

REPORT OF THE RIVER MASTER OF THE DELAWARE RIVER

FOR THE PERIOD DECEMBER 1, 2004–NOVEMBER 30, 2005

Open-File Report 2010–1106

U.S. Department of the Interior U.S. Geological Survey

CALENDAR FOR REPORT YEAR 2005

	DECEMBER 2004						л	JNE 200)5				
S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S
5	6	7	1 8	2 9	3 10	4 11	5	6	7	1 8	2 9	3 10	4 11
12 19	13 20	14 21	15 22	16 23	17 24	18 25	12 19	13 20	14 21	15 22	16 23	17 24	18 25
26	20 27	28	22 29	23 30	31	25	26	20 27	28	22	30	24	23
		JANU	ADVO	005						JULY			
		JANU	AKI 2	.005		1				JULI		1	2
2	3	4	5	6	7	8	3	4	5	6	7	8	9
9 16	10 17	11 18	12 19	13 20	14 21	15 22	10 17	11 18	12 19	13 20	14 21	15 22	16 23
23	24	25	26	20 27	21	22 29	24	25	26	20 27	21	22	²³ 30
30	31						31						
		FEB	RUAR							UGUST			
	7	1 8	2	3	4	5	7	1	2 9	3	4	5 12	6
6 13	7 14	8 15	9 16	10 17	11 18	12 19	14	8 15	9 16	10 17	11 18	12 19	13 20
20	21	22	23	24	25	26	21	22	23	24	25	26	27
27	28						28	29	30	31			
		M	ARCH						SEP	TEMBE	ER		
		1	2	3	4	5					1	2	3
6	7 14	8	9	10	11	12	4	5	6	7	8	9	10
13 20	14 21	15 22	16 23	17 24	18 25	19 26	11 18	12 19	13 20	14 21	15 22	16 23	17 24
27	28	29	30	31			25	26	27	28	29	30	
		А	PRIL						00	CTOBE	2		
					1	2							1
3	4	5	6	7	8	9	2		4	5	6	7	8
10 17	11 18	12 19	13 20	14 21	15 22	16 23	9 16		11 18	12 19	13 20	14 21	15 22
24	25	26	20 27	21 28	22 29	23 30	23		25	26	20 27	21	22
							30	31					
		1	MAY					NOVEMBER					
1	2	3	4	5	6	7			1	2	3	4	5
8 15	9 16	10	11	12	13	14 21	6	7	8	9 16	10	11	12
22	16 23	17 24	18 25	19 26	20 27	21 28	13 20	14 21	15 22	16 23	17 24	18 25	19 26
29	30	31					27	28	29	30			
L													

Report of the River Master of the Delaware River for the period December 1, 2004–November 30, 2005

By Bruce E. Krejmas, Gary N. Paulachok, and Stephen F. Blanchard

Open-File Report 2010–1106

U.S. Department of the Interior U.S. Geological Survey

U.S. Department of the Interior

KEN SALAZAR, Secretary

U.S. Geological Survey

Marcia K. McNutt, Director

U.S. Geological Survey, Reston, Virginia: 2010

For more information about the USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov/

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

Suggested citation:

Krejmas, B.E., Paulachok, G.N., and Blanchard, S.F., 2010, Report of the River Master of the Delaware River for the period December 1, 2004–November 30, 2005, U.S. Geological Survey Open-File Report 2010–1106, 86 p. (Also available at http://pubs.usgs.gov/of/2010/1106/.) ISBN 978–1–4113–2937–9

Contents

RIVER MASTER LETTER OF TRANSMITTAL AND SPECIAL REPORT	
DELAWARE RIVER OPERATIONS	4
Abstract	4
Introduction	4
Acknowledgments	6
Definition of Terms and Procedures	6
Precipitation	8
Operations	8
December to May	8
June to November	10
Summary of Operations	11
Streamflow	13
Components of Flow, Delaware River at Montague, New Jersey	13
Time of Travel	14
Segregation of Flow At Montague	14
Computation of Directed Releases	14
Analysis of Forecasts	16
Diversions to New York City Water Supply	16
Storage in New York City Reservoirs	18
Comparison of River Master Operations Data With Other Streamflow Records	18
Releases from New York City Reservoirs	19
Releases from Lake Wallenpaupack	20
Delaware River at Montague, New Jersey	20
Diversion Tunnels	20
Diversions by New Jersey	21
Conformance of Operations Under the Amended Decree of the U.S. Supreme Court	21
QUALITY OF WATER IN THE DELAWARE ESTUARY	
Introduction	58
Water-Quality Monitoring Program	58
Water Quality During the 2005 Report Year	58
Streamflow	58
Water Temperature	60
Specific Conductance and Chloride	60
Dissolved Oxygen	
Hydrogen-Ion Activity (pH)	63
Appendix A. Pepacton Reservoir Temporary Spill Reduction Program (Final Version)	69
Appendix B. Temporary Suspension of the Downbasin Portion of the Excess Release	
Quantity—July 20, 2005	71
Appendix C. Temporary Suspension of the Downbasin Portion of the Excess Release	
Quantity—August 2, 2005	73
Appendix D. Temporary Suspension of the Downbasin Portion of the Excess Release	
Quantity—August 25, 2005	/5

Appendix E. Temporary Suspension of the Downbasin Portion of the Excess Release Quantity—September 29, 2005	77
Appendix F. Temporary Suspension of the Downbasin Portion of the Excess Release	
Quantity—October 31, 2005	79
Appendix G. Interim Program for Pepacton Reservoir Spill Reduction	81
Appendix H. Interim Program for Neversink Reservoir Spill Reduction	84

Figures

Figure 1.	Map showing Delaware River Basin above Wilmington, Delaware	5
Figure 2.	Graph showing operation curves and actual contents for New York City reservoirs in the Delaware River Basin, December 1, 2004, to November 30, 2005	7
Figure 3.	Components of flow, Delaware River at Montague, New Jersey, May 1 to October 31, 2005	12
Figure 4.	Boxplots showing combined storage in Pepacton, Cannonsville, and Neversink Reservoirs	13
Figure 5.	Hydrograph of uncontrolled runoff component, Delaware River at Montague, New Jersey, May 1 to October 31, 2005	17
Figure 6.	Map showing location of water-quality monitoring sites on the Delaware $Estuary\dots$	59
Figures 7	7–9. Graphs showing:	
7.	Water temperature in the Delaware Estuary at Benjamin Franklin Bridge at Philadelphia, Pennsylvania, April to November 2005	60
8.	Mean and minimum daily mean dissolved-oxygen concentrations from July to September at two monitor sites on the Delaware Estuary, 1965–2005	62
9.	Distribution of hourly dissolved-oxygen concentrations at two monitor sites on the Delaware Estuary, July to September 2005	63

Tables

Table 1. Precipitation in the Delaware River Basin above Montague, New Jersey	22
Table 2. Conservation release rates for New York City reservoirs in the Delaware River Basin	22
Tables 3–5. Storage in:	
3. Pepacton Reservoir, New York	23
4. Cannonsville Reservoir, New York	24
5. Neversink Reservoir, New York	25
Table 6. Design rates for Delaware River at Montague, New Jersey, gaging station	26
Table 7. Consumption of water by New York City, 1950 to 2005	27
Table 8. New York City reservoir release design data	28
Table 9. Controlled releases from reservoirs in the upper Delaware River Basin and	
segregation of flow of Delaware River at Montague, New Jersey	34
Table 10. Diversions to New York City water-supply system	46
Tables 11–15. Daily mean discharge:	
11. East Branch Delaware River at Downsville, New York	52
12. West Branch Delaware River at Stilesville, New York	
13. Neversink River at Neversink, New York	54
14. Wallenpaupack Creek at Wilsonville, Pennsylvania	55
15. Delaware River at Montague, New Jersey	56
Table 16. Diversions by New Jersey; daily mean discharge, Delaware and Raritan Canal	
at Port Mercer, New Jersey	
Table 17. Daily mean discharge, Delaware River at Trenton, New Jersey	64
Tables 18–19. Daily maximum and minimum chloride concentrations:	
18. Delaware River at Reedy Island Jetty, Delaware	
19. Delaware River at Chester, Pennsylvania	66
Tables 20–21. Daily mean dissolved-oxygen concentration:	
20. Delaware River at Benjamin Franklin Bridge at Philadelphia, Pennsylvania	67
21. Delaware River at Chester, Pennsylvania	68

Conversion Factors and Vertical Datum

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Area	
square mile (mi²)	2.590	square kilometer (km²)
	Volume	
million gallons (Mgal)	3,785	cubic meter (m³)
million gallons (Mgal)	1.547	cubic foot per second day (ft³/s)-d
billion gallons (Bgal)	3.785	cubic hectometer (hm ³)
cubic foot per second day (ft³/s)-d	0.002447	cubic hectometer (hm³)
	Flow rate	
million gallons per day (Mgal/d)	1.547	cubic foot per second (ft³/s)
million gallons per day (Mgal/d)	0.04381	cubic meter per second (m³/s)
billion gallons per day (Bgal/d)	43.81	cubic meter per second (m³/s)
cubic foot per second (ft³/s)	0.02832	cubic meter per second (m³/s)

Datum: Vertical coordinate information is referenced to the North American Vertical Datum of 1988. Horizontal coordinate information is referenced to the North American Datum of 1983.

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows: $^{\circ}F=(1.8x^{\circ}C)+32$

CHEMICAL CONCENTRATIONS

In this report, concentrations of chloride and dissolved oxygen are given in milligrams per liter (mg/L). Milligrams per liter represents the mass of solute (milligrams) per unit volume (liter) of water.

RIVER MASTER LETTER OF TRANSMITTAL AND SPECIAL REPORT

OFFICE OF THE DELAWARE RIVER MASTER United States Geological Survey 415 National Center Reston, Virginia 20192

August 1, 2010

The Honorable John G. Roberts, Jr. Chief Justice of the United States

The Honorable Jack A. Markell Governor of Delaware

The Honorable Christopher J. Christie Governor of New Jersey

The Honorable David A. Paterson Governor of New York

The Honorable Edward G. Rendell Governor of Pennsylvania

The Honorable Michael R. Bloomberg Mayor of the City of New York

> No. 5, Original.—October Term, 1950 State of New Jersey, Complainant, v. State of New York and City of New York, Defendants, Commonwealth of Pennsylvania and State of Delaware, Intervenors.

Dear Sirs:

For the record and in compliance with the provisions of the Amended Decree of the Supreme Court of the United States entered June 7, 1954, I am hereby transmitting the 52nd Annual Report of the River Master of the Delaware River for the 12-month period from December 1, 2004, to November 30, 2005. In this report, this period is referred to as the River Master report year or the report year.

During the 2005 River Master report year, monthly precipitation in the upper Delaware River Basin ranged from 36 percent of the long-term average in May 2005 to 330 percent of the long-term average in October 2005. Total precipitation during the report year was 7.56 inches (in.) more than the long-term average. Precipitation during the December to May period, when reservoirs typically refill, was 3.80 in. more than the 64-year average. Precipitation during the report year was below normal in February and from May to September, and above normal in the other 6 months.

On December 1, 2004, when the report year began, combined storage in the New York City reservoirs in the upper Delaware River Basin was 267.816 billion gallons (Bgal) or 98.9 percent of combined storage capacity. Median combined storage on December 1, computed on the basis of 37 years of record, is 177.092 Bgal. Storage remained high throughout the winter and spring, then declined seasonally until early October, when storage began increasing rapidly. Throughout the report year, operations in the basin were conducted as stipulated by the Decree.

On May 11, 2005, the Delaware River Master Advisory Committee met at the New Jersey Water Supply Authority headquarters in Clinton, New Jersey to discuss hydrologic conditions in the basin and operational procedures for the 2005 reservoir-release season. During the report year, the following individuals served as members of the Advisory Committee:

Delaware	John H. Talley
New Jersey	Samuel A. Wolfe
New York	Sandra Allen
New York City	Michael A. Principe
Pennsylvania	Cathleen Curran Myers

The River Master informed the Advisory Committee that, on the basis of information provided by New York City, the excess-release quantity beginning June 15, 2005, was 7.381 Bgal. Based on reservoir release programs in Delaware River Basin Commission (DRBC) Docket No. D-77-20 CP (Revisions Nos. 7 and 8), the excess-release quantity was to be used for various purposes. On the basis of storage levels and hydrologic conditions, the Decree Parties unanimously agreed to temporarily suspend release of the down-basin portion of the excess release quantity several times during summer and fall.

During the report year, the River Master and staff participated in a number of water-supply related meetings of the DRBC. The Deputy Delaware River Master met periodically with representatives of the Parties to the Decree as a member of the Decree Parties Work Group and DRBC's Flow Management Technical Advisory Committee. Issues of particular interest to the River Master involved management of reservoir releases and regulated streamflow in the upper Delaware River Basin.

The U.S. Geological Survey (USGS) continued operation of its field office of the Delaware River Master at Milford, Pennsylvania. Gary N. Paulachok, Deputy Delaware River Master, continued in charge of the office, assisted by Bruce E. Krejmas, Hydrologist.

During the year, the River Master's office continued the weekly distribution of a summary hydrologic report. These reports contain provisional data on precipitation in the upper Delaware River Basin, releases and spills from New York City reservoirs to the Delaware River, diversions to the New York City water-supply system, reservoir contents, daily segregation of flow of the Delaware River at the USGS Montague, New Jersey, gaging station, and diversions by New Jersey. The reports were distributed to members of the Delaware River Master Advisory Committee and to other parties interested in Delaware River operations. A monthly summary of hydrologic conditions also was provided to Advisory Committee members. The weekly and monthly hydrologic reports were also posted on the River Master's web site.

The first section of this report documents Delaware River operations during the report year. During the year, the City of New York diverted 198.823 Bgal from the Delaware River Basin and released 117.161 Bgal from Pepacton, Cannonsville, and Neversink Reservoirs to the Delaware River. The River Master directed releases from these reservoirs to the Delaware River that totaled 70.355 Bgal.

The second section of this report describes water quality at various monitor sites on the Delaware Estuary. It includes basic data on chemical properties and physical characteristics of the water, and presents summary statistics on the data.

Throughout the year, diversions to New York City's water supply and releases designed to maintain the flow of the Delaware River at Montague were made as directed by the River Master. Diversions by New

York City from its reservoirs in the Delaware River Basin did not exceed the limit stipulated by the Decree. Diversions by New Jersey also were within stipulated limits.

The River Master and staff are grateful for the continued cooperation and support of the Decree Parties. Also, the contributions of the PPL Corporation and Mirant Corporation in informing the River Master of plans for power generation and furnishing data on reservoir releases are greatly appreciated.

Sincerely yours,

/Signed/

Stephen F. Blanchard Delaware River Master

DELAWARE RIVER OPERATIONS

Abstract

A Decree of the Supreme Court of the United States, entered in 1954, established the position of Delaware River Master within the U.S. Geological Survey. In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 52nd Annual Report of the River Master of the Delaware River. It covers the 2005 River Master report year; that is, the period from December 1, 2004, to November 30, 2005.

