng (png@usgs.gov), and M. Hong. This report gives definitions 

of risk-analysis terminology and describes the equations used in the experimental software. 
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Figure 1. ArcGIS LUPM Extension. 

 

Model Specification 
 

Model specification includes definitions of the economic and risk-analysis terms needed to 

rank mitigation options, the mathematical description of the economic and risk analysis terms as 

Bernoulli variables, modeling axioms, and summary statistics. Details of derivations are in the 

Appendix.  

Definitions 
 

The LUPM associates specific meanings to the terms hazard, loss, risk, and damage. 

Hazard is the natural event of concern, such as an earthquake or flood. Loss is a quantitative 
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measure of the consequences of the hazard event, for example, the dollar value of structures 

damaged by an earthquake, or the number of fatalities in a flood. Risk is the expected value of the 

loss, a combination of the magnitude of the loss and the probability that the hazard will actually 

occur.  For example, suppose that an earthquake causes a loss of $100,000,000 if it occurs, but the 

probability of it occurring during any given year is only 1percent.  Thus, the loss is $100,000,000, 

and the risk per year is $1,000,000. Damage measures the proportion of loss.  If 10 percent of the 

value of a structure is lost during an earthquake, then the damage is 0.10. The LUPM quantifies the 

effectiveness of mitigation by using damage reduction and avoided loss. If 50 percent of the value 

of a structure would be lost without mitigation, but only 10 percent would be lost with mitigation, 

then the damage reduction is 40 percent.  If the value of the structure is $1,000,000, then the 

avoided loss is $400,000.  Comparing the avoided loss to the cost of mitigation gives a measure 

similar to the rate of return on a security, dollars saved per dollar invested.   

The LUPM incorporates the geospatial variability of the severity and consequences of 

natural hazards. For the specified geographic area, each natural-hazard of concern has an associated 

observation period and a probability of occurrence that are used to quantify the time interval 

during which a hazard event may or may not occur and the probability that the natural hazard will 

occur during that interval.  A location (or site) is the smallest unit to be mitigated, such as a single 

structure. A community (or neighborhood) is a grouping of sites, each with a specified probability 

of failure given a hazard event. Each location has associated parameters which describe monetary 

value; cost of mitigation of the site; and, optionally, the probability of loss and extent of damage 

given the hazard event. The consequences for the community are expressed as initial and end-of- 

period community wealth and community losses. The initial community wealth is the sum of the 

property values of all locations at the beginning of the observation period and the end-of-period 

community wealth is the sum of the property values of all locations at the end of the observation 
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period. The community losses are the sum of losses due to the hazard event that occurs during the 

observation period. 

Bernoulli Formulation  

 
The LUPM uses Bernoulli random variables (Feller, 1971) to express the chance outcomes 

of the natural-hazard event. Bernoulli random variables provide a mathematical way of expressing:  

• The uncertainty that a natural-hazard event will occur during an observation period. 

• The uncertainty that any location in the community will suffer damage if the natural-hazard 
event occurs during the observation period. 

• The vulnerabilities, losses, and damages to locations in the community.   

• The economic benefits of mitigation strategies at individual locations. 

• The aggregate costs, benefits, and losses of the natural-hazard event to the community.    
 

The Bernoulli random variable ( )1,pB B p=  has two outcomes, 0 and 1: 

  ( )Pr 0 1 , andB p= = −

 ( )Pr 1B p= =   .  

The special case  indicates that the specified outcome occurs with probability 0. 

This is convenient for describing conditions that cannot occur. For example, if there is no 

earthquake, then there is no earthquake damage. The special case 

(1,0)falseB B=

(1,1)trueB B=  indicates that the 

specified outcome occurs with probability 1. This is convenient for describing conditions that are 

certain to occur.  

