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Foreword

The U.S. Geological Survey (USGS) is committed to providing the Nation with reliable scientific informa-
tion that helps to enhance and protect the overall quality of life and that facilitates effective manage-
ment of water, biological, energy, and mineral resources (http://www.usgs.gov/). Information on the 
Nation’s water resources is critical to ensuring long-term availability of water that is safe for drinking and 
recreation and is suitable for industry, irrigation, and fish and wildlife. Population growth and increasing 
demands for water make the availability of that water, measured in terms of quantity and quality, even 
more essential to the long-term sustainability of our communities and ecosystems.

The USGS implemented the National Water-Quality Assessment (NAWQA) Program in 1991 to support 
national, regional, State, and local information needs and decisions related to water-quality manage-
ment and policy (http://water.usgs.gov/nawqa). The NAWQA Program is designed to answer: What is the 
quality of our Nation’s streams and groundwater? How are conditions changing over time? How do natural 
features and human activities affect the quality of streams and groundwater, and where are those effects 
most pronounced? By combining information on water chemistry, physical characteristics, stream habitat, 
and aquatic life, the NAWQA Program aims to provide science-based insights for current and emerg-
ing water issues and priorities. During 1991 to 2001, the NAWQA Program completed interdisciplinary 
assessments and established a baseline understanding of water-quality conditions in 51 of the Nation’s 
river basins and aquifers, referred to as Study Units (http://water.usgs.gov/nawqa/studyu.html). 

National and regional assessments are ongoing in the second decade (2001–2012) of the NAWQA Pro-
gram as 42 of the 51 Study Units are selectively reassessed. These assessments extend the findings in the 
Study Units by determining water-quality status and trends at sites that have been consistently monitored 
for more than a decade, and filling critical gaps in characterizing the quality of surface water and ground-
water. For example, increased emphasis has been placed on assessing the quality of source water and 
finished water associated with many of the Nation’s largest community water systems. During the second 
decade, NAWQA is addressing five national priority topics that build an understanding of how natural fea-
tures and human activities affect water quality, and establish links between sources of contaminants, the 
transport of those contaminants through the hydrologic system, and the potential effects of contaminants 
on humans and aquatic ecosystems. Included are studies on the fate of agricultural chemicals, effects of 
urbanization on stream ecosystems, bioaccumulation of mercury in stream ecosystems, effects of nutrient 
enrichment on aquatic ecosystems, and transport of contaminants to public-supply wells. In addition, 
national syntheses of information on pesticides, volatile organic compounds (VOCs), nutrients, trace ele-
ments, and aquatic ecology are continuing. 

The USGS aims to disseminate credible, timely, and relevant science information to address practical and 
effective water-resource management and strategies that protect and restore water quality. We hope this 
NAWQA publication will provide you with insights and information to meet your needs, and will foster 
increased citizen awareness and involvement in the protection and restoration of our Nation’s waters. 

The USGS recognizes that a national assessment by a single program cannot address all water-resource 
issues of interest. External coordination at all levels is critical for cost-effective management, regulation, 
and conservation of our Nation’s water resources. The NAWQA Program, therefore, depends on advice 
and information from other agencies—Federal, State, regional, interstate, Tribal, and local—as well as 
nongovernmental organizations, industry, academia, and other stakeholder groups. Your assistance and 
suggestions are greatly appreciated.

Matthew C. Larsen

Associate Director for Water
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Update of Watershed Regressions for Pesticides (WARP) 
for Predicting Atrazine Concentration in Streams 

By Wesley W. Stone and Robert J. Gilliom 

Abstract
Regression models for predicting atrazine concentra-

tions in streams were updated by incorporating refined annual 
atrazine-use estimates and by adding an explanatory variable 
representing annual precipitation characteristics. The updated 
Watershed Regressions for Pesticides (WARP) models enable 
improved predictions of specific pesticide-concentration statis-
tics for unmonitored streams. 

Separate WARP regression models were derived for 
selected percentiles (5th, 10th, 15th, 25th, 50th, 75th, 85th, 
90th and 95th), annual mean, annual maximum, and annual 
maximum moving-average (21-, 60-, and 90-day durations) 
concentration statistics. Development of the regression models 
involved the same model-development data, model-validation 
data, and regression methods as those used in the original 
development of WARP. The original WARP models were 
based on atrazine-use estimates from either 1992 or 1997. This 
update of the WARP models incorporates annual atrazine-use 
estimates. In addition, annual precipitation data were evalu-
ated as potential explanatory variables. 

The updated WARP models include the same five explan-
atory variables and transformations that were used in the origi-
nal WARP models, including the new annual atrazine-use data. 
The models also include a sixth explanatory variable, total 
precipitation during May and June of the year of sampling. 
The updated WARP models account for as much as 82 percent 
of the variability in the concentration statistics among the 112 
sites used for model development, whereas previous WARP 
models accounted for no more than 77 percent. Concentration 
statistics predicted by the 95th percentile, annual mean, annual 
maximum and annual maximum moving-average concen-
tration models were within a factor of 10 of the observed 
concentration statistics for most of the model development and 
validation sites. 

Overall, performance of the models for the development 
and validation sites supports the application of the WARP 
models for predicting atrazine-concentration statistics in 
streams and provides a framework to interpret the predictions 
in terms of uncertainty. For streams where direct measure-
ments of atrazine are lacking, the updated WARP model 
predictions can be used to characterize the probable values 

of atrazine-concentration statistics for comparison to specific 
water-quality benchmarks. 

Introduction
Pesticide concentrations in streams vary widely across 

the United States. Each pesticide has a unique pattern of 
occurrence because factors such as pesticide use, application 
practices and timing, climate, and watershed characteristics 
vary geographically (Gilliom and others, 2006). Because of 
the geographic and temporal complexity of pesticide occur-
rence and concentrations, adequate monitoring of pesticide 
concentrations in the numerous streams in the United States 
that are potentially affected by pesticides is prohibitively 
expensive—particularly at sampling frequencies high enough 
to reliably estimate the necessary concentration statistics for 
assessing potential adverse effects on aquatic ecosystems or 
humans. The lack of adequate data on pesticide concentrations 
in most streams creates a need for tools that can be used to 
predict pesticide concentrations for streams that are not suf-
ficiently monitored. Although such estimates cannot replace 
direct measurements when reliability requirements are high, 
they are useful for the initial screening-level steps of risk 
assessment and for efficiently guiding intensive monitoring. 