During the report year, precipitation in the upper Delaware River Basin was 7.56 in., or 117 percent of the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs remained high from December 2004 to May 2005 and reached a record high level on April 3, 2005. Reservoir storage decreased steadily from May to early October, then increased rapidly through the end of November. Delaware River operations throughout the year were conducted as stipulated by the Decree.

Diversions from the Delaware River Basin by New York City and New Jersey were in compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 120 days during the report year. Releases were made at conservation rates—or rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs—on all other days.

During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master.

As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. In addition, selected water-quality data were collected at 3 sites on a monthly basis and at 19 sites on a twice-monthly basis.

Introduction

An Amended Decree of the Supreme Court of the United States, entered June 7, 1954, authorized diversions of water from the Delaware River Basin and provided for releases of water from three New York City reservoirs to the upper Delaware River. The Decree stipulated that these diversions and releases were to be made under the supervision and direction of the Delaware River Master. The Decree also stipulated that reports on Delaware River operations be made to the Court not less frequently than annually. This report documents operations from December 1, 2004, to November 30, 2005, or the 2005 River Master report year. The report also presents information on the quality of water in the Delaware Estuary during the report year.

Some hydrologic data presented in this report are records of streamflow and water quality for U.S. Geological Survey (USGS) data-collection stations. These records were collected, computed, and furnished by the offices of the USGS at Troy, New York; Exton and New Cumberland, Pennsylvania; and West Trenton, New Jersey, in cooperation with the States of New York and New Jersey, the Commonwealth of Pennsylvania, and the City of New York. The locations of major streams and reservoirs, and selected streamflow-gaging stations in the Delaware River Basin are shown in figure 1.

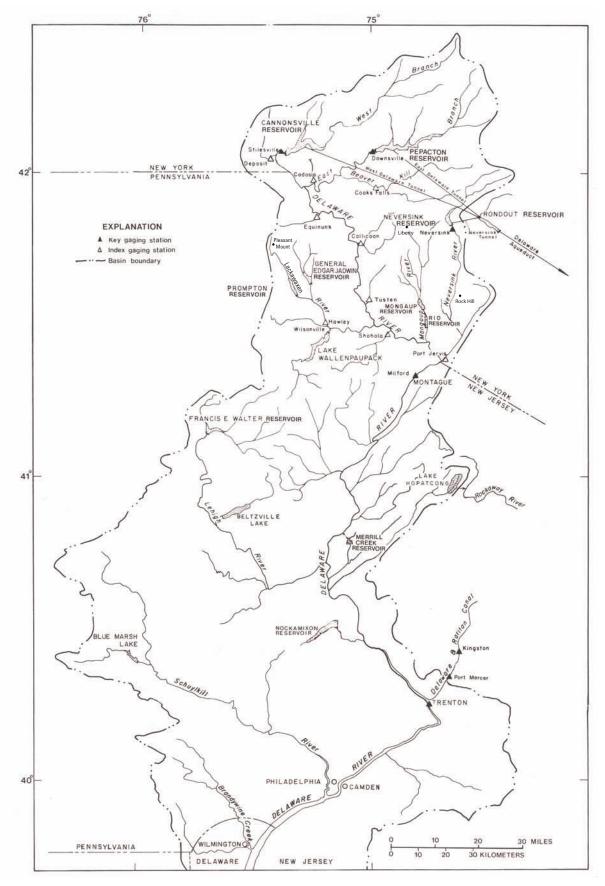


Figure 1. Delaware River Basin above Wilmington, Delaware.

Acknowledgments

The River Master's daily operation records were prepared from hydrologic data collected chiefly on a day-to-day basis. Data for these records were collected and computed by the Office of the Delaware River Master or were furnished by the following agencies and utilities: Data for Pepacton, Cannonsville, and Neversink Reservoirs by the New York City Department of Environmental Protection, Bureau of Water Supply; for Lake Wallenpaupack by the PPL Corporation; and for Rio Reservoir by Mirant Corporation. Precipitation data and quantitative precipitation forecasts were provided by the National Weather Service (NWS) office in Binghamton, New York.

Definition of Terms and Procedures

The following definitions apply to various terms and procedures used in the operations documented in this report. A table for converting inch-pound units to the International System of Units (SI) is given on page vi.

- **Balancing Adjustment**.—An operating procedure used by the River Master to correct for inaccuracies inherent in the design of releases from New York City reservoirs to meet the Montague flow objective. The balancing adjustment is computed as 10 percent of the difference between the cumulative adjusted directed release and the cumulative directed release required for exact forecasting. The balancing adjustment is applied to the following day's release design. The maximum daily balancing adjustment is intentionally limited to preclude unacceptably large variations in the adjusted flow objective.
- **Capacity**.—Total usable volume in a reservoir between the point of maximum depletion and the elevation of the lowest crest of the spillway.
- **Conservation releases**.—Controlled releases from Pepacton, Cannonsville, and Neversink Reservoirs designed to maintain specified minimum flows in stream channels below the reservoirs. The conservation rates shown in table 2¹ are defined as follows:
 - Normal.—Conservation releases when New York City combined reservoir storage is in the normal operations zone.
 - Watch.—Conservation releases when New York City combined reservoir storage is in the drought watch operations zone.
 - Warning.—Conservation releases when New York City combined reservoir storage is in the drought warning operations zone.
 - **Drought**.—Conservation releases when New York City combined reservoir storage is in the drought operations zone.

The combined storage zones for the New York City Delaware Basin reservoirs are shown in figure 2.

• **Daily excess-release credits**.—Daily credits and deficits during the seasonal release period (June 15 to the following March 15) are computed as the arithmetic difference between the daily mean discharge of the Delaware River at Montague, New Jersey, and 1,750 cubic feet per second (ft³/s). The daily credit cannot exceed the 24-hour period releases from Pepacton, Cannonsville, and Neversink Reservoirs routed to Montague and made in accordance with direction, except as follows: during the seasonal period, credits also are applied for part or all of other releases from these reservoirs that contribute to the daily mean discharge at Montague between 1,750 ft³/s and the applicable excess-release rate.

¹All numbered tables in the section "Delaware River Operations" are grouped at the end of this section, beginning on page 22.

- **Directed releases**.—Controlled releases from New York City reservoirs in the upper Delaware River Basin, designed by the Delaware River Master to meet the Montague flow objective.
- **Diversions**.—The out-of-basin transfer of water by New York City from Pepacton, Cannonsville, and Neversink Reservoirs in the upper Delaware River Basin through the East Delaware, West Delaware, and Neversink Tunnels, respectively, to the City's water-supply system. Also, the out-of-basin transfer of water by New Jersey from the Delaware River through the Delaware and Raritan Canal.
- Excess quantity.—As defined by the Decree, the excess quantity of water is equal to 83 percent of the amount by which the estimated consumption in New York City during the year is less than the City's estimate of continuous safe yield [1,665 million gallons per day (Mgal/d) stipulated by the 1954 Decree] from all its sources of supply obtainable without pumping, except that the excess quantity shall not exceed 70 Bgal. Each year, the seasonal period for release of the excess quantity begins on June 15. The flow objective for the seasonal period becomes effective at Montague on that date and remains in effect until the following March 15, or until the cumulative total of excess-release credits equals the applicable excess quantity, whichever occurs first.
- **Index gaging stations**.—Particular sites on tributaries of the upper Delaware River where systematic observations of gage height and discharge are made. These stations are used mainly during the directed-releases season to estimate inflows of surface water to the upper Delaware River.
- Key gaging stations.—Particular sites on the East Branch Delaware River, West Branch Delaware River, Neversink River, Delaware and Raritan Canal, and mainstem Delaware River where continu-

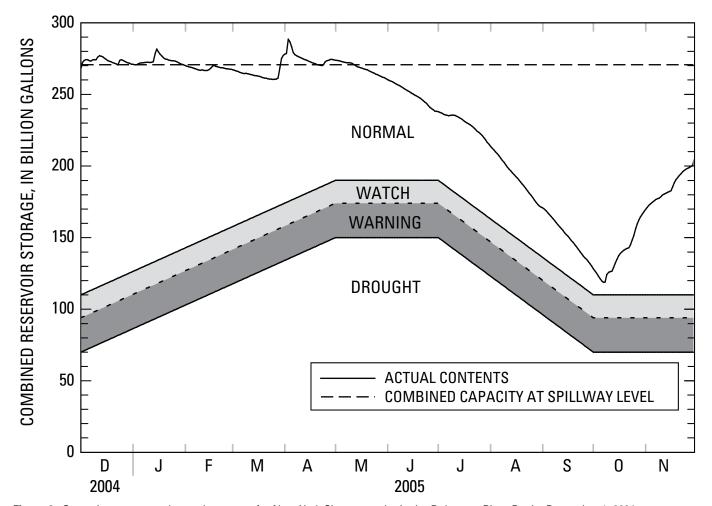


Figure 2. Operation curves and actual contents for New York City reservoirs in the Delaware River Basin, December 1, 2004, to November 30, 2005.

ous, systematic observations of gage height and discharge are made. These stations are used on a year-round basis in River Master operations.

- **Maximum reservoir depletion**.—The minimum water-surface level or elevation below which a reservoir ceases to continue making delivery of quantities of water for all purposes for which the reservoir was designed. Sometimes this is referred to as minimum full-operating level.
- **Rate of flow**.—Mean discharge for a specified 24-hour period, in cubic feet per second or million gallons per day.
- **Rate of flow at Montague**.—Daily mean discharge of the Delaware River at Montague, New Jersey, computed on a calendar-day basis.
- **Reservoir-controlled releases**.—Controlled releases from reservoirs passed through outlet valves in the dams or through turbines in powerplants. These releases do not include spillway overflow at the reservoirs.
- **Storage or contents**.—Usable volume of water in a reservoir. Unless otherwise indicated, volume is computed on the basis of level pool and above the point of maximum depletion.
- **Time of day**.—Time of day is expressed in 24-hour Eastern Standard Time, which during the report year included a 23-hour day on April 3 and a 25-hour day on October 30.
- **Uncontrolled runoff at Montague**.—Runoff from the 3,480 square mile (mi²) drainage area above Montague, New Jersey, excluding the drainage area above Pepacton, Cannonsville, Neversink, Wallenpaupack, and Rio Dams, but including spillway overflow at these dams.

Precipitation

Precipitation in the Delaware River Basin above Montague, New Jersey, totaled 51.09 in. during the 2005 report year and was 7.56 in., or 117 percent of the long-term (64-year) average. Monthly precipitation ranged from 36 percent of the long-term average in May 2005 to 330 percent of average in October 2005. Data on monthly precipitation during the report year and long-term average precipitation are presented in table 1². These data were computed from records collected at 10 geographically distributed stations by the National Weather Service; the New York City Department of Environmental Protection, Bureau of Water Supply; and the River Master office.

The seasonal period from December to May typically is when surface-water and ground-water reservoirs refill. During this period in 2004–2005, total precipitation was 24.07 in., which is 119 percent of the 64-year average. From June to November, total precipitation was 27.02 in., which is 116 percent of the long-term average. The maximum monthly precipitation was 16.81 in. in October 2005, measured at Rock Hill, New York; the minimum monthly precipitation was 0.71 in. in September 2005, measured at Hawley, Pennsylvania (locations shown on fig. 1).

Operations

December to May

Operations on December 1, 2004, were conducted as prescribed by the Decree. The Montague flow objective was 1,820 ft³/s, and the allowable diversions to New York City and New Jersey were 800 Mgal/d and 100 Mgal/d, respectively. Conservation releases from New York City reservoirs were made at the rates shown in table 2. These rates went into effect on May 1, 2004, and are incorporated in DRBC Docket D-77-20 CP (Revision 7).

²All numbered tables in the section "Delaware River Operations" are grouped at the end of this section, beginning on page 22.

From December 2004 to May 2005, the first half of the report year, total precipitation was 3.80 in. above average. Monthly precipitation ranged from 36 percent of the long-term average in May 2005 to 201 percent in January 2005 (table 1). Runoff in the upper basin was above normal in December, January, and April, in the normal range during February and March, and below normal in May.

On December 1, 2004, when the 2005 report year began, Pepacton Reservoir contained 137.200 Bgal of water in storage above the point of maximum depletion, or 97.9 percent of the 140.190 Bgal storage capacity. Cannonsville Reservoir contained 99.392 Bgal, or 103.9 percent of the 95.706 Bgal storage capacity. Neversink Reservoir contained 31.224 Bgal, or 89.4 percent of the 34.941 Bgal storage capacity. Combined storage in these reservoirs on December 1, 2004, was 267.816 Bgal, or 98.9 percent of combined capacity. Daily storage in Pepacton, Cannonsville, and Neversink Reservoirs is given in tables 3, 4, and 5, respectively, and combined storage during the report year is shown in figure 2.

In January 2005, in consideration of the unusually high storage level of Pepacton Reservoir and accumulating snowpack in the watershed upstream of the reservoir, the Decree Parties implemented a temporary spill reduction program that was in effect from January 24 to March 31, 2005. This program attempted to manage a void in Pepacton Reservoir, based on the snow-water equivalent of the snowpack, through supplemental releases. The agreement for this temporary spill reduction program is presented in Appendix A.

Above-normal rainfall in late March and early April, combined with rapid snowmelt, resulted in a major flood in the Delaware River Basin. The USGS streamflow gaging station on Delaware River at Montague, New Jersey, recorded a peak stage of 31.69 feet (ft) on April 3, 2005, which corresponds to a discharge of 206,000 ft³/s.

The Decree Parties established an experimental augmented conservation releases program beginning May 1, 2004, for the New York City Delaware Basin Reservoirs. This program established a habitat protection bank which consisted of an excess release quantity bank, a thermal bank, and a supplemental release bank. It also established flow targets for all three tailwaters at certain USGS gaging stations downstream of the reservoirs. Specific elements of this program are presented in DRBC Docket No. D-77-20 CP (Revision 7).

From December to May, inflow to the City's reservoirs typically exceeds outflow and, consequently, storage increases. The average inflow to Pepacton, Cannonsville, and Neversink Reservoirs for this 6-month period, computed on the basis of the 64-year period from December 1940 to May 2004, was 301.2 Bgal. During the corresponding 6 months of the report year, inflow to the three reservoirs totaled 368.4 Bgal. Evaporation loss is not included in the computations.

Precipitation was slightly above normal from December 2004 to May 2005. Combined storage remained high and fluctuated only slightly during this period. The combined storage of the reservoirs was about 96 percent of capacity on May 31, 2005.