Hazard computations can be made before the hazard event has occurred (a priori), or after 

the hazard event has occurred (a posteriori). The question in the a priori case is, “What are the 

costs and benefits of mitigation if we are not sure that the hazard event will actually happen?”  The 

question in the a posteriori case is, “What are the losses and the benefits of mitigation now that the 

hazard event has occurred?”  The formulas for the a priori and the a posteriori cases are related, 
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the major difference being that the a priori calculations contain an explicit probability that 

expresses the uncertainty as to whether or not the hazard event occurs during the observation 

period.  

This formulation of the LUPM assumes that the outcome given the hazard event at one 

location does not affect the outcome at any other location. That is, the outcomes are assumed to be 

conditionally independent. For example, one house may suffer damage in an earthquake, while a 

nearby house may remain undamaged. For other natural-hazards, such as floods, proximity may 

imply similar outcomes. In this case the outcomes are said to be conditionally dependent. 

Conditional independence is a strong simplifying assumption that leads to manageable equations. 

Conditional dependence is a more general mathematical assumption that, in some cases, will give 

more realistic statistics of cost, benefit, and loss, however, conditional dependence may lead to a 

more complex formulation of the LUPM model.  

Axioms 

 

If there is no hazard event during the observation period, then the failures or damages across 

the community will be zero. But if there is a hazard event, then any one site may or may not 

experience a failure independently of failure at any other site. These conditions are expressed as 

Bernoulli random variables by using (1) to (4). The hazard event Hδ  indicates the presence or 

absence of a hazard event during the time period T > 0 with 1Hδ =  indicating that the event 

occurs, and 0Hδ =  indicating that the event does not occur. The probabilities of the presence or 

absence of a hazardous event are:  

 Pr ( 1) Pr ( 0) 1H H HP PHδ δ= = = = −  . (1) 
   

 7



The collection of outcomes across the individual sites is described as an array or list of Bernoulli 

variables. Each element in the array (2) describes the outcome at the corresponding site given the 

chance occurrence of the hazard event and the chance occurrence of failure: 

 ( )1 2 3, , , ..., nF F F F=F  . (2) 

 

Equations (1) and (2) describe a probability branch. One side of the branch is the absence of the 

hazard event during the observation period. The other side is the presence of the hazard event 

during the observation period. If there is no hazard event, then there can be no damage at any site, 

so that:  

 ( | 0)i H falseF Bδ = =  (3) 
 

and thus ( 0) , , ,...,H false false false falseB B B Bδ ⎛ ⎞
⎜ ⎟
⎝ ⎠

= =F  .  

If there is a hazard event, then damage may occur at some sites with outcomes described by 

Bernoulli variables: 

 ( ) ( )( | 1 1,i HF δ = = iB p  (4)  

so that 
  

 ( )1 2 3( 1) , , , ..., nH B B B Bδ = =F   .  

 

The corresponding conditional probabilities of failure along the two probability branches are: 

( ) ( )

( ) ( )1 2 3

and

Probs Failure | No Hazard Event 0, 0, 0,..., 0

Probs Failure |Hazard Event , , , ..., np p p p

=

=

  

 (5) 
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Equation (3) indicates that, in the absence of a hazard event, failure at a site is a Bernoulli variable 

of constant-value zero (or false). Equation (4) indicates that, in the presence of an event, the failure 

at a site is a Bernoulli variable with probability . The probabilities in ip (5) are the result of these 

probability branches.  

Assessing economic loss requires associating an property value to each site:  
 

 ( )1 2 3Property Values , , , ..., nV V V V=  . (6) 

 
 

The simplest possible model assumes that, if there is failure at a site, then the economic loss  iλ   

is either zero, or one (complete). Losses across the community are then expressed as: 
 

 1 2 3, , ,... nλ λ λ λ⎛ ⎞
⎜ ⎟
⎝ ⎠

Λ =      (7) 

 
with  *i i iV Fλ =   .  

 
A more realistic expression allows partial damage. Let the damage vector be given by  
 

  ( 1 2 3, , ,..., n )φ φ φ φΦ =          (8) 

 
with   0 1iφ≤ ≤   .  