Larson and others (2004), using watershed characteris-
tics as explanatory variables, developed and applied regres-
sion models for predicting annual frequency distributions of 
atrazine concentrations in streams. These Watershed Regres-
sions for Pesticides (WARP), which originated from the work 
of Larson and Gilliom (2001), have been expanded to predict 
annual maximum and annual maximum moving-average 
concentrations of atrazine for 21-, 60-, and 90-day durations 
(Stone and others, 2008). For streams with inadequate direct 
measurements of atrazine, the WARP model predictions can be 
used to characterize the probable values of atrazine-concentra-
tion statistics for comparison to specific water-quality bench-
marks. For example, during the initial screening-level steps 
of risk assessment, water-quality benchmarks for evaluating 
potential concerns for human health or aquatic life are com-
pared to estimated environmental concentrations, which for 
atrazine are represented by the various concentration statistics. 
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WARP is based on empirical relations between pesti-
cide concentrations observed at monitoring sites and selected 
watershed characteristics available nationally—such as 
pesticide use—and soil and hydrologic characteristics. The 
development of WARP by Larson and others (2004) was 
based on atrazine-use estimates that were derived for Census 
of Agriculture reporting years 1992 and 1997. Subsequently, 
annual pesticide-use estimates became available for the entire 
model-development period (1992–2001). Estimated pesticide 
use in a watershed is the most influential variable in the WARP 
models for predicting pesticide concentrations in a stream 
(Larson and others, 2004). Thus, incorporation of the annual 
pesticide-use estimates into the WARP models was expected 
to enhance model performance. 

Purpose and Scope

This report describes updated WARP models for predict-
ing atrazine concentration in streams. Improvements over 
previous work (Larson and others, 2004; Stone and oth-
ers, 2008) include the incorporation of annual atrazine-use 
estimates on crops and the addition of annual precipitation 
data as potential explanatory variables. The WARP models 
are based on the most complete year of observations for each 
of the 112 sampling sites. The updated WARP models predict 
atrazine concentrations for selected percentiles of the annual 
frequency distribution (5th, 10th, 15th, 25th, 50th, 75th, 85th, 
90th, and 95th), as well as the annual mean, annual maximum, 
and annual maximum moving averages (21-, 60-, and 90-day 
durations).

Methods
Methods used in this study included obtaining atrazine-

concentration data, estimating annual agricultural atrazine 
use, estimating watershed characteristics, and developing and 
evaluating regression models to predict atrazine-concentration 
statistics.

Atrazine-Concentration Data Used for Model 
Development and Validation 

Atrazine-concentration data from the 112 sampling 
sites used by Larson and others (2004) and Stone and others 
(2008) were used in this study. The sampling-site selection 
is discussed in detail in Larson and others (2004), and site 
locations are shown in figure 1. Data from these 112 sites were 
collected for the U.S. Geological Survey (USGS) National 
Water-Quality Assessment (NAWQA) and National Stream 
Quality Accounting Network (NASQAN) programs from 1992 
through 2001. Sample collection for the NAWQA program 
followed procedures described by Shelton (1994); sample col-
lection for the NASQAN Program followed protocols of the 
U.S. Geological Survey (1997 to present).

Model-validation data collected from 25 sampling sites 
by the Water Quality Laboratory (WQL) of Heidelberg Col-
lege in Tiffin, Ohio, the Acetochlor Registration Partnership 
(ARP), and the USGS, previously used by Larson and others 
(2004) and Stone and others (2008), were also used in the 
present study. Information about the WQL and ARP monitor-
ing programs is provided in Richards and Baker (1993), Rich-
ards and others (1996), and Acetochlor Registration Partner-
ship (2009). Locations of model-validation sampling sites for 
WQL and USGS are shown in figure 1. ARP sampling sites are 
not shown in figure 1 because these sites are associated with 
drinking-water sources, which are confidential. Larson and 
others (2004) used 26 model-validation sites, but this study 
used 25 because 1 site was sampled during a year for which 
annual atrazine-use data were not available. The concentration 
statistics (annual percentiles, mean, maximum, and maximum 
moving averages) used in model development for the present 
study are the same as those used by Larson and others (2004) 
and Stone and others (2008). 

Watershed Characteristics Used as Explanatory 
Variables

WARP models are an empirical regression approach to 
modeling that evaluates a large number of potential explana-
tory variables that could affect or indicate an influence on pes-
ticide transport and runoff. Statistical procedures are used in 
the WARP model development to select explanatory variables 
on the basis of their ability to reproduce observed pesticide 
concentrations.

Estimation of Atrazine Use 
Atrazine use, as expressed by the fourth-root of use inten-

sity (amount of atrazine used in a watershed divided by the 
watershed area), was the most important explanatory variable 
for predicting atrazine concentrations in the original WARP 
models (Larson and others, 2004). Atrazine-use data used in 
these original models were temporally static. Specifically, the 
atrazine use for a watershed was represented by a single value 
for either the 1991–94 period or the 1994–98 period (Larson 
and others, 2004) because actual annual atrazine-use estimates 
were not available. This update of the WARP models uses 
annual atrazine-use estimates that were made possible through 
obtaining proprietary annual use data from DMRKYNETEC, 
Inc. (DMRK). 

The process of computing annual atrazine use in a 
watershed, based on county-level use estimates, followed 
the same methods as described in Larson and others (2004). 
Areal weights of specific types of agricultural land for each 
county intersected by the watershed were computed. The areal 
weights were multiplied by county-level atrazine use on each 
individual agricultural land type to determine the county-
level atrazine use within the watershed for the individual land 
types. Total atrazine use in each watershed was estimated by 
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summing the apportioned county-level atrazine-use estimates 
in the watershed. 

County-level estimates of atrazine use were obtained by 
integrating annual crop-reporting-district atrazine-use data on 
individual crops obtained from DMRK with annual county-
level crop acreage information from public sources (Gail The-
lin, U.S. Geological Survey, written commun., 2009). Annual 
county-level crop acreage data were obtained from the Census 
of Agriculture for 1992, 1997, and 2002 and from National 
Agricultural Statistics Service (NASS) annual reports for years 
not reported by the Census of Agriculture.

The estimates of atrazine use derived by the methods 
described above represent agricultural use. There are no 
nationally available county-level estimates for nonagricultural 
use of atrazine or other pesticides. The primary use of atrazine 
is application to agricultural crops (Kiely and others, 2004); 
therefore, the lack of information on nonagricultural use likely 
has a minimal effect on the regression analysis.

Other Watershed Characteristics 
The many watershed characteristics evaluated as potential 

explanatory variables in the WARP model development are 
listed in table 1. Potential explanatory variables representing 
land use and population, agricultural management practices, 
soil properties, physical watershed characteristics, weather 
and climate characteristics, and hydrological properties were 
considered. These watershed characteristics are the same used 

by Larson and others (2004), with the exception of the annual 
precipitation characteristics and the improved annual atrazine-
use intensity, which were added for this update of the WARP 
models. All variables considered during model development 
are available for the conterminous United States.

Statistical Analysis

A regression approach was used in the development of 
the WARP models. Statistical methods used to support the 
regression approach include transformations of response and 
explanatory variables, selection of explanatory variables, 
analysis of model fit, and estimation of prediction intervals. 