Combined storage in the three New York City reservoirs was 266.335 Bgal on November 30, 2004, and 261.049 Bgal on May 31, 2005, a net decrease of 5.286 Bgal or about 2 percent of total capacity. The maximum combined storage from December to May was 288.588 Bgal on April 3, 2005. Maximum storage in Pepacton Reservoir during the December to May period was 147.082 Bgal on April 3; maximum storage in Cannonsville Reservoir was 106.654 Bgal on April 4; and maximum storage in Neversink Reservoir was 36.421 Bgal on April 3, 2005. Pepacton Reservoir spilled from December 2 to January 26, March 30 to April 17, and April 24 to May 7. Cannonsville Reservoir spilled on all days from December 1 to May 14, except for February 8–9. Except for January 20, Neversink Reservoir spilled on all days from January 13 to April 14, and from April 26 to May 2, 2005. The combined spill volume from the three reservoirs during this period was 257.887 Bgal.

During the December to May period, diversions to Rondout Reservoir by New York City totaled 88.531 Bgal (486 Mgal/d). The forecasted discharge at Montague, exclusive of water released from the City reservoirs, was less than the flow objective on 6 days in May, and releases were directed. The

observed daily mean discharge at Montague exceeded the applicable flow objective on all days. Applicable design rates for the USGS gaging station on Delaware River at Montague, New Jersey, are presented in table 6.

June to November

Monthly precipitation for the June to November period was below average in June, July, August, and September and above average in October and November. Total precipitation during the period was 27.02 in. or 3.76 in. more than the 64-year average (table 1).

Combined storage in the three New York City reservoirs was 260.313 Bgal on June 1, 2005, and 206.391 Bgal on November 30, 2005, a net decrease of 53.922 Bgal or about 19.9 percent of total capacity. During the June to November period, maximum storage in Pepacton Reservoir was 134.192 Bgal on June 1; 91.766 Bgal in Cannonsville Reservoir on June 1; and 34.355 Bgal in Neversink Reservoir on June 1. Maximum combined storage in the three reservoirs was 260.313 Bgal on June 1, 2005. The resevoirs did not spill during the period.

Releases were directed to meet the Montague flow objective on 114 days between June 1 and November 30, 2005, when the forecasted discharge at Montague, exclusive of water released from the New York City reservoirs, was less than the flow objective. Releases at rates designed to protect the fishery and aquatic habitat were made at other times during the period.

From June 1 to June 14, the Montague flow objective was 1,750 ft³/s. The forecasted flow, exclusive of releases from Pepacton, Cannonsville, and Neversink Reservoirs, was less than the flow objective on 10 days and releases were directed.

The New York City Department of Environmental Protection, Bureau of Water Supply, Quality, and Protection furnished the River Master with the following data for the 2005 calendar year, as stipulated by the Decree:

- 1. The estimated continuous safe yield from all the City's sources, obtainable without pumping, is 1,665 Mgal/d, or a total during calendar year 2005 of 1.665 Bgal/d x 365 days = 607.725 Bgal.
- 2. The estimated consumption that the City must provide for, from all its sources of supply during calendar year 2005, is 591.582 + 7.250 = 598.832 Bgal.

On the basis of the Decree and the above-noted data, the aggregate quantity of excess-release water was 83 percent of (607.725 - 598.832), or 7.381 Bgal.

Data on water consumption by the City of New York for each calendar year since 1950, from all sources of supply, are presented in table 7.

In accordance with the reservoir releases program stipulated in DRBC Docket No. D-77-20 CP (Revision 7), about 42 percent of the annual excess-release quantity was placed in a habitat protection bank. The remainder of the excess-release quantity could be used to provide an increase in the Montague flow objective or could be banked in accordance with the procedures given in the DRBC's Lower Basin Drought Management Plan.

On June 15, 2005, the beginning of the seasonal excess-release period, the Montague flow objective was increased to 1,800 ft³/s. Combined storage in the New York City reservoirs declined steadily from June to early October, after which storage increased steadily to about 76 percent of capacity at the end of the report year.

On July 20, 2005, the Decree Parties agreed to temporarily suspend the downbasin portion of the excess-release quantity for two weeks. The decision was based on prevailing hydrologic conditions, stor-

age levels in the New York City reservoirs, and the uncertain water-supply effects of the Swinging Bridge dam emergency in spring 2005. This agreement is presented in Appendix B.

On August 2, 2005, the above-noted agreement was modified and extended by the Decree Parties. This agreement is presented in Appendix C. This agreement was extended three more times—on August 25, September 29, and October 31, 2005—and is presented in Appendices D, E, and F, respectively.

On November 1, 2005, the Decree Parties approved interim spill reduction programs for Pepacton and Neversink Reservoirs that were based on watershed snowpack. The programs, which were in effect through May 31, 2007, are presented in Appendices G and H.

Between June 15 and November 30, 2005, the forecasted flow at Montague, exclusive of releases from the New York City reservoirs, was less than the flow objective on 104 days and releases were directed. On 34 days during the June 15 to November 30 period, the observed flows were less than the applicable flow objective. On 25 of these 34 days, observed flows were within 10 percent of the applicable flow objective. Design rates for the USGS gaging station on Delaware River at Montague, New Jersey, are presented in table 6.

The total discharge observed at Montague the portion derived from uncontrolled runoff from the drainage area below the reservoirs, the portion contributed by power reservoirs, and the portion contributed by New York City's Delaware Basin Reserviors—Pepacton, Cannonsville, and Neversink Reservoirs—from May to October are shown in figure 3. In developing the water budget for Montague, uncontrolled runoff was computed as the residual of observed flow minus releases from all reservoirs, and, consequently, was subject to errors in observations, transit times, and routing of the various components of flow. The conservation release from Rio Reservoir is included in the uncontrolled runoff component. The net effect of these uncertainties is incorporated in the computation of uncontrolled runoff. Spills from the reservoirs are considered a portion of the uncontrolled runoff. From June 1 to November 30, 2005, diversions from the three New York City Delaware Basin reservoirs to Rondout Reservoir totaled 110.292 Bgal.

Summary of Operations

From December 1, 2004, to November 30, 2005, diversions from the three New York City reservoirs in the upper Delaware River Basin to Rondout Reservoir totaled 198.823 Bgal, and all releases from the three reservoirs to the Delaware River totaled 117.161 Bgal. River Master directed releases to the Delaware River from these reservoirs totaled 70.355 Bgal.

During the year, maximum storage in Pepacton Reservoir was 147.082 Bgal (104.9 percent of capacity) on April 3; 106.654 Bgal (111.4 percent of capacity) in Cannonsville Reservoir on April 4; and 36.421 Bgal (104.2 percent of capacity) in Neversink Reservoir on April 3, 2005. Maximum combined storage in the three reservoirs was 288.588 Bgal (106.6 percent of combined capacity) on April 3, 2005. The combined spill volume for the year was 257.887 Bgal, which is equivalent to 95.2 percent of combined storage.

During the report year, minimum storage in Pepacton Reservoir was 77.588 Bgal (55.3 percent of capacity) on October 7; 24.626 Bgal (25.7 percent of capacity) in Cannonsville Reservoir on October 8; and 16.235 Bgal (46.5 percent of capacity) in Neversink Reservoir on October 7, 2005. Minimum combined storage in the three reservoirs was 118.713 Bgal (43.8 percent of combined capacity) on October 7, 2005.

On November 30, 2005, the end of the report year, combined storage in the three reservoirs was 206.391 Bgal or 76.2 percent of combined capacity. From December 1, 2004, to November 30, 2005, the net change in combined storage was -61.425 Bgal, or a decrease equivalent to nearly 23 percent of combined capacity.

Combined storage for the three New York City reservoirs on the first day of the month was above median in every month from December to May and in November, and below median in every month from June to October (fig. 4). A new record-high combined storage level for the first day of the month was set in April.

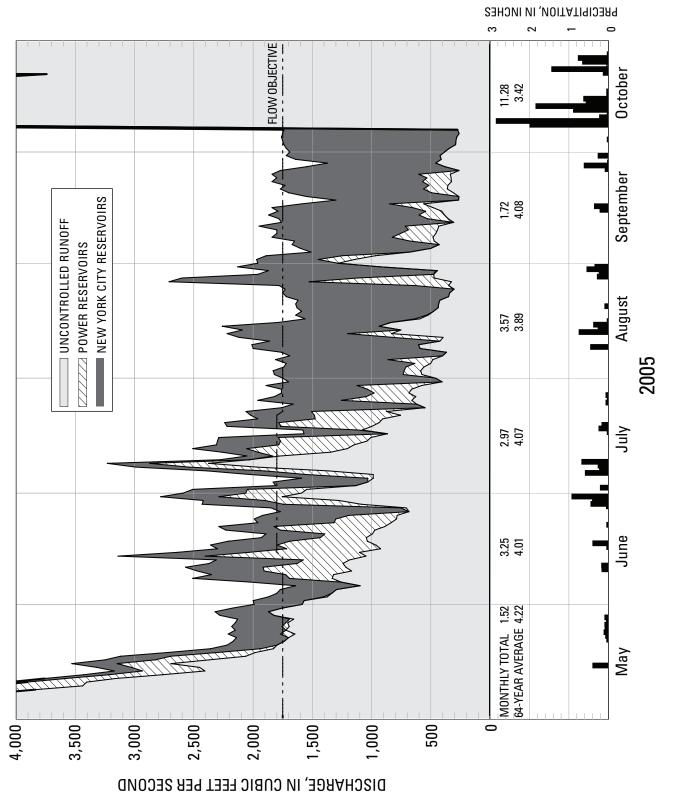
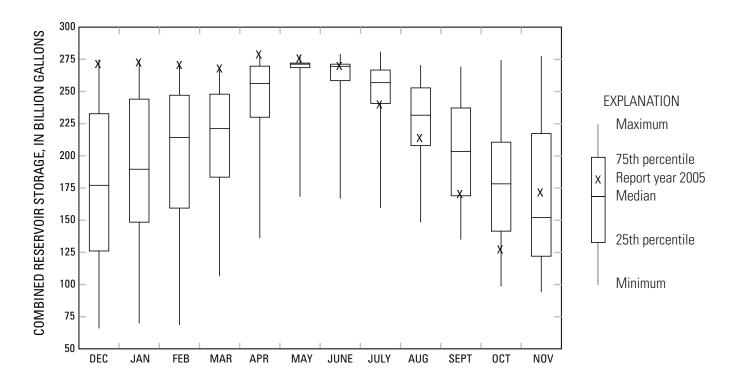



Figure 3. Components of flow, Delaware River at Montague, New Jersey, May 1 to October 31, 2005.

Figure 4. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs on the first day of the month, December 2004 to November 2005 (this report year), and summary statistics for the reference period, June 1967 to November 2004.

Streamflow

Components of Flow, Delaware River at Montague, New Jersey

The data and computations of the various components of flow form the basic operational records used by the River Master to carry out specific responsibilities related to the Montague formula. The operational record has two parts: forecasted flow at Montague, exclusive of controlled releases from New York City's reservoirs (table 8), and segregation of components of daily mean flow at Montague (table 9).

The following components may be present in the flow of the Delaware River at Montague:

- 1. Controlled releases from Lake Wallenpaupack on Wallenpaupack Creek, for the production of hydroelectric power.
- 2. Controlled releases from Rio Reservoir on Mongaup River, for the production of hydroelectric power.
- 3. Runoff from the uncontrolled area above Montague, including spills from New York City reservoirs, Lake Wallenpaupack, and Rio Reservoir.
- 4. Controlled releases from Pepacton, Cannonsville, and Neversink Reservoirs of New York City.

The releases from New York City's reservoirs necessary to maintain the Montague flow objective were computed on the basis of the forecasted flow at Montague, exclusive of controlled releases from the reservoirs.

Time of Travel

Following are average times for the effective travel of water from the various sources of controlled supply to Montague, New Jersey. These times were used for flow routing during the 2005 report year.

Source	Travel time, in hours
Pepacton Reservoir	60
Cannonsville Reservoir	48
Neversink Reservoir	33
Lake Wallenpaupack	16
Rio Reservoir	8

The travel times were computed from reservoir and powerplant operations data and historical streamflow records. The travel times generally are suitable for use in the operations of the River Master. Occasionally, however, substantial exceptions are observed. For example, when a large release from Cannonsville Reservoir follows a small release, a substantial portion of the water fills the channel en route, and the remainder may arrive at Montague as much as 66 hours after the time of release. During winter, the formation of ice, together with lower streamflow, gradually increases the resistance to water flow, resulting in increased travel times. Because ice-affected travel times increase gradually over several days, and releases were not directed to meet the Montague flow objective during periods of ice cover, no adjustments were made to compensate for increased travel times during these periods of the report year.

Segregation of Flow at Montague

The River Master daily operations record of reservoir releases and segregation of the various components contributing to the flow of the Delaware River at Montague, New Jersey, are presented in table 9. The data are arranged to conform to the downstream movement of water from various sources to Montague. Summation of data along individual rows in the table is equivalent to routing the various flow contributions to Montague, using the above-noted average travel times. Uncontrolled runoff was computed as a residual by subtracting the flow contributions of all other sources from the observed discharge at Montague.

Computation of Directed Releases

During the report year, the River Master used the following information for daily operations: (1) discharges computed from recorded or reported stream gage heights, for various 24-hour periods, absent realtime information on any changes in stage-discharge relations; (2) daily discharge from New York City's three Delaware Basin reservoirs, measured with venturi meters; (3) precipitation reports for the previous 24 hours; (4) actual powerplant releases converted to daily discharges; (5) advance estimates of power demand converted to daily discharges; (6) advance estimates of uncontrolled runoff at Montague; and (7) average travel times for routing water from various sources. Although uncertainty is inherent in the advance estimates, this information is used by necessity in the daily design and direction of reservoir releases.

The 60-hour travel time of water from Pepacton Reservoir to Montague is greater than the travel time of water from any other reservoir in the upper Delaware River Basin. Releases from Cannonsville and Neversink Reservoirs were timed to arrive at Montague concurrently with releases from Pepacton Reservoir. To allow for differences in travel times, daily directed releases were scheduled to begin from Pepacton Reservoir at 1200 hours, from Cannonsville Reservoir at 2400 hours, and from Neversink Reservoir at 1500 hours the following day.

Releases from the City's reservoirs required to maintain the Montague flow objective were computed from forecasts of releases from Lake Wallenpaupack and Rio Reservoir, and estimates of uncontrolled runoff at Montague. To account for the travel times from these sources to Montague, the computation requires estimates of the following components of flow two or more days in advance: (1) release of water from Lake Wallenpaupack; (2) release of water from Rio Reservoir; and (3) uncontrolled runoff from the drainage area upstream of Montague. The River Master operations record for computing daily directed release requirements during periods of low flow is given in table 8.

The electric utilities furnished forecasts of power generation and releases. Because the hydroelectric plants were used chiefly for area regulation or meeting peak power demands, the forecasts were subject to various modifying factors including the vagaries of weather on electricity demand. In addition, because the power companies are members of regional transmission organizations, demand for power outside of the local service area may unexpectedly affect generation schedules. Consequently, at times, the actual use of water for power generation differs considerably from the forecasts used in the design of reservoir releases.