  
The definition on the right in (7) can then be modified so that:  
 
 * *i i i iV Fλ φ= .      (9) 

 
   
The economic value of mitigation is a reduction in partial losses. This is expressed as a partial 

damage vector given mitigation:  

 ( 1 2 3, , ,..., n )φ φ φ φΦ =  (10) 

 

with   i iφ φ≤   .  The reduced damage measures effectiveness of mitigation:  
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 ( )1 2 3, , ,..., nφ φ φ φΔΦ = Δ Δ Δ Δ  (11) 

with i i iφ φ φΔ = −   . 

 

LUPM Summary Statistics 

Wealth and Losses 
 
The community wealth is the sum of the property values across all locations of the 

community. The community wealth at the beginning (initial community wealth) and at the end of 

the observation period (final community wealth) are:  

                          and     
1

Init

n
i

i
VW

=
= ∑ ( )

1
Final

n
i i

i
V VW

=
= − Δ∑   . (12) 

  
The change in community wealth for the observation period is the sum of the losses across the 

individual locations: 

 

1

Init Final
n

i
i

W W W

V
=

Δ = −

= Δ∑  
 (13) 

    

If there is no hazard event, then the loss at each location is zero. If there is a hazard event and 

mitigation, the maximum loss and the benefit of mitigation (the avoided loss) are: 

*i Viφ     and    *i ViφΔ      (14) 

 
Losses occur, given the hazard event, with probabilities as specified in (14). The expected loss and 

the expected benefit of mitigation for a single location given the occurrence of a hazard event are: 

 * *i i ip Vφ    and  * *i i ip VφΔ . (15) 
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However, it is not known, in advance, whether the hazard event will or will not occur. Including 

this uncertainty in the expected loss and the expected benefit of mitigation gives: 

 * * *i iHP p Viφ    and   * * *i iH iP p VφΔ  . (16) 
 
 

Perspectives for decision making are suggested by equations (14) to (16), and table 1. Because risk 

is defined as expected loss, the left side of equation (14) shows loss, while the left sides of 

equations in (15) and (16) show risks. The numerical examples (table 2) show that the risks are less 

than the maximum losses, and that the unconditional risk is less than the conditional risk. The 

unconditional risk is less than the conditional risk because the unconditional risk incorporates the 

uncertainty as to whether or not the natural-hazard event occurs.  

Table 2.  Numerical examples of loss and risk. 

Parameters Unmitigated Mitigated
Value $1,000,000

Damage 0.30 Maximum loss $300,000 $50,000
Mitigation 0.25 Avoided loss $250,000

Probability damage 0.05 Conditional risk $15,000 $2,500
Probability event 0.02 Unconditional risk $300 $50 

 
 

The losses and risks for the community are obtained by summing across the locations. The 

maximum losses for the unmitigated and the mitigated cases are: 

  and   
1

*
n

i i
i

Vφ
=
∑

1
*

n

i i
i

Vφ
=
∑ . (17) 

 
 The maximum avoided losses are: 

 . (18) 
1

*
n

i i
i

Vφ
=

Δ∑
The risks for the community are: 
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1

* *i

n

i i
i

Conditional community risk p Vφ
=

= ∑ . (19) 

 , (20) 
1

* * *iH

n

i i
i

Unconditional community risk P p φ
=

= ∑ V

  

 
1

* *i

n

i i
i

onditional community riskMitigated c p Vφ
=

= ∑ , and (21) 

 
1

* *
n

i i iH
i

Mitigated unconditional community risk P p Vφ
=

= ∑ . (22) 

 

The avoided losses for the community are: 

 and (23) 
1

* *
n

i i
i

onditional community avoided losses p VC φ
=

= Δ∑ i

i

i

 . (24) 
1

* *
n

i iH
i

Unconditional community avoided losses P p Vφ
=

= Δ∑
Letting   the unconditional variance of the losses *i Hq p p= Λ  is: 

 

 

( )

( )

2 2

1

,

( ) * 1 * *

* 1 * * * * * *

n

i i i i
i

n

i j i j i jH H
i j
i j

Var q q V

p p p p V

φ

φ φ

=

≠

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

V
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Λ = −

+ −

∑

∑
 (25) 

 

From (13) the initial and final community wealth are related through the losses (17) and the 

avoided losses (18), so that summary statistics analogous to (19) through (24) are straightforward. 