Regression Methods
Some of the atrazine-concentration statistics computed 

for sites included in the regression analysis were censored 
at the long-term reporting level. Conventional least-squares 
methods for estimating parameters of the explanatory model, 
using either the entire sample or the subsample of uncensored 
observations, yield biased and inconsistent estimates when 
data are censored (Judge and others, 1985). However, a tobit 
regression model can be used with censored observations 
(Judge and others, 1985; Tobin, 1958). For this study, the 
parameters of the tobit regression model were estimated by 
using maximum likelihood methods, as described in Larson 
and others (2004). Maximum likelihood methods implemented 

Development site
Validation site

Figure 1.  Location of sampling sites used for WARP model development (112 sites) and validation (25 sites).
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Table 1.  Watershed characteristics considered as explanatory variables for WARP models

[WARP, Watershed Regression for Pesticides; CIESIN, Center for International Earth Science Information Network; DEM, Digital Elevation Model; DMRK, 
DMRKYNETIC, Inc.; NLCD, National Land Cover data set; NRI, National Resources Inventory; NOAA, National Oceanic and Atmospheric Administration; 
STATSGO, State Soil Geographic data base; USLE, Universal Soil Loss Equation; cm, centimeter; d, day; km, kilometer; km2, square kilometer; m, meter; 
mm, millimeter; yr, year]

Variable Description

Pesticide Use

UI Atrazine agricultural-use intensity [(sum of use data derived from DMRK for applications to row crops, orchards and  
vineyards, and pasture and hay crops extrapolated to the basin scale)/basin area], kg/km2) 

Land use and population

AG Percent of basin with agricultural land use [(sum of NLCD categories row crops, small grains, pasture/hay, and orchards/
vineyards/other at 30-m cell resolution) × 100/basin area]

FOREST Percent of basin with forest land use [(sum of NLCD categories deciduous forest, evergreen forest, and mixed forest at  
30-m cell resolution) × 100/basin area]

URBAN Percent of basin with urban land use [(sum of NLCD categories low intensity residential, high intensity residential,  
commercial/industrial/transportation, and urban/recreational grasses at 30-m cell resolution) × 100/basin area]

POPDEN Mean 1990 population density in basin (people/km2) (CIESIN 1-km grid)

Agricultural management practices

ARTDRN Percent of the basin that is artificially drained [(aggregated representation of conservation practice categories 606, 607, and 
608 from the 1997 NRI polygons converted to 1-km cells) × 100/basin area] 

CONTILL Percent of the basin under conservation tillage [(1997 NRI conservation practice 329 polygons converted to 1-km cells) × 
100/basin area]

IRRI Percent of the basin that is irrigated [(aggregated representation of irrigation type categories 01, 02, and 03 from the 1997 
NRI polygons converted to 1-km cells) × 100/basin area]

TILE Percent of the basin that is drained by tiles  [(1997 NRI conservation practice 606 polygons converted to 1-km cells) × 100/
basin area]

Soil Properties

AWC Mean available water capacity (fraction) in basin (STATSGO polygons converted to 1-km cells)

CLAY Mean percent clay in basin soils (STATSGO polygons converted to 1-km cells)

HGAB Mean percent of basin soils classified as hydrologic groups A and B (sum of hydrologic groups A and B from STATSGO 
polygons converted to 1-km cells)

HGCD Mean percent of basin soils classified as hydrologic groups C, D, and C/D (sum of hydrologic groups C, D, and C/D from 
STATSGO polygons converted to 1-km cells)

K Mean soil erodibility of uppermost soil horizon in basin (K-factor for USLE) (STASGO polygons converted to 1-km cells)

ORGM Mean percent organic matter in basin soils (STATSGO polygons converted to 1-km cells)

PERM Mean soil permeability, in cm/hr (STATSGO polygons converted to 1-km cells)

SAND Mean percent sand in basin soils (STATSGO polygons converted to 1-km cells)

SILT Mean percent silt in basin soils (STATSGO polygons converted to 1-km cells)

Physical watershed characteristics

WA Basin drainage area, in km2

ELEV Mean basin elevation, in m (DEM at 1-km cell resolution)

LATC Latitude of basin centroid, in decimal degrees

LONC Longitude of basin centroid, in decimal degrees

SLOPE Mean percent slope in basin (DEM at 1-km cell resolution)
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Table 1.  Watershed characteristics considered as explanatory variables for WARP models.—Continued

[WARP, Watershed Regression for Pesticides; CIESIN, Center for International Earth Science Information Network; DEM, Digital Elevation Model; DMRK, 
DMRKYNETIC, Inc.; NLCD, National Land Cover data set; NRI, National Resources Inventory; NOAA, National Oceanic and Atmospheric Administration; 
STATSGO, State Soil Geographic data base; USLE, Universal Soil Loss Equation; cm, centimeter; d, day; km, kilometer; km2, square kilometer; m, meter; 
mm, millimeter; yr, year]

Variable Description

Weather/climate characteristics

ADRY Mean annual number of consecutive dry days (NOAA data interpolated and converted to 1-km cells)

APPT Mean annual 1961–1990 precipitation, in cm/yr (NOAA data interpolated and converted to 1-km cells)

APPTI Mean annual precipitation intensity, in mm/d  (NOAA data interpolated and converted to 1-km cells)

ATEMP Mean annual 1961–1990 temperature, in degrees Celsius  (NOAA data interpolated and converted to 1-km cells)

WET Mean annual number of consecutive wet days  (NOAA data interpolated and converted to 1-km cells)

R Mean annual 1971–2000 rainfall erosivity (R-factor for USLE) (NOAA station data analyzed and interpolated to 1-km cells)

PYEAR Total precipitation during the year of sampling (NOAA climate division precipitation data interpolated and converted to  
1-km cells)

PAPRJUN Total precipitation during April, May, and June of the year of sampling (NOAA climate division precipitation data  
interpolated and converted to 1-km cells)

PAPRSEP Total precipitation during April through September of the year of sampling (NOAA climate division precipitation data  
interpolated and converted to 1-km cells)

PMAY Total precipitation during May of the year of sampling (NOAA climate division precipitation data interpolated and converted 
to 1-km cells)

PMJN Total precipitation during May and June of the year of sampling (NOAA climate division precipitation data interpolated and 
converted to 1-km cells)

PMJL Total precipitation during May, June, and July of the year of sampling (NOAA climate division precipitation data interpo-
lated and converted to 1-km cells)

PDYEAR Departure from the 1961–1990 average precipitation during the year of sampling (NOAA climate division precipitation data 
interpolated and converted to 1-km cells)

PDAJN Departure from the 1961–1990 average April-June precipitation during the year of sampling (NOAA climate division  
precipitation data interpolated and converted to 1-km cells)

PDMAY Departure from the 1961–1990 average May precipitation during the year of sampling (NOAA climate division precipitation 
data interpolated and converted to 1-km cells)

Hydrologic properties

CONTACT Mean subsurface contact time, in days (estimated by means of TOPMODEL hydrologic model [Wolock, 1993]

PERDUN Percent of basin streamflow contributed by Dunne overland flow (estimated by means of TOPMODEL hydrologic model)

PERHOR Percent of basin streamflow contributed by Horton overland flow (estimated by means of TOPMODEL hydrologic model)

PET Mean potential evapotranspiration, in cm (estimated using temperature data derived from Parameter-Elevation Regressions 
on Independent Slopes model (PRISM; Daly and others, 1997) and the Hamon PET equation (Hamon, 1961)

ROFF Mean annual 1951-1980 runoff , in cm/yr (USGS data interpolated and converted to 1-km cells)
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in the survreg procedure (Therneau, 1999) in the statistical 
analysis program S-PLUS (Insightful Corporation, 1999) were 
used to estimate the parameters of the regression models. 