For computational purposes during periods of low flow, estimates of uncontrolled runoff at Montague were treated as two components: (1) current runoff and (2) forecasted increase in runoff from precipitation. Estimates of these components are given in table 8.

During ice-free conditions, current runoff was computed using a routing and recession procedure based on instantaneous discharges at 0800 hours at the following USGS gaging stations:

Station Name	Drainage Area (mi²)
Beaver Kill at Cooks Falls, New York	241
Oquaga Creek at Deposit, New York	67.6
Equinunk Creek at Equinunk, Pennsylvania	56.3
Callicoon Creek at Callicoon, New York	110
Tenmile River at Tusten, New York	45.6
Lackawaxen River at Hawley, Pennsylvania	290
Shohola Creek near Shohola, Pennsylvania	83.6
Neversink River at Port Jervis, New York	336

During winter, the advance estimate of uncontrolled runoff (current conditions) was made on the basis of observed flows at a reduced network of gaging stations and the recession curve for computed uncontrolled flow at Montague.

The forecasted runoff from precipitation is shown in table 8 under the heading "Weather Adjustment." Throughout the year, the NWS office in Binghamton, New York, furnished quantitative forecasts of average precipitation and air temperatures for the 3,480 mi² drainage basin upstream of Montague, New Jersey. During winter, runoff was estimated on the basis of the current status of snow and ice, along with forecasted precipitation and temperature. During other periods, forecasted precipitation was used to estimate runoff.

The forecasted flow at Montague, exclusive of releases from New York City's reservoirs (table 8), is computed as the sum of forecasted releases from power reservoirs, estimated uncontrolled runoff including conservation releases from Rio Reservoir, and weather adjustments. If the computed total flow was less than the flow objective at Montague, then the deficiency was made up by releases from the City's reservoirs, as directed by the River Master.

When forecasts of precipitation or powerplant releases were revised appreciably after a release was directed, the release required from the City's reservoirs was recomputed. Commonly, this procedure resulted in a reduced release requirement for New York City reservoirs for that day. Only final figures for releases from New York City reservoirs are given in table 8.

Analysis of Forecasts

Forecasts of streamflow at Montague, developed on the basis of anticipated contributions from the components described previously but excluding releases from New York City's reservoirs, differed on most days from observed flow. Occasionally, variations in the components were partially compensating and observed flows compared favorably with forecasted flows.

The forecasted flow of the Delaware River at Montague, exclusive of releases from the New York City Delaware Basin reservoirs, was less than the flow objective on all days in August and September 2005. The following tabulation compares estimates of three components of flow at Montague with actual operations from August 1 to September 30.

Releases and Runoff	Forecasted flow [(ft³/s)-d]	Actual flow [(ft³/s)-d]	
Power releases			
Lake Wallenpaupack	7,110	7,863	
Rio Reservoir	64	308	
Runoff from uncontrolled area	27,922	30,399	

During August and September, actual releases from Lake Wallenpaupack averaged 10.6 percent more than forecasted releases, and actual and forecasted releases from Rio Reservoir were 0 ft³/s on most days. Observed runoff from the uncontrolled area was about 8.9 percent more than forecasted runoff.

On any given day, forecasted releases and actual releases can differ considerably. The ranges of actual daily releases from August 1 to September 30, 2005, are as follows: daily releases at Lake Wallenpaupack differed from forecasted releases by 148 ft³/s less to 776 ft³/s more than forecasted releases, and daily releases at Rio Reservoir differed by 32 ft³/s less to 103 ft³/s more than forecasted releases. On the basis of observed flows at Montague, total directed releases from New York City's reservoirs during the report year were about 10 percent more than required for exact forecasting.

Comparison of hydrographs of forecasted daily runoff and computed daily runoff from the uncontrolled area (fig. 5) indicates that the forecasts generally were suitable for use in designing releases from New York City's Delaware Basin reservoirs. Numerical adjustments to the designs were made when needed to compensate for errors in the forecasts, but, because of travel times, the effects of the adjustments on flows at Montague were not evident until several days after the design date.

Analysis of the precipitation forecasts shows that the total precipitation amount forecasted for the 3-day design periods is reasonably accurate, but often the actual timing of precipitation events may be earlier or later than forecasted. The accuracy of the runoff forecasts is affected greatly by the timing of precipitation events. In addition, if the actual storm track differs from the forecasted track, the amount and timing of runoff can be substantially different than predicted.

Diversions to New York City Water Supply

The 1954 Amended Decree authorizes New York City to divert water from the Delaware River Basin at a rate not to exceed the equivalent of 800 Mgal/d. The Decree specifies that the diversion rate shall be computed as the aggregate total diversion beginning June 1 of each year divided by the number of days elapsed since the preceding May 31.

Daily diversions during the report year from Pepacton, Cannonsville, and Neversink Reservoirs to the New York City water-supply system (Rondout Reservoir) are given in table 10. A running account of the average rates of combined diversions from the three reservoirs, computed as prescribed by the Decree, also

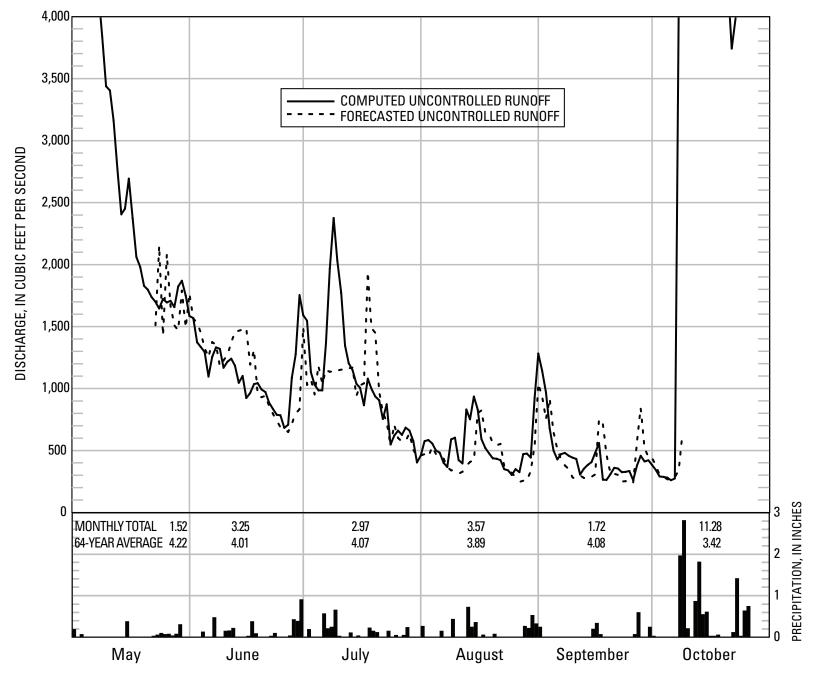


Figure 5. Uncontrolled runoff component, Delaware River at Montague, New Jersey, May 1 to October 31, 2005.

is shown. The following tabulation shows allowable maximum diversion rates and average actual diversions for various periods during the report year.

Effective dates	Allowable diversion (Mgal/d)	Average actual diversion (Mgal/d)	
December 1, 2004, to May 31, 2005	800	503	
June 1 to November 30, 2005	800	603	

During the report year, a total of 198.823 Bgal of water was diverted to the New York City watersupply system. The allowable diversion was 343.280 Bgal.

Storage in New York City Reservoirs

The following tabulation summarizes the "point of maximum depletion" and other pertinent levels and contents of Pepacton, Cannonsville, and Neversink Reservoirs. This information was provided by the New York City Board of Water Supply.

	Pepacton Reservoir		Cannonsvil	le Reservoir	Neversink Reservoir	
Level	Elevation (ft)	Contents (Bgal)	Elevation (ft)	Contents (Bgal)	Elevation (ft)	Contents (Bgal)
Full pool or spillway crest	1,280.00	*140.190	1,150.00	*95.706	1,440.00	*34.941
Point of maximum depletion	1,152.00	*3.511	1,040.00	*1.020	1,319.00	*0.525
Sill of diversion tunnel	1,143.00	*4.200	+1,035.00	*1.564	1,314.00	
Sill of river outlet tunnel	1,126.50		1,020.50		1,314.00	
Dead storage		1.800		0.328		1.680

*Contents shown are quantities stored between listed elevations.

⁺Elevation of mouth of inlet channel of diversion works.

Daily storage in Pepacton, Cannonsville, and Neversink Reservoirs, above the "point of maximum depletion" or minimum full-operating level, is given in tables 3, 4, and 5.

On December 1, 2004, combined storage in the three reservoirs was 267.816 Bgal, or 98.9 percent of combined capacity. Combined storage remained high through winter and spring, declined seasonally until early October, then increased from early October to the end of November. The three reservoirs spilled a total of 257.887 Bgal during the year. Combined storage reached a maximum for the report year on April 3, 2005, at 288.588 Bgal. Combined storage was 206.391 Bgal, or 76.2 percent of combined capacity, on November 30, 2005.

Comparison of River Master Operations Data With Other Streamflow Records

River Master operations are conducted on a day-to-day basis and, by necessity, use preliminary data on streamflow. In this section, records used in River Master operations are compared to final data published for selected USGS gaging stations. Data on releases were reported in million gallons per day and converted to cubic feet per second for use in the comparisons.

Releases from New York City Reservoirs

River Master operations data on controlled releases from Pepacton, Cannonsville, and Neversink Reservoirs to the Delaware River were furnished by the New York City Department of Environmental Protection. These data were obtained from calibrated instruments connected to venturi meters installed in the outlet conduits of the reservoirs.

The USGS gaging station on East Branch Delaware River at Downsville, New York, is 0.5 mile downstream from Downsville Dam (fig. 1). Discharge measured at this station includes releases from Pepacton Reservoir and a small amount of seepage and any runoff that enters the channel between the dam and the gaging station. The drainage area is 371 mi² at the dam and 372 mi² at the gaging station.

The following tabulation compares releases from Pepacton Reservoir (table 9), reported by New York City, to the final records for the USGS gaging station on East Branch Delaware River at Downsville, New York (table 11), for the flow rates shown.

Flow rate (ft ³ /s)	35	120–130	175-200	460-470	720–735
Number of USGS daily mean discharge values used in comparison	23	12	77	17	14
New York City-measured mean flow (ft ³ /s)	35.6	124	189	464	729
USGS-computed mean flow (ft ³ /s)	42.1	120	181	447	722
Percent difference	-15.4	+3.3	+4.4	+3.8	+1.0

The differences at the various flow rates show good agreement, except for the 35 ft³/s flow rate, which showed a 15.4 percent difference. The instruments connected to the venturi meters were recalibrated periodically by New York City to improve the accuracy of the recorded flow data.

The USGS gaging station on West Branch Delaware River at Stilesville, New York, is 1.4 miles downstream from Cannonsville Dam (fig. 1). Discharge measured at this station includes releases from Cannonsville Reservoir and runoff from 2 mi² of drainage area between the dam and the gaging station. The drainage area is 454 mi² at the dam and 456 mi² at the gaging station. The gaging-station records are rated fair at flows greater than 100 ft³/s and poor at flows less than 100 ft³/s. A rating of "fair" means that about 95 percent of the daily discharges are within 15 percent of the true discharge, whereas a rating of "poor" means that daily discharges have less than "fair" accuracy. The records include runoff from the area between the dam and the gaging station, and seepage near the base of the dam.

The following tabulation compares releases from Cannonsville Reservoir (table 9), reported by New York City, to the final records for the USGS gaging station on West Branch Delaware River at Stilesville, New York (table 12), for the flow rates shown.

Flow rate (ft ³ /s)	45	190–220	800-1200
Number of USGS daily mean discharge values used in comparison	34	20	53
New York City-measured mean flow (ft3/s)	46.0	204	989
USGS-computed mean flow (ft ³ /s)	47.1	201	999
Percent difference	-2.3	+1.5	-1.0

The USGS gaging station on Neversink River at Neversink, New York, is 1,650 ft downstream from Neversink Dam (fig. 1). Discharge measured at this station includes releases from Neversink Reservoir and, during storms, a small amount of runoff that originates between the dam and the gaging station. The drainage area is 92.5 mi² at the dam and 92.6 mi² at the gaging station.

The following tabulation compares releases from Neversink Reservoir (table 9), reported by New York City, to the final records for the USGS gaging station on Neversink River at Neversink, New York (table 13), for the flow rates shown.

Flow rate (ft ³ /s)	25	100–125
Number of USGS daily mean discharge values used in comparison	89	74
New York City-measured mean flow (ft ³ /s)	24.8	116
USGS-computed mean flow (ft ³ /s)	27.9	116
Percent difference	-11.1	0.0

Releases from Lake Wallenpaupack

Records of daily discharge through the Wallenpaupack powerplant were furnished by the PPL Corporation and published by the USGS as Wallenpaupack Creek at Wilsonville, Pennsylvania (table 14). These discharges represent the flow through the turbines of the powerplant and were computed on a midnight-to-midnight basis. For River Master operations, flows were computed on a 24-hour basis beginning at 0800 hours to compensate for the 16-hour travel time to Montague, New Jersey (table 9).

From December 2004 to November 2005, the River Master's record generally agrees with the published USGS record except for some differences that result mainly from ice estimates and rounding of computations. Overall, the records agree to within 0.9 percent for the year.

Delaware River at Montague, New Jersey

The River Master's operations record for the Delaware River at Montague, New Jersey (table 9), showed 0.8 percent more discharge for the report year than the published USGS record for the gaging station (table 15). Daily values for the two records were in good agreement, except during ice-affected periods.

Diversion Tunnels

Records of diversions through the East Delaware, West Delaware, and Neversink Tunnels (fig. 1) were furnished by the New York City Department of Environmental Protection. These records were obtained from the City's calibrated instruments connected to venturi meters installed in the tunnel conduits. The measured flows were transmitted electronically on a 15-second interval to a City computer and, on 5-minute intervals, release and diversion quantities for the preceding 5-minute period were computed using the instantaneous rate-of-flow data from each instrument. These 5-minute quantities were then summed to compute daily total flows, which were reported to the River Master's office on a daily basis. On a weekly basis, the diversion figures were checked against the flow meter totalizer readings and corrected as necessary.

The East Delaware Tunnel is used to divert water from Pepacton Reservoir to Rondout Reservoir. Conditions in the outlet channel of the East Delaware Tunnel were unfavorable for flow measurements during the report year because of high water levels in Rondout Reservoir.

The generating plant at the downstream end of the East Delaware Tunnel operated most days of the report year. When the powerplant was not in operation, some water leaked through the wicket gates and was not recorded on the totalizer. A current-meter measurement made in 1989 shows that the (assumed constant) rate of leakage is about 8.0 Mgal/d. Because the powerplant was not in operation for the equivalent of 110 days during the 2005 report year, the estimated quantity of unmeasured leakage was about 0.9 Bgal.