 

Return on Mitigation Investment 
 

The return on mitigation investment is a comparison of the cost of mitigation to the avoided 

losses. One measure of the return is simple, and another is probabilistic. Simple rate of return is a 

ratio of the total cost of mitigation to the total avoided losses. Probabilistic rate of return computes 
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expected values and variances of avoided losses. Computations are done from the perspective of 

the community, rather than from the perspective of the individual, which expresses community 

rather than private benefit. The investment in mitigation is given by: 

Cst Tot Total Cost of Mitigation≡ . 

Simple Return 
 

The maximum reduction in losses that the community can achieve through mitigation is 

given by (18). Comparing this directly to the cost of mitigation gives the simple rate of return (SR): 

 

1
*

n

i i
i

Sum Avoided LossesSR
SumMitigationCosts

V

CstTot

φ
=

=

Δ
=

∑
 (26) 

Probabilistic Return 
 

Even with mitigation, there still may be partial losses due to a hazard event.  These are 

described as an array of random variables: 

( )1 2 3, , ,..., n

RCoef CstTot

CstTot
φ φ φ φ

ΔΦ≡

Δ Δ Δ Δ
≡

 

 

Following the pattern in (3) and (4) gives the location-specific rate of return random variable   

on community investment as: 

iRR

 ( | 0)i H falseRR Bδ = =   and ( ) ( )( | 1 * * 1,i
i iHRR V B pCstTot i

φδ Δ= =  . 

 
These definitions say that the rate of return at a location is 0 if there is no hazard event during the 

observation period, otherwise, it is given by the ratio of a random variable for the avoided loss at 
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that location to the total (community wide) cost of mitigation. The community rate of return RR is 

then: 

 

  ( )| 0H falseRR Bδ = =  , 

 
and 

  ( ) ( )
1

1| 1 * * * 1,
n

i i iH
i

RR V B pCstTotδ φ
=

= = Δ∑  . 

 
These equations affirm that the community rate of return is 0 if there is no hazard event during the 

observation period.  Otherwise, it is the sum of random variables for the location-specific rates of 

return; or equivalently, it is the sum of the random variables for location-specific avoided losses 

divided by the total cost of mitigation. The expected value and variance of the community-wide 

rate of return follow from (32) and (36) in the Appendix: 

  ( ) 1
* * *

n

i iH
i

p V
E RR CstTot

φ
=

Δ
=

∑ ip
 

 
and 
 
        

( ) ( )

( )

2

1

2

1

* 1 * *

1( )
* 1 * * * * * *

n

i i i i
i

n

i j i j i jH H
i
i j

q q V

Var RR
CstTot

p p p p V V

φ

φ φ

=

=
≠

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦⎪ ⎪
⎪ ⎪⎡ ⎤⎨ ⎬

⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

− Δ +

=
− Δ Δ

∑

∑
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Discussion  
The LUPM provides a systematic method to assess quantitatively natural-hazard mitigation 

choices. The GIS interface provides a method for managing geographic data relevant to the 

evaluation of mitigation options, for specifying mitigation scenarios, and for managing statistical 

output.  

Parameterization and Data 

The LUPM is parameterized by using data describing the probability of natural-hazard 

occurrence, the engineering response of structures, and economic costs. Preliminary 

experimentation has required the accommodation to data available rather than data specifically 

tailored to the requirements of the LUPM. Important avenues for future research will be the 

acquisition of data better tailored to the axioms specified for the LUPM. For a case study of LUPM 

parameterization see “Applying HAZUS-MH and the land-use portfolio model to estimate natural-

hazard loss and risk: A hypothetical demonstration for Ventura County, California” (Laura B. 

