Skip Links

U.S. Geological Survey - science for a changing world

U.S. Geological Survey Open File Report 2009-1029

Final Report to the Beach Erosion Authority for Clean Oceans and Nourishment (BEACON)

Coastal Processes Study of Santa Barbara and Ventura Counties, California

By Patrick L. Barnard, David L. Revell, Dan Hoover, Jon Warrick, John Brocatus, Amy E. Draut, Pete Dartnell, Edwin Elias, Neomi Mustain, Pat E. Hart, and Holly F. Ryan

2009

Project Synthesis

Thumbnail of and link to report PDF (57.5 MB)

The Santa Barbara littoral cell (SBLC) is a complex coastal system with significant management challenges. The coastline ranges broadly in exposure to wave energy, fluvial inputs, hard structures, and urbanization. Geologic influence (structural control) on coastline orientation exerts an important control on local beach behavior, with anthropogenic alterations and the episodic nature of sediment supply and transport also playing important roles.

Short- and long-term temporal analyses of shoreline change, beach width, and volume change show no obvious trends in regional beach behavior. Extensive armoring along the SBLC has accreted the back beach, narrowing beach widths and in some cases increasing sediment transport. Unarmored beaches have exhibited mild erosion while maintaining similar widths. Harbor constructions have had notable impacts on downdrift beaches, but once the coastal system has equilibrated the signal becomes strongly dampened and littoral-drift gradients driven by natural shoreline orientation again become dominant. Sediment inputs from the Santa Clara River dominate sediment processes on beaches to the south.

The SBLC is dominated by episodic flood and storm-wave events. Exceptionally large accretion signals along this stretch of coastline are closely tied to major flood events when large amounts of sediment are deposited in deltas. These deltas decay over time, supplying downdrift beaches with sediment. Storm-wave impacts and gradients in alongshore transport can lead to beach rotations and migrating erosion hotspots when geological controls are weak. Annual and seasonal rates of cross-shore and alongshore transport are at least 2-3 times higher for the more west- and southwest-facing beaches south of the Ventura River as compared to the more sheltered beaches to the west/north. Gross littoral transports are good approximations of net littoral transports for beaches west/north of Ventura as transport is almost purely unidirectional. However, significant transport reversals occur intermittently in the east/south, especially adjacent to the Ventura and Channel Islands Harbors. For this reason, and due to the episodic nature of flood and storm wave events, using dredging rates from the harbors at Ventura and Channel Islands as a proxy for drift rates may be invalid.

An extensive grain-size investigation of the surface and shallow subsurface in the nearshore region of the SBLC identified only two sites for potential beach-nourishment material: offshore of Santa Barbara Harbor and Oil Piers. However, seismic-reflection lines offshore of Santa Barbara suggest shallow bedrock (< 1 m), so the volume of coarse material in this area may be limited. Sampling of the Santa Clara River delta was minimal, but this site could be promising.

Numerical modeling shows that local beach behavior is primarily influenced by local littoral-drift gradients, which are in turn controlled by natural shoreline orientation. Given the high rates of net littoral drift and the relatively insignificant cross-shore transport in the SBLC, the SBLC should be considered a sediment-limited system (as opposed to a transport-limited system). Management actions, such as any future beach nourishment, would likely have a severely limited life span without employing additional measures that adequately address local littoral-drift gradients to retain added sand.

Version 1.0

Posted March 26, 2009

For additional information contact:
Patrick Barnard

Western Coastal & Marine Geology


This report is available only on the Web.


Part or all of this report is presented in Portable Document Format (PDF); at least version 7 of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge.


Suggested citation:

Barnard, P.L., Revell, D.L., Hoover, D., Warrick, J., Brocatus, J., Draut, A.E., Dartnell, P., Elias, E., Mustain, N., Hart, P.E., and Ryan, H.F., 2009, Coastal processes study of Santa Barbara and Ventura Counties, California: U.S. Geological Survey Open-File Report 2009-1029, 904 p. [https://pubs.usgs.gov/of/2009/1029/].



Contents

Chapter 1—Introduction

Chapter 2—Historical Changes

Chapter 3—BEACON Surveys

Chapter 4—Recent Morphological Changes

Chapter 5—Grain-Size Analysis

Chapter 6—The Impacts of Debris Basins on Sediment Delivery to the Santa Barbara Littoral Cell, California

Chapter 7—Multibeam Bathymetry

Chapter 8—Seismic-Reflection Images of Shallow Sedimentary Deposits

Chapter 9—Numerical Modeling

Chapter 10—Project Synthesis

Appendixes A–E


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http:// pubsdata.usgs.gov /pubs/of/2009/1029/index.html
Page Contact Information: USGS Publications Team
Page Last Modified: Wednesday, 07-Dec-2016 21:51:59 EST (mfd)