The West Delaware Tunnel is used to divert water from Cannonsville Reservoir to Rondout Reservoir. Inspections of the channel below the outlet, when valves were closed, revealed only negligible leakage. A hydroelectric powerplant uses water diverted through the West Delaware Tunnel, but the plant operates only when diversions are less than 300 Mgal/d. When the powerplant is not operating, the valves on the pipelines to the plant are closed, and there is no leakage through the system.

The Neversink Tunnel is used to divert water from Neversink Reservoir to Rondout Reservoir. A hydroelectric powerplant uses water diverted through the Neversink Tunnel. When the powerplant is not operating and the main valve on the diversion tunnel is open, leakage develops that is not recorded on the venturi instruments. One current-meter measurement made in 1999 showed a leakage rate of 16.2 ft³/s (10.5 Mgal/d). When the powerplant is operating, the leakage is included in the recorded flow. No leakage occurs when the main valve on the tunnel is closed. During the 2005 report year, the powerplant operated part of the day on most days and was not operated the equivalent of 239 days. Using the leakage rate noted above and records of powerplant operation, about 2.5 Bgal of water was diverted but not recorded.

Diversions by New Jersey

The Amended Decree authorizes New Jersey to divert water from the Delaware River and its tributaries in New Jersey, to areas outside of the Delaware River Basin, without compensating releases. These diversions may not exceed 100 Mgal/d as a monthly average, and the daily mean diversion may not exceed 120 Mgal/d. The USGS gaging station on Delaware and Raritan Canal at Port Mercer, New Jersey (fig. 1), is used as the official control point for measuring diversions by New Jersey (table 16).

The following tabulation gives the allowable diversion by New Jersey, the period it was in effect, and the maximum monthly diversion during the report year.

Effective dates	Allowable monthly average diversion (Mgal/d)	Maximum monthly average diversion (Mgal/d)	Month of maximum average diversion
Dec. 1, 2004, to Nov. 30, 2005	100	96.5	August

The maximum daily mean diversion was 102 Mgal on February 6, 2005. Diversions by New Jersey did not exceed the limits prescribed by the Decree.

Conformance of Operations Under the Amended Decree of the U.S. Supreme Court Entered June 7, 1954

From December 1, 2004, to November 30, 2005, operations of the Delaware River Master were conducted as stipulated by the Decree.

Diversions from the Delaware River Basin to the New York City water-supply system did not exceed those authorized by the Decree. Under compensating releases of the Montague Formula, New York City released water from its reservoirs at rates designed by the River Master to maintain the applicable flow objectives at Montague, New Jersey. During the report year, New York City complied fully with all directives and requests of the River Master.

Diversions from the Delaware River Basin by New Jersey were within limits stipulated by the Decree. New Jersey complied fully with all directives and requests of the River Master.

Table 1. Precipitation in the Delaware River Basin above Montague, New Jersey.

[All values, except percentages, in inches]

	D		December 2004 to	November 2005			
	December 1940 to November 2004		Percent	Excess (+) or Deficit (-)			
Month	Monthly Average	Amount	of Average	Month	Cumulative		
December	3.40	4.12	121	+.72	. 70		
January	2.97	4.12 5.96	201	+.72	+.72 +3.71		
February	2.62	2.03	77	59	+3.12		
March	3.34	4.66	140	+1.32	+4.44		
April	3.72	5.78	155	+2.06	+6.50		
May	4.22	1.52	36	-2.70	+3.80		
June	4.01	3.25	81	76	+3.04		
July	4.07	2.97	73	-1.10	+1.94		
August	3.89	3.57	92	32	+1.62		
September	4.08	1.72	42	-2.36	74		
October	3.42	11.28	330	+7.86	+7.12		
November	3.79	4.23	112	+.44	+7.56		
12 months	43.53	51.09	117				

Table 2. Conservation release rates for New York City reservoirs in the Delaware River Basin.(Source: DRBC Docket No. D-77-20 CP (Revision 7))

[All values in cubic feet per second]

		Conservation release rates								
Reservoir	Effective dates	Normal	Watch	Warning	Drought					
Pepacton	December 1 to November 30	35	30	25	19					
Cannonsville	December 1 to May 31	45	38	32	23					
	June 1 to August 31	60	51	43	23					
	September 1 to November 30	45	38	32	23					
Neversink	December 1 to November 30	25	21	18	15					

Table 3. Storage in Pepacton Reservoir, New York, for year ending November 30, 2005.(River Master daily operations record; gage reading at 0800 hours)

[Storage in millions of gallons above elevation 1,152.00 ft. Add 7,711 million gallons for total contents above sill of outlet tunnel, elevation 1,126.50 ft. Storage at spillway level is 140,190 million gallons]

DAY	DEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV
1	137,200	141,005	138,590	135,801	141,598	140,838	134,192	123,893	113,371	96,993	80,795	98,537
2	139,583	140,709	138,369	135,475	142,230	140,727	133,995	123,669	112,909	96,552	80,220	99,244
3	140,820	140,560	138,058	135,185	147,082	140,653	133,797	123,548	112,448	96,008	79,645	99,877
4	141,319	140,746	137,839	134,895	144,626	140,542	133,581	123,187	111,890	95,448	79,046	100,481
5	141,375	140,820	137,583	134,534	143,163	140,468	133,366	122,895	111,431	94,936	78,437	100,978
6	141,357	140,764	137,291	134,210	142,435	140,375	133,132	122,929	110,925	94,381	77,829	101,476
7	141,282	140,764	137,036	133,923	142,080	140,282	132,952	122,670	110,387	93,842	77,588	101,976
8	141,338	140,653	136,781	133,599	141,894	140,153	132,719	122,515	109,835	93,259	77,655	102,148
9	141,301	140,727	136,544	133,473	141,802	140,061	132,486	122,515	109,299	92,769	78,640	102,257
10	141,301	140,634	136,199	133,294	141,617	139,951	132,272	122,275	108,733	92,219	79,128	102,476
11	142,043	140,505	135,873	133,024	141,431	139,767	132,004	122,104	108,088	91,658	79,277	102,790
12	142,174	140,542	135,584	132,755	141,301	139,510	131,737	121,762	107,508	91,291	79,332	102,900
13	141,969	140,542	135,475	132,486	141,227	139,271	131,487	121,368	107,124	90,849	79,947	103,026
14	141,801	142,976	135,348	132,111	140,857	138,977	131,202	121,009	106,612	90,292	81,278	103,073
15	141,616	143,536	135,439	131,862	140,616	138,866	130,741	120,565	106,148	89,855	82,469	103,199
16	141,394	142,547	135,873	131,648	140,412	138,682	130,369	120,157	105,605	89,374	83,625	103,183
17	141,245	142,043	136,363	131,434	140,282	138,535	130,014	119,699	105,114	88,864	84,425	104,177
18	141,208	141,764	136,763	131,184	140,080	138,186	129,625	119,308	104,526	88,273	85,046	105,048
19	141,079	141,486	136,726	130,865	139,914	138,040	129,201	118,867	103,956	87,756	85,526	105,784
20	140,987	141,412	136,599	130,599	139,712	137,875	128,761	118,427	103,436	87,166	85,867	106,356
21	140,894	141,190	136,436	130,351	139,675	137,564	128,286	117,938	102,916	86,594	86,137	106,868
22	140,709	140,894	136,417	130,049	139,638	137,218	127,811	117,433	102,398	85,995	86,408	107,300
23	140,542	140,820	136,381	129,837	139,455	136,908	127,302	116,964	101,882	85,385	87,466	107,782
24	141,876	140,727	136,309	129,731	139,785	136,599	126,848	116,478	101,320	84,791	89,024	108,152
25	141,727	140,672	136,127	129,483	140,412	136,218	126,307	116,261	100,745	84,201	90,350	108,363
26 27 28 29 30 31	141,431 141,227 140,987 141,079 141,098 141,042	140,616 140,153 139,583 139,161 139,013 138,829	136,000 136,000 135,982	129,501 129,589 129,908 133,653 138,021 140,283	140,709 140,820 141,134 141,134 140,968	135,928 135,584 135,258 134,986 134,768 134,408	125,731 125,279 124,759 124,291 124,170	116,194 115,725 115,260 114,762 114,246 113,865	100,156 99,552 98,952 98,399 97,862 97,434	83,611 83,094 82,483 81,871 81,319	92,694 94,141 95,357 96,370 97,176 97,877	108,568 108,911 109,251 109,770 112,037
Change	+5,078	-2,213	-2,847	+4,301	+685	-6,560	-10,238	-10,305	-16,431	-16,115	+16,558	+14,160
Equiv. Mgal/d	+163.8	-71.4	-101.7	+138.7	+22.8	-211.6	-341.3	-332.4	-530.0	-537.2	+534.1	+472.0
Equiv. ft ³ /s	+253	-110	-157	+215	+35.3	-327	-528	-514	-820	-831	+826	+730
1	+255 or year -23,9		-137	1213		valent for year		-314	-020		For year -101 ft	

Table 4. Storage in Cannonsville Reservoir, New York, for year ending November 30, 2005.(River Master daily operations record; gage reading at 0800 hours)

[Storage in millions of gallons above elevation 1,040.00 ft. Add 2,584 million gallons for total contents above sill outlet tunnel, elevation 1,020.50 ft. Storage at spillway level is 95,706 million gallons]

DAY	DEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV
	DLU	UAN		MAII			UUIIL	UULI	AUG	ULIT	001	
1	99,392	97,830	96,543	96,398	101,275	98,040	91,766	80,585	76,398	50,823	29,292	39,779
	100,276	97,701	96,350	96,350	101,033	97,991	91,492	80,488	75,610	50,356	28,532	40,483
3	99,987	97,621	96,221	96,237	105,085	97,927	91,218	80,460	74,865	49,737	27,851	41,312
2 3 4	99,666	97,878	96,141	96,173	106,654	97,830	90,884	80,432	74,133	48,926	26,932	41,953
5	99,311	98,023	96,076	96,060	105,016	97,685	90,488	80,446	73,411	48,158	26,192	42,499
6	98,490	98,056	95,899	95,931	101,548	97,573	89,986	80,543	72,510	47,480	25,502	43,025
7	98,072	98,104	95,786	95,786	100,470	97,460	89,545	80,654	71,517	46,735	24,890	43,588
8	98,426	98,120	95,615	95,931	99,890	97,347	89,211	81,149	70,563	45,979	24,626	44,188
9	98,458	98,120	95,432	96,125	99,392	97,251	88,739	81,683	69,649	45,145	24,805	44,700
10	98,345	97,959	95,615	96,044	99,006	97,170	88,298	82,088	68,656	44,411	24,958	45,378
11	99,295	97,814	96,173	96,092	98,651	96,880	87,782	82,319	67,742	43,722	25,018	46,312
12	99,954	97,830	96,092	96,044	98,313	96,495	87,320	82,405	66,923	43,109	25,068	47,002
13	99,842	98,120	96,237	96,044	98,088	96,173	86,872	82,492	66,070	42,373	25,510	47,647
14	99,601	100,325	96,334	96,028	97,911	95,835	86,626	82,521	65,192	41,575	26,056	48,203
15	99,022	102,675	96,719	96,269	97,766	95,569	86,279	82,579	64,606	40,913	26,618	48,792
16	98,458	101,902	97,315	96,125	97,605	95,311	85,976	82,492	63,892	40,461	27,238	49,516
17	98,040	100,792	98,023	96,044	97,476	95,144	85,730	82,477	63,128	39,610	27,698	51,173
18	97,846	99,938	98,345	95,931	97,395	94,946	85,514	82,477	62,339	38,727	28,046	53,051
19	97,766	99,134	97,830	95,803	97,267	94,747	85,296	82,463	61,473	37,896	28,337	54,463
20	97,524	98,571	97,653	95,803	97,186	94,611	85,007	82,434	60,671	37,044	28,541	55,616
21	97,428	98,394	97,412	95,835	97,106	94,322	84,675	82,333	59,779	36,231	28,680	56,580
22	97,395	98,023	97,106	95,770	97,073	94,063	84,212	82,175	58,802	35,400	28,801	57,460
23	97,170	97,862	97,186	95,819	97,025	93,851	83,764	81,669	57,826	34,577	29,283	58,387
24	98,394	97,766	96,945	95,931	97,315	93,653	83,215	81,308	56,898	33,834	30,618	59,206
25	99,102	97,637	96,832	95,931	97,814	93,410	82,507	81,091	56,092	33,102	31,628	59,853
26	98,989	97,589	96,752	95,980	97,911	93,211	81,856	80,599	55,200	32,685	33,507	60,378
27	98,716	97,540	96,687	96,108	97,878	92,998	81,423	80,060	54,183	32,249	35,083	60,842
28	98,458	97,428	96,527	96,478	98,104	92,786	81,062	79,562	53,225	31,582	36,370	61,333
29	98,249	97,235		99,569	98,168	92,512	80,640	78,926	52,304	30,933	37,381	62,046
30	98,152	96,929		101,774	98,136	92,284	80,571	78,001	51,651	30,191	38,275	63,867
31	97,798	96,735		101,597		92,040		77,365	51,208		39,054	
Change	-1,723	-1,063	-208	+5,070	-3,461	-6,096	-11,469	-3,206	-26,157	-21,017	+8,863	+24,813
Equiv. Mgal/d	-55.6	-34.3	-7.4	+163.5	-115.4	-196.6	-382.3	-103.4	-843.8	-700.6	+285.9	+827.1
Equiv. ft ³ /s	-86.0	-53.0	-11.5	+253	-178	-304	-591	-160	-1,305	-1,084	+442	+1,280
Change for y	year -35,654 N	/Igal			Equivalent f	for year -97.7	Mgal/d			Equivale	ent for year -	151 ft ³ /s

24

Table 5. Storage in Neversink Reservoir, New York, for year ending November 30, 2005.