Dinitz, ldinitz@usgs.gov). 

Selection of Axioms 

The LUPM axioms are based on Bernoulli random variables because these lead to statistics 

that are algebraically tractable and computationally convenient; however the current axioms also 

are extreme simplifications. For example, the assumption of conditional independence may be too 

strong given that the occurrence of a hazard event at one location may imply a higher probability of 

a hazard consequence at a nearby location. The probabilities of damage and of the occurrence of 

the hazard event currently are assumed to be constant over time. The current formulation of the 

model ignores the discount rate, that is, the time value of money. Simulation (Ross, 2002) may be 
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an approach to capturing more realistically probabilistic characteristics of natural-hazards without 

resorting to complex algebraic reformulation of the LUPM axioms.   

Rare Events 

Hazard events can be rare, but of high consequence. Although losses from an event may be 

large, the risk—loss on average—can be small. For sufficiently rare events, losses on average may 

also be small relative to mitigation cost, which suggests that factors in addition to losses on average 

ought to be considered when making mitigation decisions. For small probabilities ip the Bernoulli 

random variables in (4) converge to Poisson random variables (Simons and Johnson, 1971; Freund 

and Walpole, 1987). For these applications another possible improvement might be to formulate the 

LUPM axioms in terms of Poisson rather than Bernoulli random variables.  

Uncertainty and Variation 

 
Mitigation decisions may need to be made given uncertainty (Bernknopf and others, 2007). 

Statistical measures of variation, such as summary statistics (variation or standard deviation) and 

probability distributions are ways of quantifying uncertainty. Choices among mitigation options are 

clearer when uncertainty is smaller rather than larger. For example, a small range of variation in 

potential losses and a smaller range of variation in mitigation costs present the decision maker with 

easier choices than do large uncertainties. One approach to assessing variation is to compare the 

risk (20) to the standard deviation as derived from the variance (25). This compares losses on 

average to a range of variation around the average.  

The variance (25) contains four independent variables. These are the property values, the 

partial damage, and two hazard probabilities (the probability of the event occurrence and the 

probability of damage given the event). All the independent variables, except the probability of the 

event occurrence, can take on site-specific values. The following two examples suggest possibilities 
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for statistical output from the LUPM. The first example (table 3) fixes all the variables in  (25) 

except the probability of the event occurrence. The annualized probability of the hazard event HP  

is calculated from the average waiting time for the hazard event to occur. If the hazard event 

occurs, on average, once every 5 years, the annualized probability is 0.20. The remaining model 

parameters are set at .01ip = ,  , 500,000iV = 1iφ = , and 10,000n = . Table 3 shows that the 

risk drops steadily with time as is to be expected from (20). The steady decline in the standard 

deviation is suggested by the fact that the coefficient of the second term in (25) declines to zero as 

the average waiting time to the hazard event increases. The last column of table 3 shows the ratio of 

the risk to the standard deviation. The closer this ratio is to zero, the narrower the variation in 

potential losses will appear to the decision maker.   

The second example is based on LUPM mitigation outcomes for a 7.0 earthquake near the 

Calaveras and Hayward faults in the San Francisco and Monterey Bay Areas (Peter Ng, oral 

communication, Aug. 2008, US Geological Survey, png@usgs.gov). There are ten scenarios chosen 

to vary distance from the fault, vulnerability, extent of mitigation, and mitigation cost (table 4). In 

this case there are variations among the risks and standard deviations across the ten scenarios that 

reflect the geospatial variation of property values and vulnerabilities. The constant ratios (153 

percent) suggest that the uncertainties around the mean are large and, on a proportional basis, 

identical. This suggests statistical similarities among the ten mitigation options.  
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Table 3. A numerical experiment on measures of variation for the Land-Use Portfolio Model. 