Measures of goodness of fit, such as the standard devia-
tion of the residual error (commonly referred to as the root 
mean square error) or the coefficient of multiple determination 
(R2), used for conventional least-squares regression analy-
sis, cannot be computed for the tobit regression model. The 
standard deviation of residual error is alternatively referred to 
as the “scale parameter” in maximum likelihood estimation. 
Estimates of the scale parameter from the maximum likelihood 
procedure provide only asymptotically unbiased estimates of 
the standard deviation of the residual error when estimated 
from sample data (Aitkin, 1981). These estimates, on aver-
age, underestimate the true standard deviation. The bias is 
a function of the sample size and degree of censoring, and 
it is expected to be minimal for models with lower percent-
ages of censored observations. In the remainder of this report, 
biased estimates of the standard deviation of residual error 
are referred to as “scale” in figures and tables. Several pseudo 
R2 (pR2) measures suitable for use with the tobit regression 
model have been proposed in the literature as alternatives to 
R2. For this study, pR2 was calculated by using the method of 
Laitila (1993). As with conventional R2, the pR2 ranges from 
0 to 1 and is an estimate of the proportion of the variation in 
the response variable explained by the regression model (0 
indicates no variation explained; 1 indicates all variation is 
explained). 

Transformations of Response and Explanatory 
Variables

The maximum likelihood methods used for estimating the 
parameters of the regression models require that the relation 
between the variables be linear in the parameters and that the 
residual error be identically and normally distributed. Depar-
tures from these requirements can result in flawed estimates 
of model coefficients. One means of addressing departures 
from model assumptions is through transformation of either 
the response or the explanatory variables or both (Neter and 
others, 1985).

Various transformations were considered to minimize 
departures from the requirements of the maximum likelihood 
methods used. The logarithm of concentration was used as 
the response variable throughout model development. For the 
explanatory variables, logarithmic, square-root, and fourth-
root transformations, as well as the untransformed value, were 
considered during development of the regression models.

Because the response variable is a logarithmic trans-
formation, concentrations predicted by the model (after 
retransformation) are the median concentrations expected for 
sites that have a given set of explanatory values, rather than 
the mean concentrations. Predicted concentration statistics 
were not adjusted for transformation bias because estimates 

of median values of the statistics were considered more appro-
priate for the purposes of this study.

Selection of Explanatory Variables
A stepwise approach was used for selection of explana-

tory variables to include in the regression models. The Ste-
pAIC procedure of Venables and Ripley (1999), implemented 
in S-PLUS, was used for the initial selection of explanatory 
variables to include in the regression models. The StepAIC 
procedure, based on Akaike’s Information Criterion (Akaike, 
1974), balances model goodness of fit with the number of 
parameters needed to achieve that fit. The procedure attempts 
to quantify the concept of model parsimony by choosing 
simpler models over complex ones unless a complex model 
substantially improves the fit of the model.

Variable selection began with evaluation of transforma-
tions for each potential explanatory variable. The StepAIC 
procedure was used to evaluate each variable and its transfor-
mations together as a group. Untransformed and transformed 
explanatory variables were also evaluated by plotting them 
against the response variable to see whether the relation 
was approximately linear and whether residual errors were 
approximately identically and normally distributed. The Ste-
pAIC procedure and the plot evaluation determined whether 
the untransformed or transformed (logarithmic, square-root, 
or square) variable would be used in the explanatory variable 
selection process. 

Variable selection continued with 43 potential explana-
tory variables, too many to include in the StepAIC procedure 
at one time. So, groups of 12 variables were randomly selected 
and then evaluated with the StepAIC procedure. The random 
selection and evaluation of variables was repeated 1,000 times. 
Variables selected 100 percent of the time for all models by the 
StepAIC procedure were retained, and the random selection 
(groups of 12, including the retained variables) and StepAIC 
evaluation process was repeated again. Variables selected 
greater than 50 percent of the time by the StepAIC procedure 
for all repetitions were retained and typically represented less 
than half of the original number of explanatory variables. A 
subsampling, cross-validation approach was used to evaluate 
the remaining potential explanatory variables. The data were 
randomly divided into two subsamples of equal size, and the 
StepAIC procedure was used to evaluate the potential explana-
tory variables for both subsamples. The random subsampling 
and evaluation with the StepAIC procedure was repeated 
multiple times. Variables selected by the StepAIC procedure 
for a majority of the repetitions were retained and subjectively 
evaluated for reasonableness and their overall contribution to 
explaining the variation in atrazine-concentration statistics. 
In addition, potential explanatory variables not selected were 
individually evaluated to determine whether adding any of 
these variables would improve the ability of the model to 
explain variation in atrazine-concentration statistics without 
making the model overly complex. (See example in table 2.) 
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Table 2.  Example results from stepwise model development for selected WARP models.

[WARP, Watershed Regression for Pesticides; 21-day, annual maximum 21-day moving-average concentration model; pR2, pseudo R-square 
(R-squared value for tobit regression); Scale, tobit regression analogue of the root mean squared error obtained from ordinary least squares  
regression; model variables are defined in table 1]

Model
Annual mean 95th Percentile 21-day 

Scale pR2 Scale pR2 Scale pR2

(UI)1/4 0.54 0.68 0.62 0.62 0.60 0.67

(UI)1/4+PMJN 0.46 0.77 0.54 0.72 0.53 0.75

(UI)1/4+PMJN+K 0.44 0.79 0.51 0.74 0.51 0.76

(UI)1/4+PMJN+K+(WA)1/2 0.42 0.80 0.49 0.76 0.50 0.77

(UI)1/4+PMJN+K+(WA)1/2+log10R 0.41 0.81 0.48 0.77 0.50 0.78

(UI)1/4+PMJN+K+(WA)1/2+log10R+PERDUN 0.40 0.82 0.47 0.78 0.48 0.79

(UI)1/4+PMJN+K+(WA)1/2+log10R+PERDUN+WET 0.39 0.83 0.47 0.79 0.48 0.79

(UI)1/4+PMJN+K+(WA)1/2+log10R+PERDUN+ELEV 0.40 0.82 0.47 0.79 0.47 0.80

(UI)1/4+PMJN+K+(WA)1/2+log10R+PERDUN+HGAB 0.40 0.82 0.46 0.79 0.48 0.79

(UI)1/4+PMJN+K+(WA)1/2+log10R+PERDUN+PERM 0.40 0.83 0.46 0.79 0.48 0.79

(UI)1/4+PMJN+K+(WA)1/2+log10R+PERDUN+SLOPE 0.40 0.83 0.47 0.79 0.48 0.79

(UI)1/4+PMJN+K+(WA)1/2+log10R+PERDUN+HGCD 0.40 0.82 0.46 0.79 0.48 0.79

(UI)1/4+PMJN+K+(WA)1/2+log10R+PERDUN+ATEMP 0.40 0.82 0.47 0.79 0.48 0.79

The same explanatory variables were used in all the final 
models, and this approach simplifies the data requirements for 
application of the models. Extra consideration was given to 
variables selected for the 95th percentile, annual maximum, 
and the annual maximum moving-average models because the 
percentage of censored data was less for these concentration 
statistics than for lower-percentile concentration statistics. 
Coefficients of the models for the various concentration statis-
tics were determined independently, and no constraint prevents 
the prediction of a concentration for a low percentile from 