(River Master daily operations record; gage reading at 0800 hours)

[Storage in millions of gallons above elevation 1,319.00 ft. Add 525 million gallons for total contents above sill of outlet tunnel, elevation 1,314.00 ft. Storage at spillway level is 34,941 million gallons]

DAY	DEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV
1 2 3 4 5	31,224 32,491 32,972 33,307 33,557	32,155 32,302 32,463 32,728 32,995	35,051 35,046 35,046 35,046 35,046	35,061 35,046 35,051 35,046 35,046	35,269 35,294 36,421 35,498 35,299	35,036 34,981 34,936 34,867 34,705	34,355 34,233 34,219 34,194 34,160	33,499 33,264 32,948 32,643 32,335	23,951 23,947 23,926 23,837 23,773	22,854 22,949 22,953 22,909 22,874	18,226 17,858 17,495 17,120 16,749	31,391 31,405 31,340 31,294 31,183
6 7 8 9 10	33,770 33,983 34,316 34,497 34,527	33,125 33,273 33,470 33,644 33,770	35,041 35,036 35,046 35,036 35,051	35,046 35,051 35,046 35,061 35,051	35,234 35,229 35,264 35,234 35,194	34,645 34,591 34,685 34,769 34,853	34,126 34,184 34,165 34,135 34,111	32,099 31,851 31,560 31,391 31,168	23,741 23,661 23,605 23,557 23,493	22,810 22,760 22,673 22,568 22,400	16,381 16,235 16,688 20,758 21,641	31,072 30,952 30,831 30,680 30,621
11 12 13 14 15	34,675 34,882 34,907 34,853 34,690	33,905 34,062 34,243 35,184 35,458	35,100 35,061 35,056 35,051 35,070	35,046 35,051 35,051 35,046 35,041	35,170 35,031 34,927 35,041 34,882	34,917 34,788 34,660 34,502 34,532	34,067 34,037 34,018 33,988 33,939	30,896 30,566 30,223 29,914 29,522	23,409 23,358 23,346 23,282 23,298	22,136 21,888 21,707 21,443 21,180	22,004 22,093 23,541 24,891 25,788	30,612 30,511 30,387 30,255 30,137
16 17 18 19 20	34,507 34,301 34,145 33,920 33,693	35,309 35,259 35,204 34,981 34,759	35,120 35,130 35,125 35,085 35,075	35,041 35,031 35,031 35,026 35,021	34,729 34,557 34,384 34,199 33,998	34,562 34,591 34,601 34,616 34,601	33,876 33,881 33,876 33,833 33,808	29,123 28,725 28,407 28,167 27,909	23,278 23,215 23,143 23,080 23,032	21,010 20,953 20,905 20,860 20,795	26,414 26,779 27,051 27,275 27,438	30,028 30,110 30,171 30,125 30,046
21 22 23 24 25	33,417 33,163 32,924 33,408 33,432	34,921 35,041 35,100 35,095 35,095	35,085 35,085 35,080 35,051 35,051	35,036 35,016 35,016 35,021 35,031	33,813 33,640 33,625 33,964 34,675	34,596 34,586 34,581 34,562 34,562	33,765 33,717 33,659 33,596 33,533	27,580 27,219 26,885 26,540 26,194	22,980 22,929 22,858 22,791 22,725	20,727 20,663 20,335 20,061 19,785	27,580 27,714 28,237 28,615 29,370	29,946 29,860 29,810 29,707 29,593
26 27 28 29 30 31	33,297 33,153 32,934 32,728 32,533 32,306	35,090 35,085 35,061 35,036 35,016 35,051	35,051 35,046 35,046	35,031 35,036 35,041 35,414 35,384 35,294	34,941 35,115 35,145 35,061 35,021	34,557 34,552 34,562 34,562 34,596 34,601	33,451 33,408 33,398 33,403 33,417	25,829 25,462 25,105 24,735 24,348 24,083	22,650 22,579 22,533 22,509 22,505 22,595	19,518 19,362 19,166 18,906 18,597	29,878 30,282 30,579 30,808 31,021 31,201	29,469 29,315 29,172 29,083 30,487
Change	+1,456	+2,745	-5	+248	-273	-420	-1,184	-9,334	-1,488	-3,998	+12,604	-714
Equiv. Mgal/d	+47.0	+88.5	-0.2	+8.0	-9.1	-13.5	-39.5	-301.1	-48.0	-133.3	+406.6	-23.8
Equiv. ft ³ /s	+72.7	+137	-0.3	+12.4	-14.1	-21.0	-61.1	-466	-74.3	-206	+629	-36.8
Change	e for year -363	3 Mgal		Equ	uivalent for ye	ear -1.0 Mgal/	d		Equ	uivalent for y	ear -1.5 ft ³ /s	

25

Table 6. Design rates for Delaware River at Montague, New Jersey, gaging station, December 1, 2004, to November 30, 2005.[Rates in cubic feet per second]

Effective Dates	Montague Design Rate
December 1, 2004, to March 14, 2005	1,820
March 15 to June 14, 2005	1,750
June 15 to July 22, 2005	1,800
July 23 to November 3, 2005	1,750
November 4 to November 19, 2005	1,800
November 20 to November 30, 2005	1,750

Table 7. Consumption of water by New York City, 1950 to 2005.(Data furnished by New York City, Department of Environmental Protection, Bureau of Water Supply)

[Mgal/d, million gallons per day; Bgal, billion gallons]

		Annual		
Year	City Proper (Mgal/d)	Outside Communities (Mgal/d)	Total (Mgal/d)	Consumption (Bgal)
1950	953.3	29.1	982.4	358.576
51	1,041.9	28.1	1,070.0	390.550
52	1,087.0	32.7	1,119.7	409.810
53	1,093.9	44.6	1,138.5	415.552
54	1,063.4	46.3	1,109.7	405.040
1955	1,109.9	45.3	1,155.2	421.648
56	1,111.3	48.9	1,160.2	424.633
57	1,169.0	57.2	1,226.2	447.563
58	1,152.9	49.6	1,202.5	438.912
59	1,204.3	60.3	1,264.6	461.579
1960	1,199.4	58.9	1,258.3	460.529
61	1,221.0	64.0	1,285.0	469.022
62	1,207.6	68.8	1,276.4	465.896
63	1,218.0	76.7	1,294.7	472.582
64	1,189.2	79.4	1,268.6	464.295
1965	1,052.1	71.2	1,123.3	409.995
66	1,032.1	73.2	1,125.5	408.128
67	1,135.3	71.0	1,206.3	408.128
		78.2	1,320.2	483.175
68	1,242.0			
69 1070	1,328.7	80.1	1,408.8	514.229
1970	1,400.3	90.4	1,490.7	544.116
71	1,423.6	87.9	1,511.5	551.695
72	1,412.4	83.0	1,495.4	547.340
73	1,448.9	95.4	1,544.3	563.681
74	1,441.8	96.3	1,538.1	561.409
1975	1,415.0	92.1	1,507.1	550.093
76	1,435.0	95.8	1,530.8	560.264
77	1,483.0	104.7	1,587.7	579.510
78	1,479.4	103.0	1,582.4	577.566
79	1,513.0	104.6	1,617.6	590.426
1980	1,506.3	110.1	1,616.3	591.582
81	1,309.5	100.0	1,409.5	514.475
82	1,383.0	104.8	1,487.8	543.060
83	1,424.2	112.6	1,536.8	561.010
84	1,465.2	113.9	1,579.1	577.963
1985	1,325.4	106.5	1,431.9	522.656
86	1,351.1	115.2	1,466.3	535.200
87	1,351.1	119.8	1,566.9	571.885
87 88	1,447.1	119.8 125.6	1,609.9	589.090
89	1,402.0	113.4	1,515.4	553.158
1990	1,424.4	122.4	1,546.8	564.577
91	1,469.9	123.6	1,593.5	581.628
92	1,368.7	113.9	1,482.6	542.632
93	1,368.9	118.8	1,487.7	543.011
94	1,357.8	119.2	1,477.0	539.105
1995	1,326.1	123.1	1,449.2	528.958
96	1,283.5	120.2	1,403.7	512.351
97	1,201.3	123.5	1,324.8	483.552
98	1,220.0	124.7	1,344.7	490.816
99	1,237.2	128.6	1,365.8	498.517
2000	1,240.4	124.9	1,365.3	499.700
01	1,184.0	128.4	1,312.4	479.026
02	1,135.6	120.4	1,256.7	458.696
02	1,093.7	115.9	1,209.6	441.516
03 04				
04	1,099.6	117.5	1,217.1	445.461

Table 8. New York City reservoir release design data-(River Master daily operation record)

[ft³/s, cubic feet per second; (ft³/s)-d, cubic feet per second days; Col., Column]

Advance estimate of discharge of Delaware River at Montague, New Jersey, exclusive of New York City reservoir releases															
Date of	Powerplant release forecasts			Uncontrolled runoff		Discharge	Indicated	Balancing	Directed	Adjusted directed release		Actual deficiency		Cumulative	J
advance estimate	Lake Wallenpaupack	Rio Reservoir (ft ³ /s)	Current condition (ft ³ /s)	Weather	date		deficiency	adjuctmont	release (ft³/s)	Daily (ft³/s)	Cumulative (ft³/s)-d	Daily (ft³/s)	Cumulative (ft³/s)-d		adjustment (ft³/s)
2005	(ft³/s) Col. 1	(1175) Col. 2	(1075) Col. 3	(1175) Col. 4	2005	Col. 5	Col. 6	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11	Col. 12	Col. 13	Col. 14

MONTAGUE DESIGN RATE = 1,820 (ft³/s) DECEMBER 1, 2004, to MARCH 14, 2005

The estimated Montague discharge was greater than the Montague design rate from December 1, 2004, to March 14, 2005

MONTAGUE DESIGN RATE = 1,750 (ft³/s) MARCH 15, 2005, to JUNE 14, 2005

The estimated Montague discharge was greater than the Montague design rate from March 15, 2005, to May 22, 2005

May 20 21 22	$\begin{smallmatrix} 0\\0\\0\end{smallmatrix}$	0 35 35	1,500 1,420 1,375	10 730 55	May 23 24 25	1,510 2,185 1,465	240 0 285		240 0 285	$240 \\ 0 \\ 285$	240 240 525	50 0 28	63 63 91	+177 +177 +434	-18 -18 -43
23 24 25 26 27 28	0 0 0 0 0	53 0 0 0 0 0	1,325 1,450 1,420 1,450 1,450 1,450	760 219 89 20 340 43	26 27 28 29 30	2,138 1,669 1,509 1,470 1,790 1,493	$0 \\ 81 \\ 241 \\ 280 \\ 0 \\ 257$	+1 -18 -18 -43 -43 -47	$\begin{array}{c} 0\\ 63\\ 223\\ 237\\ 0\\ 210 \end{array}$	0 63 223 237 0 210	525 588 811 1,048 1,048 1,258	$ \begin{array}{c} 0 \\ 25 \\ 59 \\ 0 \\ 0 \\ 1 \end{array} $	91 116 175 175 175 175 176	+434 +472 +636 +873 +873 +1,082	-43 -47 -50 -50 -50 -50

Col. 1 - Furnished by power company.

- Col. 2 Furnished by power company.
- Col. 3 Computed from index stations.
- Col. 4 Computed increase in runoff based on quantitative

precipitation forecasts.

Col. $5 = Col. \hat{1} + Col. 2 + Col. 3 + Col. 4.$

- Col. 6 = Design rate Col. 5, when positive;
- otherwise Col. 6 = 0.
- Col. 7 = Col. 14 (4 days earlier).
- Col. 8 = Design rate Col. 5 + Col. 7, when positive; otherwise Col. 8 = 0. Col. 9 = Col. 7 from Table 9.
- Col. 10 = Summation of Col. 9.

- Col. 11 = Design rate (Col. 9 + Col. 10 from Table 9), when positive;
- otherwise Col. 11 = 0.
- Col. 12 = Summation of Col. 11.
- Col. 13 = Col. 10 Col. 12.
- Col. 14 = Col. 13 divided by -10, limited to ± 50 .

Table 8. New York City reservoir release design data—Continued. (River Master daily operation record)

[ft³/s, cubic feet per second; (ft³/s)-d, cubic feet per second days; Col., Column]

Advan	ce estimate of di exclusiv			liver at Mont servoir relea		Jersey,					Comp	utation	of balancing a	adjustment	
Date of	Powerplant forecas			ntrolled noff	Montaque	Discharge	Indicated	Balancing		-	ed directed lease		Actual ficiency	Cumulative	•
advance estimate	Lake Wallenpaupack (ft³/s)	Rio Reservoir (ft³/s)	Current condition (ft³/s)	Weather adjustment (ft³/s)	date	(ft³/s)	deficiency	adjustment (ft³/s)	release (ft³/s)	Daily (ft³/s)	Cumulative (ft³/s)-d	Daily (ft³/s)	Cumulative (ft³/s)-d	difference (ft³/s)-d	adjustment (ft³/s)
2005	Col. 1	Col. 2	Col. 3	Col. 4	2005	Col. 5	Col. 6	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11	Col. 12	Col. 13	Col. 14
May 29 30 31 June 1 2	0 0 0	0 0 0 0 0	1,450 1,550 1,500 1,450 1,250	316 15 30 0 78	June 1 2 3 4 5	1,766 1,565 1,530 1,450 1,328	0 185 220 300 422	-50 -50 -50 -50 -50	0 135 170 250 372	0 135 170 250 372	1,258 1,393 1,563 1,813 2,185	165 181 345 415 456	341 522 867 1,282 1,738	+917 +871 +696 +531 +447	-50 -50 -50 -50 -45
3 4 5 6 7	0 0	0 0 0 0 0	1,250 1,250 1,250 1,000 1,200	3 124 105 179 27	6 7 8 9 10	1,253 1,374 1,355 1,179 1,227	497 376 395 571 523	-50 -50 -45 -24	447 326 345 526 499	447 326 345 526 499	2,632 2,958 3,303 3,829 4,328	654 495 59 26 0	2,392 2,887 2,946 2,972 2,972	+240 +71 +357 +857 +1,356	-24 -7 -36 -50 -50
8 9 10 11	0	383 383 383 383	1,200 1,200 1,300 1,200	71 172 157 162	11 12 13 14	1,654 1,755 1,840 2,116	96 0 0 0	-7 -36 -50 -50	89 0 0 0	89 0 0 0	4,417 4,417 4,417 4,417	$\begin{array}{c} 0\\122\\174\\0\end{array}$	2,972 3,094 3,268 3,268	$^{+1,445}_{+1,323}_{+1,149}_{+1,149}$	-50 -50 -50 -50
				MONTA	GUE DESIG	GN RATE =	1,800 (ft ³ /s	s) JUNE 15, 2	2005, to J	ULY 22,	2005.				
12 13 14 15 16	371 239	383 383 383 383 383 383	1,100 1,200 1,150 1,100 760	345 285 43 211 190	15 16 17 18 19	2,199 2,239 1,947 1,933 1,333	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 467\end{array}$	 0	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 467\end{array}$	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 467\end{array}$	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 467\end{array}$	$ \begin{array}{c} 0 \\ 84 \\ 3 \\ 108 \\ 369 \end{array} $	0 84 87 195 564	0 -84 -87 -195 -97	$0 \\ +8 \\ +9 \\ +20 \\ +10$
17 18 19 20 21	371 371	383 383 383 0 0	915 942 856 796 728	15 0 3 0 15	20 21 22 23 24	1,313 1,696 1,613 1,167 1,114	487 104 187 633 686	+8 +9 +20 +10 +1	495 113 207 643 687	496 113 207 644 688	963 1,076 1,283 1,927 2,615	406 32 0 484 498	970 1,002 1,002 1,486 1,984	-7 +74 +281 +441 +631	+1 -7 -28 -44 -50
22 23 24 25 26 27	0 449 449	0 0 0 0 0 0	688 678 637 612 559	0 5 13 79 188 274	25 26 27 28 29 30	1,059 683 650 1,165 1,249 1,282	741 1,117 1,150 635 551 518	-7 -28 -44 -50 -50 -50	734 1,089 1,106 585 501 468	729 1,087 1,097 585 501 468	3,344 4,431 5,528 6,113 6,614 7,082		2,593 3,710 4,757 4,813 4,813 4,813	+751 +721 +771 +1,300 +1,801 +2,269	-50 -50 -50 -50 -50 -50

Col. 1 - Furnished by power company.