Average waiting 
time in years 

Annualized 
probability of 
 hazard  event  

Risk  
in U.S. dollars 

Standard 
deviation, 

 in U.S. dollars 

Ratio,  
percent 

  2 0.5000 25,000,000 252,463 1.0 
  3 0.3333 16,666,667 237,446 1.4 
  4 0.2500 12,500,000 217,931 1.7 
  5 0.2000 10,000,000 201,234 2.0 

              7 0.1429 7,142,857 175,971 2.5 
10 0.1000 5,000,000 150,823 3.0 
20 0.0500 2,500,000 109,539 4.4 
25 0.0400 2,000,000   98,484 4.9 
50 0.0200 1,000,000   70,353 7.0 
75 0.0133    666,667   57,636 8.6 

          100 0.0100   500,000   49,997 10.0 
200 0.0050   250,000   35,442 14.2 
300 0.0033   166,667   28,962 17.4 
400 0.0025   125,000   25,092 20.1 
500 0.0020   100,000   22,449 22.4 
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Table 4. Scenario summaries for seismic risk for the San Francisco Bay Area. 
 

Scenario Selection Mitigation  
cost, in 
percent 

   Loss Risk 
 (expected loss) 
in U.S. dollars 

Standard 
deviation, in 
U.S. dollars 

      
[GPL, Greatest potential loss; Near, within 300 meters. Mitigation cost is a fraction of structure value] 

1 GPL         5   Total 29,891,764,865 45,835,021,380
2 GPL         5   Partial 5,628,137,250 8,614,477,231
3 Near Calaveras Fault  5   Total 47,813,244,022 73,271,719,155
4 Near Calaveras Fault  5   Partial 6,663,904,959 10,202,508,717
5 Near Hayward Fault  5   Partial 6,277,125,872 9,612,402,149
6 Near Hayward Fault  10   Partial 6,277,125,872 9,612,402,149
7 Near Calaveras Fault  5   Total 48,738,370,116 74,682,875,457
8 GPL, Near Calaveras Fault  5   Partial 6,717,927,420 10,285,065,171
9 GPL, Near Hayward Fault  5   Partial 6,655,219,892 10,189,865,842

10 GPL, Near Hayward Fault  10   Partial 6,655,219,892 10,189,865,842
 

 

Scenario versus Risk Analysis  

Scenario analysis considers mitigation options that are explored as discrete cases, for 

example, an examination of the consequences of three floods of differing magnitudes over the same 

populated area. In attempting to mitigate for a flood of uncertain magnitude over an area of 

uncertain economic growth, a decision maker might first consider a range of individual scenarios. 

Aggregating the results of scenarios into probability distributions leads to risk analysis. The LUPM, 

as currently structured, is based on scenarios, but mathematical research and software development 

is underway to reformulate the LUPM for risk analysis. 

 

 19



Conclusions  
The LUPM is formulated as an axiomatic model based on Bernoulli random variables and 

definitions of risk and loss from financial portfolio theory.  Algebraic equations for risk (expected 

loss) and variance of loss have been derived from the axioms,  and incorporated into the LUPM 

software and (Version 1.0). Output from this software has been used to compute scenarios to 

illustrate risk and benefit for the mitigation of seismic hazard in the San Francisco Bay Area. 

Experience with software has shown that the quality of data for parameterizing the model and 

software is a concern.. Additional concerns are how well the model captures the variation of loss 

and the statistics of rare events. Also the Bernoulli model makes the simplifying assumption that 

outcomes at individual sites are statistically independent. A more realistic assumption would be to 

incorporate into the model the geospatial correlation of natural-hazard outcomes among nearby 

sites.  A suggestion for future development is to use simulation to capture variation, the statistics of 

rare events, and the geospatial correlation of natural hazard outcomes. As currently formulated the 

Bernoulli model calculates discrete scenarios, but a more useful approach to natural-hazard 

portfolio planning is use risk analysis which aggregates a range of discrete scenarios. Simulation is 

also suggested as a future research direction for generalizing the LUPM from scenario to risk 

analysis. 
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Appendix: Derivations 
 

This appendix provides derivations of algebraic forms that can be given economic 

interpretations as summary statistics for the LUPM. The sum (27) follows by induction. 