exceeding the concentration prediction for a higher percentile. 
Use of the same explanatory variables in all the final mod-
els reduced how often this occurred. Statistical methods for 
estimating correlated models are not available for regressions 
with censored observations. 

Interactions between variables were not considered as 
potential explanatory variables because of the already large 
number of potential explanatory variables evaluated for the 
models. To have included interactions would have resulted in 
thousands of additional potential explanatory variables.
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 Analysis of Model Fit
Diagnostics for censored regression (Escobar and 

Meeker, 1992) available in the survreg procedure in the 
S-PLUS program (Insightful Corporation, 1999) were used 
to assess influential observations. Variance inflation factors 
were used for detecting the presence of multicollinearity 
among explanatory variables (Neter and others, 1985). Box 
and whisker plots (Tukey, 1977) were used to qualitatively 
assess model performance (fig. 2). These boxplots summarize 
a group of data by showing a measure of central tendency (the 
median), the variation (interquartile range), the range (shown 
by the whiskers, which extend to 1.5 times the interquartile 
range when extreme values are present), and extreme values 
(lower/upper outside values shown by individual points). 
Boxplots were used for displaying the distribution of model 
residuals and comparing residuals among groups of data (for 
example, different regions of the country). 

Comparisons between predicted concentration statistics 
and concentration statistics computed from observations are 
made frequently in the discussion of model performance. 
Terms used for these comparisons are defined here for clarity. 
Concentration statistics generated by the WARP models are 
referred to as “predicted concentration statistics,” and concen-
tration statistics computed from observations are referred to 
as “observed concentration statistics.” Predicted concentration 
statistics within a factor of 10, or “order of magnitude,” of the 
observed concentration statistics are between one-tenth and 10 
times the observed concentration statistic. For example, for an 
observed concentration statistic of 3 μg/L, predicted concen-
tration statistics from 0.3 to 30 μg/L are within a factor of 10 
of the observed concentration statistic; predicted concentration 
statistics from 0.6 to 15 μg/L are within a factor of 5.



Outside value
(>1.5 x IQR)

Largest value
less than 
1.5 times IQR

75th percentile

25th percentile

Median
IQR, interquartile range;
distance between 75th and
25th percentiles

Smallest value
less than 
1.5 times IQR

Figure 2.  Boxplot explanation.

Estimation of Prediction Intervals
Prediction intervals were approximated by using normal 

theory and the t-distribution; that is, methods for ordinary 
least square regression were used, but these methods yield 
only approximate results when applied to censored data. The 
standard errors were estimated from the maximum likelihood 
scale parameter by use of the adjustment suggested by Aitkin 
(1981).

Atrazine Models
The models for the selected percentiles, the annual mean, 

the annual maximum, and the annual maximum moving-aver-
age atrazine-concentration statistics have the form:

	        (1)

where
	 UI	 is the atrazine-use intensity, annual  
		  agricultural use in the watershed (kilograms) 

divided by watershed area (square 			 
		  kilometers);

	 PMJN	 is the total precipitation during May and 		
		  June of the year of sampling (millimeters);
	 K	 is the soil erodibility factor (K-factor) from 		
		  Universal Soil Loss Equation (USLE);
	 WA	 is the watershed area (square kilometers);
	 R	 is the rainfall erosivity factor (R-factor) 		
		  from USLE; and
	 PERDUN	 is the percentage of streamflow due to 		
		  Dunne overland flow.

Statistics for all models are given in table 3. Regression 
coefficients and statistics were based on model fit using tobit 
regression. Values of pR2 ranged from 0.63 for the 5th percen-
tile model to 0.82 for the annual mean model, meaning that 
the models accounted for 63 to 82 percent of the variability in 
the concentration statistics among the 112 sites used for model 
development. Concentration statistics predicted by these mod-
els represent the expected median value of the concentration 
statistic for all sites with the same values for the explanatory 
variables. 

Analysis of Significant Explanatory Variables

Larson and others (2004) found that fourth-root of 
atrazine-use intensity in the watershed, as the fourth-root 
transformation, was the most important explanatory variable 
in the original WARP models. The same is true in the pres-
ent update of the WARP models. Models using just (UI)1/4 as 
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Table 3.  Summary of statistics and coefficients for variables in the atrazine WARP models.

[WARP, Watershed Regression for Pesticides; Pseudo R-square, R-squared value for tobit regression; Scale, tobit regression analogue of the root mean squared error obtained from ordinary least squares  
regression; Max, maximum; MA, moving average; model variables are defined in table 1; <, less than]

Atrazine-concentration statistic
Regression coefficients (p-value) Pseudo

R-square
Scale

Percentage 
of censored 

observationsIntercept UI1/4 PMJN K (WA)1/2 log10R PERDUN

5th -3.79
(<0.05)

0.71
(<0.05)

0.0010
(0.19)

1.21
(0. 14)

0.00035
(0.10)

0.239
(0.27)

-0.124
(<0.05)

0.63 0.50 22

10th -3.91
(<0.05)

0.67
(<0.05)

0.0010
(0.15)

1.44
(0.06)

0.00038
(0.06)

0.336
(0.10)

-0.135
(<0.05)

0.66 0.47 20

15th -3.91
(<0.05)

0.63
(<0.05)

0.0010
(0.12)

1.38
(<0.05)

0.00042
(<0.05)

0.429
(<0.05)

-0.141
(<0.05)

0.69 0.43 14

25th -3.79
(<0.05)

0.61
(<0.05)

0.0008
(0.17)

1.09
(0.09)

0.00043
(<0.05)

0.469
(<0.05)

-0.122
(<0.05)

0.70 0.40 12

50th -3.73
(<0.05)

0.58
(<0.05)

0.0012
(<0.05)

1.25
(<0.05)

0.00047
(<0.05)

0.473
(<0.05)

-0.100
(<0.05)

0.74 0.37 9

75th -3.77
(<0.05)

0.63
(<0.05)