- Col. 2 Furnished by power company.
- Col. 3 Computed from index stations.
- Col. 4 Computed increase in runoff based on quantitative precipitation forecasts.
- Col. $5 = Col. \hat{1} + Col. 2 + Col. 3 + Col. 4$.

- Col. 6 = Design rate Col. 5, when positive;
- otherwise Col. 6 = 0.
- Col. 7 =Col. 14 (4 days earlier).
- Col. 8 = Design rate Col. 5 + Col. 7, when
- positive; otherwise Col. 8 = 0.
- Col. 9 = Col. 7 from Table 9. Col. 10 = Summation of Col. 9.

Col. 11 = Design rate - (Col. 9 + Col. 10 from Table 9), when positive;

- otherwise Col. 11 = 0. Col. 12 = Summation of Col. 11.
- Col. 12 =Summation of Col. Col. 13 =Col. 10 -Col. 12.
- Col. 13 = Col. 10 Col. 12.
- Col. 14 = Col. 13 divided by -10, limited to ± 50 .

er company. dex stations.

Table 8. New York City reservoir release design data—Continued.(River Master daily operation record)

[ft³/s, cubic feet per second; (ft³/s)-d, cubic feet per second days; Col., Column]

Advan	ce estimate of dis exclusiv			iver at Mont servoir relea		Jersey,					Comp	utation o	of balancing	adjustment	
Date of	Powerplant forecas			ntrolled noff	Montaque	Discharge	Indicated	Balancing		-	ed directed elease		ctual iciency	Cumulative	•
advance estimate	Lake Wallenpaupack (ft³/s)	Rio Reservoir (ft³/s)	Current condition (ft³/s)	Weather adjustment (ft³/s)	date	(ft³/s)	deficiency	adjustment (ft³/s)	release (ft³/s)	Daily (ft³/s)	Cumulative (ft³/s)-d	Daily (ft³/s)	Cumulative (ft³/s)-d	difference (ft³/s)-d	adjustment (ft³/s)
2005	Col. 1	Col. 2	Col. 3	Col. 4	2005	Col. 5	Col. 6	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11	Col. 12	Col. 13	Col. 14
June 28 29 30 July 1 2	$\begin{array}{c} 449\\ 0\\ 0\end{array}$	0 0 0 0 0	591 626 889 890 1,184	902 404 187 63 0	July 1 2 3 4 5	1,076 953	0 321 724 847 616	-50 -50 -50 -50 -50	0 271 674 797 566	0 271 679 798 559	7,082 7,353 8,032 8,830 9,389	0 669 768 769	4,813 4,813 5,482 6,250 7,019	+2,269 +2,540 +2,550 +2,580 +2,370	-50 -50 -50 -50 -50
3 4 5		$\begin{smallmatrix} 0\\0\\0\end{smallmatrix}$	1,007 856 653	33 294 483	6 7 8	1,534	376 266 280	-50 -50 -50	326 216 230	326 216 230	9,715 9,931 10,161	$\begin{array}{c} 248 \\ 0 \\ 0 \end{array}$	7,267 7,267 7,267	+2,448 +2,664 +2,894	-50 -50 -50
		Tł	ne estimated	l Montague	discharge w	as greater tl	nan the Mor	ntague desigr	n rate from	n July 9,	2005 to July	13, 200	5.		
11 12 13 14 15	$455 \\ 0$	0 0 0 0 0	1,143 941 932 871 799	26 0 93 171 1,140	14 15 16 17 18	1,325 1,480 1,042	247 475 320 758 0	-50 -50 -50 -50 -50	197 425 270 708 0	197 425 270 705 0	10,358 10,783 11,053 11,758 11,758	17 33 13 935 687	7,284 7,317 7,330 8,265 8,952	+3,074 +3,466 +3,723 +3,493 +2,806	-50 -50 -50 -50 -50
16 17 18 19	513	0 0 0 0	755 742 780 777	731 708 201 30	19 20 21 22	1,963 1,494	$0 \\ 0 \\ 306 \\ 480$	-50 -50 -50 -50	$0 \\ 0 \\ 256 \\ 430$	$0 \\ 0 \\ 256 \\ 430$	11,758 11,758 12,014 12,444	33 18 324 318	8,985 9,003 9,327 9,645	+2,773 +2,775 +2,687 +2,799	-50 -50 -50 -50
				MONTAGU	E DESIGN	RATE = 1,	750 (ft ³ /s) J	ULY 23, 200	5, to NOV	/EMBEI	R 3, 2005				
20 21 22 23 24	585 0 0 385 385	0 0 60 14	732 531 634 586 552	0 6 75 15 21	23 24 25 26 27	537 709	433 1,213 1,041 704 778		433 1,213 1,041 704 778		Balancing	adjustm	ent suspende	ed	
25 26 27 28	385 385 475 0	0 0 0 0	514 492 472 453	64 145 34 0	28 29 30 31	1.022	787 728 769 1,297		787 728 769 1,297						

Col. 1 - Furnished by power company.

Col. 2 - Furnished by power company.

Col. 3 - Computed from index stations.

Col. 4 - Computed increase in runoff based on quantitative precipitation forecasts.

Col. 5 = Col. 1 + Col. 2 + Col. 3 + Col. 4.

- Col. 6 = Design rate Col. 5, when positive;
 - otherwise Col. 6 = 0.
- Col. 7 =Col. 14 (4 days earlier).
- Col. 8 = Design rate Col. 5 + Col. 7, when
- positive; otherwise Col. 8 = 0.
- Col. 9 =Col. 7 from Table 9.
- Col. 10 = Summation of Col. 9.

- Col. 11 = Design rate (Col. 9 + Col. 10 from Table 9), when positive;
 - otherwise Col. 11 = 0.
- Col. 12 = Summation of Col. 11.
- Col. 13 = Col. 10 Col. 12.
- Col. 14 = Col. 13 divided by -10, limited to ± 50 .

Table 8. New York City reservoir release design data—Continued. (River Master daily operation record)

[ft³/s, cubic feet per second; (ft³/s)-d, cubic feet per second days; Col., Column]

Advan	ce estimate of dis exclusiv			liver at Mont servoir relea		Jersey,					Comp	utation	of balancing	adjustment	
Date of	Powerplant I forecas			ntrolled noff	Montaque	Discharge	Indicated	Balancing			ed directed lease		Actual ficiency	Cumulative	-
advance estimate	Lake Wallenpaupack (ft³/s)	Rio Reservoir (ft ³ /s)	Current condition (ft ³ /s)	Weather adjustment (ft³/s)	date	(ft³/s)	deficiency	adjustment (ft³/s)	release (ft³/s)	Daily (ft³/s)	Cumulative (ft³/s)-d	Daily (ft³/s)	Cumulative (ft³/s)-d	difference (ft³/s)-d	adjustment (ft³/s)
2005	Col. 1	Col. 2	Col. 3	Col. 4	2005	Col. 5	Col. 6	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11	Col. 12	Col. 13	Col. 14
July 29 30 31 Aug. 1 2	193 193	0 0 0 0 0	459 455 427 496 466	0 16 23 34 6	Aug. 1 2 3 4 5	459 664 643 723 665	1,291 1,086 1,107 1,027 1,085		1,291 1,086 1,107 1,027 1,085						
3 4 5 6 7	328 0 0 0 0	0 0 0 0 0	431 414 357 333 275	38 23 8 7 65	6 7 8 9 10	797 437 365 340 340	953 1,313 1,385 1,410 1,410		953 1,313 1,385 1,410 1,410						
8 9 10 11 12	0	0 0 0 0 0	274 308 377 388 366	39 21 3 20 57	11 12 13 14 15	408	1,437 1,308 1,017 1,342 1,327		1,437 1,308 1,017 1,342 1,327						
13 14 15 16 17	0 0 0	0 0 0 0 0	465 658 648 634 560	338 166 0 2	16 17 18 19 20	824 648 634	947 926 1,102 1,116 1,188		947 926 1,102 1,116 1,188						
18 19 20 21 22	0 0 0	0 0 0 0 0	472 382 344 339 319	69 172 32 0 0	21 22 23 24 25	541 554 376 339 319	1,209 1,196 1,374 1,411 1,431		1,209 1,196 1,374 1,411 1,431						
23 24 25 26 27 28	$ \begin{array}{c} 321 \\ 321 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	0 0 0 0 0 0	286 247 255 240 228 257	0 0 1 21 107 284	26 27 28 29 30 31	607 568 256 261 335 541	1,143 1,182 1,494 1,489 1,415 1,209		1,143 1,182 1,494 1,489 1,415 1,209						

Col. 1 - Furnished by power company. Col. 2 - Furnished by power company. Col. 3 - Computed from index stations.

precipitation forecasts.

Col. 5 = Col. 1 + Col. 2 + Col. 3 + Col. 4.

Col. 4 - Computed increase in runoff based on quantitative

Col. 6 = Design rate - Col. 5, when positive;

- otherwise Col. 6 = 0. Col. 7 =Col. 14 (4 days earlier).
- Col. 8 = Design rate Col. 5 + Col. 7, when
- positive; otherwise Col. 8 = 0. Col. 9 = Col. 7 from Table 9.

Col. 10 = Summation of Col. 9.

- Col. 11 = Design rate (Col. 9 + Col. 10 from Table 9), when positive;
 - otherwise Col. 11 = 0.
- Col. 12 = Summation of Col. 11.
- Col. 13 = Col. 10 Col. 12.
- Col. 14 = Col. 13 divided by -10, limited to ± 50 .

щ

Table 8. New York City reservoir release design data—Continued. (River Master daily operation record)

[ft³/s, cubic feet per second; (ft³/s)-d, cubic feet per second days; Col., Column]

Advan	ce estimate of dis exclusiv			liver at Mon servoir relea		Jersey,					Comp	utation	of balancing	adjustment	
Date of	Powerplant forecas			ntrolled noff	Montaque	Discharge	Indicated	Balancing			ed directed elease		Actual ficiency	Cumulative	J
advance estimate	Lake Wallenpaupack (ft³/s)	Rio Reservoir (ft ³ /s)	Current condition (ft ³ /s)	Weather adjustment (ft³/s)	date	(ft³/s)	deficiency	adjustment (ft³/s)	release (ft³/s)	Daily (ft³/s)	Cumulative (ft³/s)-d	Daily (ft³/s)	Cumulative (ft³/s)-d	difference (ft³/s)-d	adjustment (ft³/s)
2005	Col. 1	Col. 2	Col. 3	Col. 4	2005	Col. 5	Col. 6	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11	Col. 12	Col. 13	Col. 14
Aug. 29 30 31 Sept. 1 2	353	$\begin{array}{c} 32\\32\\0\\0\\0\\0\end{array}$	372 387 723 918 650		Sept. 1 2 3 4 5	1,071 1,320 1,108 918 650	679 430 642 832 1,100		679 430 642 832 1,100						
3 4 5 6 7	0 353 353 353 353	0 0 0 0 0	508 426 380 350 271	0 0 0 12	6 7 8 9 10	733 703	1,242 971 1,017 1,047 1,114		1,242 971 1,017 1,047 1,114						
8 9 10 11 12	213	0 0 0 0 0	260 298 280 267 267	9 0 0 0 22	11 12 13 14 15	480	1,233 1,452 1,257 1,270 1,248		1,233 1,452 1,257 1,270 1,248						
13 14 15 16 17	257 0	0 0 0 0 0	270 245 273 274 311	36 511 442 189 6	16 17 18 19 20	1,013 715 463	1,187 737 1,035 1,287 1,206		1,187 737 1,035 1,287 1,206						
18 19 20 21 22	2.2.7	0 0 0 0 0	301 269 245 253 259	12 35 6 0 3	21 22 23 24 25	540 531 478 480 510	1,210 1,219 1,272 1,270 1,240		1,210 1,219 1,272 1,270 1,240						
23 24 25 26 27	0 0 0 0 0	0 0 0 0 0	237 233 235 230 365	1 342 607 291 82	26 27 28 29 30	575 842	1,512 1,175 908 1,229 1,303		1,512 1,175 908 1,229 1,303						

Col. 1 - Furnished by power company.

Col. 2 - Furnished by power company.

Col. 3 - Computed from index stations.

Col. 4 - Computed increase in runoff based on quantitative precipitation forecasts.

Col. 5 = Col. 1 + Col. 2 + Col. 3 + Col. 4.

Col. 6 = Design rate - Col. 5, when positive;

otherwise Col. 6 = 0.

Col. 7 =Col. 14 (4 days earlier).

- Col. 8 = Design rate Col. 5 + Col. 7, when positive; otherwise Col. 8 = 0.
- Col. 9 = Col. 7 from Table 9.

Col. 10 = Summation of Col. 9.

- Col. 11 = Design rate (Col. 9 + Col. 10 from Table 9), when positive;
- otherwise Col. 11 = 0. Col. 12 = Summation of Col. 11.
- Col. 13 = Col. 10 Col. 12.

Col. 14 = Col. 13 divided by -10, limited to ± 50 .

Table 8. New York City reservoir release design data—Continued.(River Master daily operation record)

[ft³/s, cubic feet per second; (ft³/s)-d, cubic feet per second days; Col., Column]

Advand	ce estimate of dis exclusiv			liver at Mont servoir relea	•	Jersey,					Comp	utation o	of balancing	adjustment	
Date of	Powerplant r forecas			ntrolled noff	Montaque	Discharge	Indicated	Balancing			ed directed lease		Actual ficiency	Cumulative	J
advance estimate	Lake Wallenpaupack (ft³/s)	Rio Reservoir (ft³/s)	Current condition (ft³/s)	Weather adjustment (ft³/s)	date	(ft³/s)	deficiency	adjustment (ft³/s)	release (ft³/s)	Daily (ft³/s)	Cumulative (ft³/s)-d	Daily (ft³/s)	Cumulative (ft³/s)-d	difference (ft³/s)-d	adjustment (ft³/s)
2005	Col. 1	Col. 2	Col. 3	Col. 4	2005	Col. 5	Col. 6	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11	Col. 12	Col. 13	Col. 14
Sept. 28 29 30 Oct. 1 2	0 0 0	0 0 0 0 0	312 276 304 287 269	130 98 0 0	Oct. 1 2 3 4 5	442 374 304 287 269	1,308 1,376 1,446 1,463 1,481	1,308 1,376 1,446 1,463 1,481	<u></u>						
3 4 5 6	0 0 0 0	0 0 0 0	260 257 235 244	0 27 104 390	6 7 8 9	260 284 339 634	1,490 1,466 1,411 1,116	1,490 1,466 1,411 1,116							

The estimated Montague discharge was greater than the Montague design rate from October 10, 2005, to November 3, 2005.

MONTAGUE DESIGN RATE = 1,800 (ft³/s) NOVEMBER 4, 2005, to NOVEMBER 19, 2005.