  (27) 

2
2

1 1 , 1
*

n n n
i i i

i i i j
i j

x x x
= = =

≠

⎡ ⎤
⎛⎢ ⎥ ⎜⎢ ⎥ ⎝ ⎠

⎣ ⎦
= +∑ ∑ ∑ jx ⎞

⎟

 
It will be useful to have algebraic simplifications for polynomials in Bernoulli variables. For 

distinct and independent Bernoulli random variables pB and qB , *p qB B has the same distribution 

as *p qB .  To see why, observe table 5 of outcomes and probabilities.  The matrix on the left suggests 

a Bernoulli random variable. Collecting terms in the matrix on the right shows that:  

 Pr ( * 0) 1 *p qB B p q= = −    

and  

 Pr ( * 1) *p qB B p q= = . 

Table 5.  Product of distinct Bernoulli random variables. 

 
Bq

0 1 1-q q
Bp 0 0 0 1-p (1-p)*(1-q) (1-p)*q

1 0 1 p p*(1-q) p*q

Probabilities

  

 

Similarly, the square of a Bernoulli random variable ( )2 1,B p has the same distribution as ( )1,B p . 

Table 6 shows all combinations of hypothetical outcomes. Only two outcomes (0 and 1) are 

actually possible, and there are only two ways of getting these outcomes. The X’s indicate 
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outcomes that cannot occur because these would imply that the random variable would 

simultaneously take on the values of 0 and 1. The matrix on the right gives the probabilities of 

obtaining the two outcomes that are actually possible.  

 

Table 6.  The square of a Bernoulli random variable. 

 
Bp
0 1 1-p p

Bp 0 0 X 1-p 1-p X
1 X 1 p X p

Probabilities

 

 

The LUPM models hazards as Bernoulli variables in two stages. The first stage (28) 

indicates the occurrence, and the second (29) indicates consequences.  

 ( )1, HD B P=  (28) 
 

  (29) (
1

* 1,
n

i
i

z B p
=

= ∑S )i

 

In (29) the Bernoulli variables are independent, and the  initially are undefined. By using the 

asterisk to indicate one random outcome followed by another, the combination of the hazard event 

and its consequences can be written: 

iz

 . (30) *DΓ = S
 
Equation (30) is interpreted as saying that the hazard event has consequences only when the event 
actually occurs. The following computations give ( )E Γ and ( )Var Γ . Using (31) 

 

 ( ) ( ) ( )
2

2Var E E⎡ ⎤
⎢ ⎥⎣ ⎦

Γ = Γ − Γ  (31) 
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( ) ( ) ( )

1

Pr 1 *

* *
n

i iH
i

E D

P p
=

E

z
⎡ ⎤
⎢ ⎥
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Γ = =

= ∑

S
 (32) 

The second expectation on the right is: 

 ( ) ( ) ( )2 Pr 1 *E DΓ = = S2E

)j

, (33) 

 

 

( )

( ) (2

1 , 1

2
2

1

* 1, * * 1, *

* 1,

n n

i i i j i
i i j

i j

n

i i
i

z B p z z B p p

z B p

= =
≠

=
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⎡ ⎤ ⎢ ⎥
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=
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 (34) 

Thus (33) becomes: 

 ( )2 2

1 , 1
* * * * * *

n n

i i i j i jH H
i i j

i j

E P z p P z z p p
= =

≠

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

Γ = +∑ ∑ . (35) 

Letting : *i iHq p p=
 

 ( ) ( )2

,1
( ) * 1 * * 1 * * * *

n n

i i i i j iH H
i ji
i j

Var q q z p p p p z z
=

≠

j

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

Γ = − + −∑ ∑ .  (36)       

 

Letting the ip in (36) be the conditional failure probabilities from (5), and setting the to 

correspond to the appropriate combination of 

iz

iφ , iφ , iφΔ , or iV  gives the conditional expectations 

(19), (21) and (23). Letting  gives the unconditional expectations 1HP = (20), (22), and (24). 
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