0.0020
(<0.05)

1.62
(<0.05)

0.00063
(<0.05)

0.489
(<0.05)

-0.083
(<0.05)

0.79 0.37 6

85th -3.91
(<0.05)

0.71
(<0.05)

0.0024
(<0.05)

2.22
(<0.05)

0.00066
(<0.05)

0.506
(<0.05)

-0.080
(<0.05)

0.79 0.43 5

90th -3.91
(<0.05)

0.69
(<0.05)

0.0027
(<0.05)

2.39
(<0.05)

0.00070
(<0.05)

0.554
(<0.05)

-0.086
(<0.05)

0.80 0.43 3

95th -4.01
(<0.05)

0.71
(<0.05)

0.0024
(<0.05)

2.89
(<0.05)

0.00058
(<0.05)

0.665
(<0.05)

-0.091
(<0.05)

0.78 0.47 2

Annual mean -4.23
(<0.05)

0.75
(<0.05)

0.0022
(<0.05)

2.40
(<0.05)

0.00046
(<0.05)

0.571
(<0.05)

-0.096
(<0.05)

0.82 0.40 14

Annual maximum -3.36
(<0.05)

0.91
(<0.05)

0.0025
(<0.05)

1.77
(<0.05)

0.00016
(0.48)

0.591
(<0.05)

-0.122
(<0.05)

0.76 0.54 1

Annual maximum 21-day MA -3.60
(<0.05)

0.86
(<0.05)

0.0026
(<0.05)

2.07
(<0.05)

0.00039
(0.06)

0.582
(<0.05)

-0.112
(<0.05)

0.79 0.48 1

Annual maximum 60-day MA -3.86
(<0.05)

0.81
(<0.05)

0.0026
(<0.05)

2.26
(<0.05)

0.00049
(<0.05)

0.610
(<0.05)

-0.110
(<0.05)

0.81 0.45 2

Annual maximum 90-day MA -3.91
(<0.05)

0.80
(<0.05)

0.0025
(<0.05)

2.23
(<0.05)

0.00051
(<0.05)

0.597
(<0.05)

-0.105
(<0.05)

0.81 0.43 2
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an explanatory variable account for 56 to 68 percent of the 
variability in concentration statistics among the 112 sites. The 
coefficient of the transformed use-intensity variable is positive 
in all models.

Total precipitation during May and June of the year of 
sampling (PMJN) is significant (p<0.05) in the higher percen-
tile, annual mean, annual maximum, and annual maximum 
moving-average models (table 3). For the majority of sites, 
the months of April through June include the highest atrazine 
application period. High precipitation during May and June, 
after atrazine application, increases atrazine runoff to streams. 
This increase is consistent with the positive coefficient 
observed for PMJN in all models.

Soil erodibility factor (K-factor) is significant (p<0.05) in 
all the models except for the 5th-, 10th-, and 25th-percentile 
models (table 3). The coefficient for K-factor is positive in all 
models. The K-factor is an index that indicates the susceptibil-
ity of soil to erosion (Brooks and others, 1991). The positive 
coefficient for K-factor in the regression models implies that 
more runoff of atrazine occurs in areas susceptible to soil ero-
sion. As discussed in Larson and others (2004), this does not 
mean that atrazine is being transported on eroded soil parti-
cles, because atrazine is primarily transported in the dissolved 
phase in runoff water. The positive relation between K-factor 
and atrazine concentrations in the stream may indicate that 
areas with high K-factor soils have a relatively high potential 
for the formation of runoff during precipitation, resulting in an 
increased potential for transport of atrazine from application 
areas to streams.

Watershed area, as the square-root transformation, was 
significant (p<0.05) in all models except for the 5th- and 
10th- percentile, annual maximum, and annual maximum 
21-day moving-average models (table 3). The coefficient for 
watershed area was positive in all models. Larson and Gilliom 
(2001) listed three factors that may contribute to the positive 
relation between watershed area and atrazine concentration in 
streams. First, the contribution of water from multiple small 
streams to a large river can result in elevated concentrations 
that are sustained for a longer time than in the individual 
streams because the timing of pesticide application and subse-
quent runoff can vary among the individual streams. Second, 
in some small streams, the highest concentrations may not 
have been sampled because concentrations of pesticides may 
remain elevated for relatively short periods. The computed 
concentration statistics for the higher percentiles and annual 
maximum for these small streams may be biased low, further 
strengthening the positive relation between watershed area 
and concentration reflected in the coefficients for the water-
shed-area variable in the regression models. Third, for some 
streams with large watersheds, pesticide use is concentrated 
in a relatively small farmed area of the watershed, wheras the 
remainder of the watershed is largely untreated. The use-inten-
sity value for these watersheds may be relatively low, despite 
high use in the farmed areas. It is likely that more water is 
contributed to the stream through runoff from the farmed areas 
than from nonagricultural areas, especially in arid regions 

where crops are irrigated. For these cases, the watershed-area 
variable may act as a correction factor, accounting for the 
high concentrations in these streams despite relatively low 
use-intensity values for the watersheds as a whole (Larson and 
others, 2004). 

Rainfall erosivity (R-factor), as the logarithm transfor-
mation, was significant (p<0.05) in all models except for the 
5th- and 10th- percentile models (table 3). The coefficient for 
R-factor was positive in all models. The R-factor is an index 
that characterizes the energy of storms in a specific area, aver-
aged over a number of years (Brooks and others, 1991). The 
positive coefficient implies that more runoff of atrazine occurs 
in areas of high-energy rainstorms. 

Percent Dunne overland flow (PERDUN) was significant 
(p<0.05) in all the models (table 3). The coefficient for PER-
DUN was negative in all models. PERDUN is the percentage 
of streamflow generated by overland flow from precipitation 
falling on saturated soils (Dunne overland flow). The negative 
coefficient for PERDUN implies that atrazine concentrations 
were lower in areas where Dunne overland flow contribu-
tions to streamflow were high. Generally, near-stream lowland 
and wetland areas that quickly become saturated contribute 
more Dunne overland flow to streams than areas that are 
well drained. Lowland and wetland areas are less likely to 
be cropped and less likely to have been treated with atrazine. 
Dunne overland flow may be a source of relatively atrazine-
free water and may act to dilute concentrations of atrazine in 
streams that receive a higher percentage of Dunne overland 
flow (Larson and Gilliom, 2001). 

Model Performance

The discussion, tables, and figures describing model 
performance in this report are for the 95th-percentile, annual 
mean, annual maximum, and annual maximum 21-, 60-, and 
90-day moving-average WARP models. Model performance 
was evaluated by assessment of (1) goodness of fit and resid-
ual errors for the model-development sites, (2) residual errors 
for the model-validation sites, and (3) uncertainty in model 
predictions. Each is described below.

Model-Development Sites
Regression-model results for the model-development 

sites are shown in figure 3. For the models shown, most of the 
predicted concentration statistics are within a factor of 10 of 
the observed concentration statistics at the development sites. 

