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Postmining restoration is one of the greatest concerns for uranium in-situ 
leach (ISL) mining operations. The ISL-affected aquifer needs to be 
returned to conditions specified in the mining permit (either premining or 
other specified conditions). When uranium ISL operations are completed, 
postmining restoration is usually achieved by injecting reducing agents 
into the mined zone. The objective of this process is to restore the aquifer 
to premining conditions by reducing the solubility of uranium and other 
metals in the ground water. 



Reactive transport modeling is a potentially useful method for simulating the 
effectiveness of proposed restoration techniques. While reactive transport 
models can be useful, they are a simplification of reality that introduces 
uncertainty through the model conceptualization, parameterization, and 
calibration processes. For this reason, quantifying the uncertainty in simulated 
temporal and spatial hydrogeochemistry is important for postremedial risk 
evaluation of metal concentrations and mobility. Quantifying the range of 
uncertainty in key predictions (such as uranium concentrations at a specific 
location) can be achieved using forward Monte Carlo or other inverse 
modeling techniques (trial-and-error parameter sensitivity, calibration 
constrained Monte Carlo). These techniques provide simulated values of 
metal concentrations at specified locations that can be presented as nonlinear 
uncertainty limits or probability density functions. Decisionmakers can use 
these results to better evaluate environmental risk as future metal 
concentrations with a limited range of possibilities, based on a scientific 
evaluation of uncertainty.
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Restoration

• Goal – get back to premining conditions 
and (or) conditions specified in the mine 
permit

• Lot of current research on possible 
methods and procedures



Why attempt to model 
uranium ISL restoration?

• Better understanding of the processes
• Evaluate pros/cons of various restoration 

methods
• Optimize efficiency of a selected method
• May be part of the permit
• Provide predictions of future ground-water 

flow and quality



Reactive transport modeling

• Ground-water flow first
• Multispecies advection and dispersion
• Couple with multispecies reactions



2006 Darcy Lecture by Eileen Poeter

All models are wrong

How do we know which are useful?

Reality Model

Constant balance of complexity 
versus simplicity (adds uncertainty)



Outcrop photo

Klise and others, 2007

Ground-water 
velocity field

Images courtesy of Gary Weissmann 
Univ. of New Mexico

Should we simplify or not?



Compliance point

30 years

Uranium = 30 ppb

Would you believe this?



Compliance point

30 years

Or more likely to believe this?

80 percent probability 
that uranium will be 

less than 30 ppb



Factors that influence 
uncertainty

• Heterogeneous geology
• Heterogeneous flow and geochemistry
• Unknown geochemical reactions
• Scale (add or reduce complexity?)
• Overall system representation

Fast flow

Slow flow



How to quantify uncertainty
• Use multiple conceptual models

– Uncertain geology 
– Alternate geochemical reactions

• Use Monte Carlo simulations
– Add “random” heterogeneity

• Inverse Modeling
– Understand parameter sensitivities
– Calculate prediction uncertainty



Multiple conceptual models
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Hydraulic property realization 1



Hydraulic property realization 33



Likely region of discharge to stream

Likelihood of a concentration at a point



Probability density function
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Inverse modeling

Look at calibration quality

Input 
parameters Model Output

Updates parameters
Calculates sensitivities
Calculates prediction uncertainties



Prediction uncertainty
• Measurement uncertainty
• Sensitivities

Concentration

95% confidence interval 
Can be nonlinear
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Put it all together
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After diagram by Eileen Poeter



End goal

• Predictions that adequately account for 
uncertainty

• Use these predictions to evaluate 
environmental risk with different 
restoration options



To conclude

• Future research will be tackling these 
goals

• Just doing basic restoration modeling at 
ISL mines will be complex!

• BUT - don’t forget uncertainty



Questions?
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