Residual errors were calculated by subtracting the 
predicted concentration statistics from the observed concentra-
tion statistics; therefore, residual errors less than zero indicate 
overprediction of the concentration statistic, and residual 
errors greater than zero indicate underprediction. A residual 
error of zero indicates exact agreement, and residuals of -1 
and +1 indicate that the prediction for a given site was 10 
times and one-tenth of the observed concentration statistic, 
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Figure 3.  Atrazine-concentration statistics from concentrations observed at model-development sites in relation to values of the 
same statistics predicted by the WARP models. The black line is a 1:1 line, indicating exact agreement of the observed and predicted 
concentration statistics. The red lines are plus and minus 1 log unit from the 1:1 line; the area between a red and black line represents 
predicted concentration statistics within a factor of 10 of the observed concentration statistics. The green lines represent the 
95-percent prediction interval. Filled symbols indicate censored observed concentration statistics. pR-square is the pseudo R-squared 
(R-square value used for tobit regression).
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respectively. Boxplots of the residual errors from the models 
show the performance of the models with respect to watershed 
area (fig. 4) and geographic region (fig. 5) of the model-devel-
opment sites. 

Predictions of atrazine-concentration statistics are not 
substantially biased with respect to watershed area, as indi-
cated by figure 4. For this plot, watershed areas of the 112 
model-development sites were divided into quintiles (that is, 
the first quintile contains the smallest 20 percent of watershed 
areas, the second quintile contains the second smallest 20 per-
cent, and so on). Residual errors are similar for all five groups, 
which together cover more than five orders of magnitude in 
watershed area (17 to 2,965,000 km2).

Predictions of atrazine-concentration statistics have no 
substantial regional bias, as indicated by figure 5. The regional 
groupings used for this plot were based on the U.S. Depart-
ment of Agriculture Farm Resource Regions (U.S. Department 
of Agriculture, 2000), which categorized agricultural regions 
of the conterminous United States on the basis of climate, 
topography, soil types, and dominant agricultural activities. 
The nine Farm Resource Regions were consolidated into five 
regions for the present study (fig. 6) so that each region would 
have sufficient sites for the computation of statistics summa-
rizing model fit. 

Model-Validation Sites
The selected models were applied to concentration data 

from the 25 validation sites, and plots of the predictions for 
these sites are shown in figure 7. Predicted concentration sta-
tistics from the selected models are within a factor of 10 of the 
observed concentration statistics for most of the sites. 

The updated WARP model predictions for the validation 
sites are not substantially biased (fig. 8), even though predic-
tions from the previous WARP models were biased low for 
most of the validation sites (Larson and others, 2004; Stone 
and others, 2008). The incorporation of the annual atrazine-use 
estimates and the PMJN explanatory variable into the WARP 
models appears to have reduced the low prediction bias seen 
with application of the previous WARP models to the valida-
tion-site data. 

Uncertainty in Model Predictions
Uncertainty in the prediction of a concentration statistic 

can be expressed in terms of a prediction interval (PI) for a 
specified confidence level—the confidence level used in this 
study is 95 percent. Conceptually, each predicted concentra-
tion statistic is the median estimate of the particular concentra-
tion statistic (percentiles, annual mean, annual maximum, and 
annual maximum moving averages) for all the stream sites that 
have the same combination of values for the explanatory vari-
ables. The PI is the range of values for a concentration statistic 
within which 95 percent of the actual concentration-statistic 
values are expected to occur for all stream sites with the same 

values of explanatory variables. In addition, the PI can be 
interpreted as the range within which the actual concentration 
statistic for an individual site and year is expected to fall 95 
percent of the time. 

The PIs for the selected models are shown as green lines 
in figure 3. Concentration statistics are expressed as loga-
rithms, resulting in symmetrical intervals for the PI. (The high 
and low bounds of the intervals are the same distance from 
the predicted value.) However, expressing the concentration 
statistics as logarithms obscures the fact that the intervals are 
skewed—the upper part of the PI interval covers a wider range 
of values than the lower part. Comparison of the PIs (green 
lines) to the predicted concentration statistics within a fac-
tor of 10 of the observed concentration statistics (red lines) 
shows that the PIs are largest for the annual maximum model 
and smallest (PIs less than a factor of 10) for the annual mean 
model (fig. 3). The PI is a function of the fit of the model and 
the amount of variability explained by the model. The annual 
mean model has a better model fit and explains more variabil-
ity (scale = 0.40; pR2 = 0.82) than the annual maximum model 
does (scale = 0.54; pR2 = 0.76). 

The levels of uncertainty for the 95th-percentile, annual 
mean, annual maximum, and annual maximum moving-
average (21-, 60-, and 90-day) models are compared in figure 
9. PI size is represented as the ratio of the upper boundary of 
the interval to the predicted concentration statistic. (This is the 
same as the ratio of the predicted concentration statistic to the 
lower boundary of the interval.) The extreme values (shown as 
asterisks) represent the same sites in each model, which have 
one or more explanatory variables that are relatively extreme 
in value when compared to values for the rest of the sites. For 
example, the highest ratio for each of the models, shown by 
highest asterisks in each boxplot, is for the Mississippi River 
at St. Francisville, La., which has a watershed area far greater 
than the rest of the sites. PIs for the annual maximum model 
extend to a factor of about 13 to 14 above and below the pre-
dicted annual maximum concentration statistic for most sites, 
whereas PIs for all other models extend to a factor of only  
7 to 11.
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Figure 4.  Residual errors for atrazine-concentration statistics predicted by WARP models in relation to watershed area for the 112 
model-development sites. First boxplot in each row shows the residual errors for all 112 sites. Remaining boxplots show the residual 
errors for sites grouped into five classes based on quintiles of watershed area. Residual error is [log10(observed concentration statistic) 
– log10(predicted concentration statistic)]. See figure 2 for boxplot explanation. 
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Figure 5.  Residual errors for atrazine-concentration statistics predicted by the WARP models in relation to geographic region for 
the 112 model-development sites. First boxplot in each row shows the residual errors for all 112 sites. Remaining boxplots show the 
residual errors for sites grouped by region. Regions are shown in figure 6. Residual error is [log10(observed concentration statistic) – 
log10(predicted concentration statistic)]. See figure 2 for boxplot explanation. 
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Figure 6.  U.S. Department of Agriculture Farm Resource Regions (U.S. Department of Agriculture, 2000) and regions used for 
evaluation of the WARP models.
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Figure 7.  Atrazine-concentration statistics observed at model-validation sites in relation to values of the same statistics predicted 
by the WARP models. Values for the model-development sites are shown for comparison. The black line is a 1:1 line, indicating exact 
agreement of the observed concentration statistics and predicted concentration statistics; the area between a red and black line 
represents predicted concentration statistics within a factor of 10 of the observed concentration statistics. 
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Figure 8.  Residual errors for atrazine-concentration statistics predicted by the updated WARP models 
and the previous WARP models using data from 25 model-validation sites. Residual error is [log10(observed 
concentration statistic) – log10(predicted concentration statistic)]. See figure 2 for boxplot explanation.
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Comparison to Previous WARP Models

The updated WARP models include the same five 
explanatory variables and transformations that were used in 
the original WARP models: use intensity, K-factor, watershed 
area, R-factor, and percentage of streamflow from Dunne 
overland flow. However, the atrazine-use-intensity variable in 
the updated WARP model is now based on annual atrazine-use 
estimates rather than estimates for 1992 or 1997. The updated 
WARP models also include a sixth explanatory variable, total 
precipitation during May and June of the year of sampling. 
Addition of this sixth explanatory variable explains more vari-
ability without making the models overly complex. 

Figure 9.  Potential prediction errors for concentration statistics predicted with the atrazine WARP models. 
Potential prediction error is represented by the ratio of the upper boundary of the 95-percent prediction 
interval to the predicted atrazine-concentration statistic. Each boxplot shows the ratios among the 112 model-
development sites. See figure 2 for boxplot explanation. 
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Model performance values (pR2 and scale parameter) 
for the 5th-percentile updated WARP model and the previous 
WARP model are comparable. However, the updated models 
for the other atrazine-concentration statistics show improve-
ment over the previous WARP models in terms of pR2 and the 
scale parameter (table 4). 

Differences in model performance between the updated 
and previous WARP models can be seen in terms of their 
residual errors, as shown in figure 10. The updated WARP 
models generally have a smaller variation (interquartile range 
shown by the box) and range (shown by the whiskers) of 
residual errors than the previous WARP models. 
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Model Limitations

Use of the regression models for predicting atrazine-con-
centration statistics, and the WARP methodology in general, 
are subject to several limitations that are important to consider 
when applying the models.
1.	 The sampling frequencies of the model-development sites 

were not sufficient to reliably characterize the highest 
concentrations during a year. Thus, application of the 
models to predict the annual maximum concentration is 
expected to underpredict the actual annual maximums.

2.	 The regression models are designed for prediction of atra-
zine-concentration statistics for streams of the contermi-
nous United States. Although the 112 sites used for model 
development represent a wide variety of environmental 
settings and a large range of watershed areas, it is likely 

that other watersheds within the United States have one or 
more characteristics outside the ranges of the watershed 
parameters used to develop the models. Application of the 
models to streams draining such watersheds would result 
in increased uncertainty in predicted concentrations.

3.	 The models were developed by using concentration 
data from streams. Application of the models to lakes or 
reservoirs will result in biased predictions because of the 
influence of water storage on the temporal distribution of 
concentrations.

4.	 The atrazine-use data used in the models are estimates for 
applications to agricultural land only. Substantial nonag-
ricultural use of atrazine in a watershed could result in 
underprediction of atrazine concentrations in a stream, if 
such use cannot be estimated. 

Table 4.  Comparison of updated WARP models to previous WARP models.

[WARP, Watershed Regression for Pesticides; MA, moving average ; Pseudo R-square, R-squared value for tobit 
regression; Scale, tobit regression analogue of the root mean squared error obtained from ordinary least squares 
regression. Previous WARP pseudo R-square and scale values were obtained from Larson and others (2004) and 
Stone and others (2008).]

Atrazine-concentration statistic
Updated WARP Previous WARP

Pseudo
R-square

Scale
Pseudo

R-square
Scale

5th 0.63 0.50 0.62 0.50

10th 0.66 0.47 0.63 0.49

15th 0.69 0.43 0.65 0.45

25th 0.70 0.40 0.64 0.44

50th 0.74 0.37 0.68 0.41

75th 0.79 0.37 0.70 0.44

85th 0.79 0.43 0.71 0.50

90th 0.80 0.43 0.73 0.50

95th 0.78 0.47 0.73 0.52

Annual mean 0.82 0.40 0.77 0.46

Annual maximum 0.76 0.54 0.72 0.58

Annual maximum 21-day MA 0.79 0.48 0.74 0.54

Annual maximum 60-day MA 0.81 0.45 0.75 0.51

Annual maximum 90-day MA 0.81 0.43 0.75 0.50
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Figure 10.  Residual errors for atrazine-concentration statistics predicted by the updated WARP models 
and the previous WARP models. Residual error is [log10(observed concentration statistic) – log10(predicted 
concentration statistic)]. See figure 2 for boxplot explanation. 
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Summary and Conclusions
Regression models were developed for predicting 

selected percentiles (5th, 10th, 15th, 25th,50th, 75th, 85th, 
90th, and 95th), annual mean, annual maximum, and annual 
maximum moving-average (21-, 60-, and 90-day) atrazine-
concentration statistics for streams, using nationally available 
data on watershed characteristics and atrazine use. Concentra-
tion statistic predictions generated by these models can be 
used to characterize the levels of atrazine for comparison to 
specific water-quality benchmarks for evaluation of potential 
concerns regarding human health and aquatic life.

Separate models were developed for the selected percen-
tiles, annual mean, annual maximum, and the annual maxi-
mum moving-average concentration statistics. The updated 
WARP models include the same five explanatory variables and 
transformations that were used in the original WARP models. 
The updated WARP models also include a sixth explanatory 
variable, total precipitation during May and June of the year 
of sampling. Comparison of pR2, scale parameter, and residual 
errors between the updated WARP models and previous 
WARP models show better model performance for the updated 
models.

The models accounted for 63 to 82 percent of the vari-
ability in concentration statistics among the 112 sites used 
for model development. Uncertainty in predicted concentra-
tion statistics was expressed in terms of prediction intervals. 
For the 95th percentile, annual mean, annual maximum, and 
annual maximum moving-average (21-, 60-, and 90-day) 
models, 95-percent prediction intervals extend to a factor of 7 
to 14 above and below the predicted concentration statistic in 
most cases. 

Results for the 25 model validation sites with the 95th 
percentile, annual mean, annual maximum, and annual maxi-
mum moving-average (21-, 60-, and 90-day) models show that 
concentration statistics were predicted within a factor of 10 of 
the observed concentration statistics in nearly all cases. The 
updated WARP models show no substantial bias for the valida-
tion sites, an improvement over the previous WARP models 
that showed a low bias for the same validation sites. 

Adequate monitoring of pesticide concentrations in 
the numerous streams in the United States is prohibitively 
expensive, particularly for sampling frequencies that are high 
enough to reliably estimate the concentrations statistics needed 
for risk assessments. The WARP models are tools for predict-
ing pesticide concentrations in unmonitored or inadequately 
monitored streams. Overall, performance of the models for 
the development and validation sites supports the application 
of the WARP models for predicting atrazine concentrations in 
streams and provides a framework to interpret the predictions 
in terms of uncertainty. For streams where direct measure-
ments of atrazine are lacking, the WARP model predictions for 
atrazine concentrations can be used to characterize the prob-
able levels of atrazine for comparison to specific water-quality 
benchmarks. 
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