The estimated Montague discharge was greater than the Montague design rate from November 4, 2005, to November 19, 2005.

MONTAGUE DESIGN RATE = 1,750 (ft³/s) NOVEMBER 20, 2005, to NOVEMBER 30, 2005. The estimated Montague discharge was greater than the Montague design rate from November 20, 2005, to November 30, 2005.

Col. 1 - Furnished by power company.	
Col. 2 - Furnished by power company.	

Col. 3 - Computed from index stations.

Col. 4 - Computed increase in runoff based on quantitative precipitation forecasts.

Col. 5 = Col. 1 + Col. 2 + Col. 3 + Col. 4.

Col. 6 = Design rate - Col. 5, when positive; otherwise Col. 6 = 0.
Col. 7 = Col. 14 (4 days earlier).
Col. 8 = Design rate - Col. 5 + Col. 7, when positive; otherwise Col. 8 = 0.
Col. 9 = Col. 7 from Table 9.
Col. 10 = Summation of Col. 9. Col. 11 = Design rate - (Col. 9 + Col. 10 from Table 9), when positive; otherwise Col. 11 = 0.
Col. 12 = Summation of Col. 11.
Col. 13 = Col. 10 - Col. 12.
Col. 14 = Col. 13 divided by -10, limited to ±50.

Controlle	d Releases	from Nev	v York City R	eservoirs		ontrolled Releas n Power Reserv			Segregatio	on of Flov	v, Delawa	re River at M	ontague, Ne	ew Jersey	
Dire	cted	Pepac- ton	Cannons- ville	Never- sink	Date	Lake Wallenpau-	Rio Reservoir	Date	Contro New Yo Reserv		eases Power-	Computed uncon-	Total		Release dits
Date	Amount	ton				pack			Directed	Other	plants	trolled		Daily	Cumul.
2004	Col. 1	Col. 2	Col. 3	Col. 4	2004	Col. 5	Col. 6	2004	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11	Col. 12	Col. 13
Nov. 28 29 30 Dec. 1 2	0 0 0 0 0	36 37 37 36 36	46 46 46 46 46	25 25 25 25 25 25	Nov. 30 Dec. 1 2 3 4	1,159 1,159 1,148 1,235 1,107	504 1,567 1,195 691 713	Dec. 1 2 3 4 5	0 0 0 0 0	107 108 108 107 107	1,663 2,726 2,343 1,926 1,820	16,930 23,966 16,949 13,667 11,673	18,700 26,800 19,400 15,700 13,600	0 0 0 0 0	5,209 5,209 5,209 5,209 5,209 5,209
3 4 5 6 7	0 0 0 0 0	36 36 36 36 36	46 46 46 46 46	25 25 25 25 25 25	5 6 7 8 9	1,090 1,092 1,157 1,094 1,045	418 418 511 591 475	6 7 8 9 10	0 0 0 0 0	107 107 107 107 107	1,508 1,510 1,668 1,685 1,520	10,485 9,383 10,625 10,908 11,873	12,100 11,000 12,400 12,700 13,500	0 0 0 0 0	5,209 5,209 5,209 5,209 5,209 5,209
8 9 10 11 12	0 0 0 0 0	36 36 36 36 36	46 46 46 46 45	25 25 25 25 25 25	10 11 12 13 14	764 775 1,035 1,102 1,081	780 809 674 670 770	11 12 13 14 15	0 0 0 0 0	107 107 107 107 106	1,544 1,584 1,709 1,772 1,851	20,949 21,109 17,184 14,321 11,643	22,600 22,800 19,000 16,200 13,600	0 0 0 0 0	5,209 5,209 5,209 5,209 5,209 5,209
13 14 15 16 17	0 0 0 0 0	36 36 36 36 36	45 45 45 45 45	25 25 25 25 25 25	15 16 17 18 19	1,118 1,266 757 677 1,182	1,167 1,089 794 426 433	16 17 18 19 20	0 0 0 0 0	106 106 106 106 106	2,285 2,355 1,551 1,103 1,615	9,609 8,339 7,593 7,251 6,269	12,000 10,800 9,250 8,460 7,990	0 0 0 0 0	5,209 5,209 5,209 5,209 5,209 5,209
18 19 20 21 22	0 0 0 0 0	36 36 36 36 36	45 45 45 45 45	28 40 25 25 25	20 21 22 23 24	530 688 570 745 504	142 230 223 426 426	21 22 23 24 25	0 0 0 0 0	109 121 106 106 106	672 918 793 1,171 930	5,859 5,191 5,681 14,523 14,564	6,640 6,230 6,580 15,800 15,600	0 0 0 0 0	5,209 5,209 5,209 5,209 5,209 5,209
23 24 25 26 27 28	0 0 0 0 0 0	36 36 36 36 36 36	45 45 45 45 45 45	25 25 25 25 25 25 25	25 26 27 28 29 30	545 827 1,088 885 922 845	426 426 426 426 418 418	26 27 28 29 30 31	0 0 0 0 0 0	106 106 106 106 106 106	971 1,253 1,514 1,311 1,340 1,263	11,423 9,641 8,680 7,513 7,064 6,621	12,500 11,000 10,300 8,930 8,510 7,990	0 0 0 0 0 0	5,209 5,209 5,209 5,209 5,209 5,209 5,209
Total	0	1,118	1,409	793		29,192	18,682		0	3,320	47,874	357,486	408,690		

[Mean discharge in cubic feet per second for 24 hours; Col., Column; Cumul., Cumulative]

Col. 2 - 24 hours beginning 1200 of date shown.

Col. 3 - 24 hours ending 2400 one day later.

Col. 4 - 24 hours beginning 1500 one day later.

Col. 5 - 24 hours beginning 0800 of date shown.

Col. 6 - 24 hours beginning 1600 of date shown.

Col. 7 =Col. 2 +Col. 3 +Col. 4 in response to direction (Col. 1).

Col. 8 = Col. 2 + Col. 3 + Col. 4 - Col. 7.

Col. 9 = Col. 5 + Col. 6.

Col. 10 = Col. 11 - Col. 7 - Col. 8 - Col. 9.

Col. 11 = 24 hours of calendar day shown.

Col. 12 = Col. 11 - Col. 8 - 1,750 ft³/s computed arithmetically, but not greater than Col. 7; except that part of Col. 8 contributing to the excess-release increment of Col. 11.

Controlle	d Releases	s from Nev	v York City R	eservoirs		ontrolled Releas n Power Reserv			Segregatio	on of Flow	v, Delawa	re River at M	ontague, Ne	ew Jersey	
Dire	cted	Pepac- ton	Cannons- ville	Never- sink	Date	Lake Wallenpau-	Rio Reservoir	Date	Contro New You Reserv		Power-	Computed uncon-	Total		Release dits
Date	Amount	1				pack			Directed	Other	plants	trolled		Daily	Cumul.
2004/2005	Col. 1	Col. 2	Col. 3	Col. 4	2004/2005	Col. 5	Col. 6	2005	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11	Col. 12	Col. 13
Dec. 29 30 31 Jan. 1 2	0 0 0 0 0	36 36 36 36 36	45 45 45 45 45 45	25 25 25 25 25 25	Dec. 31 Jan. 1 2 3 4	631 597 596 331 374	418 418 411 227 429	Jan. 1 2 3 4 5	0 0 0 0 0	106 106 106 106 106	1,049 1,015 1,007 558 803	6,425 6,319 5,757 9,326 11,091	7,580 7,440 6,870 9,990 12,000	0 0 0 0 0	5,209 5,209 5,209 5,209 5,209 5,209
3 4 5 6 7	0 0 0 0 0	36 36 36 36 36	45 45 45 45 45	25 25 25 25 25 25	5 6 7 8 9	616 648 965 907 926	631 794 436 436 447	6 7 8 9 10	0 0 0 0 0	106 106 106 106 106	1,247 1,442 1,401 1,343 1,373	9,847 9,352 8,693 9,051 8,221	11,200 10,900 10,200 10,500 9,700	0 0 0 0 0	5,209 5,209 5,209 5,209 5,209 5,209
8 9 10 11 12	0 0 0 0 0	36 36 36 36 36	45 45 45 45 45	25 25 25 25 25 25	10 11 12 13 14	1,060 1,107 1,032 1,085 1,071	482 436 436 1,121 2,099	11 12 13 14 15	0 0 0 0 0	106 106 106 106 106	1,542 1,543 1,468 2,206 3,170	7,672 7,291 7,506 30,588 52,024	9,320 8,940 9,080 32,900 55,300	0 0 0 0 0	5,209 5,209 5,209 5,209 5,209 5,209
13 14 15 16 17	0 0 0 0 0	36 36 36 36 36	45 45 45 45 45	25 25 25 25 25 25	15 16 17 18 19	972 1,178 1,338 1,302 1,382	1,550 936 858 915 727	16 17 18 19 20	0 0 0 0 0	106 106 106 106 106	2,522 2,114 2,196 2,217 2,109	31,072 22,180 16,698 13,977 12,185	33,700 24,400 19,000 16,300 14,400	0 0 0 0 0	5,209 5,209 5,209 5,209 5,209 5,209
18 19 20 21 22	0 0 0 0 0	36 36 36 36 36	45 45 45 45 45	25 25 25 25 25	20 21 22 23 24	1,335 1,322 1,447 1,475 1,404	681 596 372 514 518	21 22 23 24 25	0 0 0 0 0	106 106 106 106 106	2,016 1,918 1,819 1,989 1,922	10,478 8,976 7,765 7,035 6,742	12,600 11,000 9,690 9,130 8,770	0 0 0 0 0	5,209 5,209 5,209 5,209 5,209
23 24 25 26 27 28	0 0 0 0 0 0	36 36 50 648 733 733	45 45 45 45 45 45 45	25 25 25 25 25 25 25 25	25 26 27 28 29 30	1,309 1,316 1,339 1,454 1,417 1,233	475 447 426 426 372 0	26 27 28 29 30 31	0 0 0 0 0 0	106 106 120 718 803 803	1,784 1,763 1,765 1,880 1,789 1,233	6,230 6,161 5,815 4,902 4,508 4,514	8,120 8,030 7,700 7,500 7,100 6,550	0 0 0 0 0 0	5,209 5,209 5,209 5,209 5,209 5,209 5,209
Total	0	3,136	1,395	775		33,169	19,034		0	5,306	52,203	358,401	415,910		

[Mean discharge in cubic feet per second for 24 hours; Col., Column; Cumul., Cumulative]

Col. 2 - 24 hours beginning 1200 of date shown.

Col. 3 - 24 hours ending 2400 one day later.

Col. 4 - 24 hours beginning 1500 one day later.

Col. 5 - 24 hours beginning 0800 of date shown.

Col. 6 - 24 hours beginning 1600 of date shown.

Col. 8 = Col. 2 + Col. 3 + Col. 4 - Col. 7.

Col. 7 =Col. 2 +Col. 3 +Col. 4 in response to direction (Col. 1).

Col. 9 = Col. 5 + Col. 6.

Col. 10 = Col. 11 - Col. 7 - Col. 8 - Col. 9.

Col. 11 = 24 hours of calendar day shown.

Col. 12 = Col. 11 - Col. 8 - 1,750 ft³/s computed arithmetically, but not greater than Col. 7; except that part of Col. 8 contributing to the excess-release increment of Col. 11.

Controlle	d Release:	s from Nev	v York City R	eservoirs		ontrolled Releas n Power Reserv			Segregatio	on of Flov	ı, Delawa	re River at N	lontague, Ne	ew Jersey	
						Lake				olled Rele	ases	Computed		Freess	Release
Dire	cted	Pepac- ton	Cannons- ville	Never- sink	Date	Wallenpau-	Rio Reservoir	Date	New Yo Reser	•	Power-	uncon-	Total		dits
Date	Amount					pack			Directed	Other	plants	trolled		Daily	Cumul.
2005	Col. 1	Col. 2	Col. 3	Col. 4	2005	Col. 5	Col. 6	2005	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11	Col. 12	Col. 13
Jan. 29	0	732	45	25	Jan. 31	771	0	Feb. 1	0	802	771	4,097	5,670	0	5,209
30	Ő	732	45	25 25	Feb. 1	729	301	2	ŏ	802	1,030	3,658	5,490	Ő	5,209
31	Õ	730	45	25	2	615	355	3	Õ	800	970	3,570	5,340	Õ	5,209
Feb. 1	0	730	45	25	3	807	426	4	0	800	1,233	3,267	5,300	0	5,209
2	0	730	45	25	4	623	89	5	0	800	712	3,228	4,740	0	5,209
3	0	730	82	25	5	373	85	6	0	837	458	3,095	4,390	0	5,209
4	0	729	107	25	6	498	280	7	0	861	778	3,031	4,670	0	5,209
5	0	736	149	25	7	451	0	8	0	910	451	3,109	4,470	0	5,209
6	0	727	170	25	8	440	11	9	0	922	451	3,177	4,550	0	5,209
7	0	726	181	25	9	533	226	10	0	932	759	4,219	5,910	0	5,209
8	0	724	181	25	10	536	287	11	0	930	823	6,107	7,860	0	5,209
9	0	722	135	25	11	510	135	12	0	882	645	5,113	6,640	0	5,209
10	0	722	93	25	12	0	99	13	0	840	99	4,401	5,340	0	5,209
11	0	269	68	25	13	9	184	14	0	362	193	4,175	4,730	0	5,209
12	0	74	46	25	14	284	372	15	0	145	656	5,469	6,270	0	5,209
13	0	56	48	25	15	323	202	16	0	129	525	8,946	9,600	0	5,209
14	0	51	46	25	16	261	167	17	0	122	428	10,950	11,500	0	5,209
15	0	36	45	25	17	329	174	18	0	106	503	9,991	10,600	0	5,209
16	0	36	46	25	18	261	223	19	0	107	484	8,269	8,860	0	5,209
17	0	62	46	25	19	0	489	20	0	133	489	7,638	8,260	0	5,209
18	0	463	46	25	20	0	256	21	0	534	256	6,700	7,490	0	5,209
19	0	463	46	25	21	1	404	22	0	534	405	6,061	7,000	0	5,209
20	0	334	46	25	22	667	305	23	0	405	972	5,563	6,940	0	5,209
21	0	164	45	25	23	829	174	24	0	234	1,003	5,083	6,320	0	5,209
22	0	54	45	25	24	570	277	25	0	124	847	4,629	5,600	0	5,209
23	0	110	45	25	25	537	326	26	0	180	863	4,207	5,250	0	5,209
24	0	272	45	25	26	501	326	27	0	342	827	3,941	5,110	0	5,209
25	0	452	45	25	27	592	291	28	0	522	883	3,875	5,280	0	5,209
Total	0	12,366	2,031	700		12,050	6,464		0	15,097	18,514	145,569	179,180		

[Mean discharge in cubic feet per second for 24 hours; Col., Column; Cumul., Cumulative]

Col. 2 - 24 hours beginning 1200 of date shown.

Col. 3 - 24 hours ending 2400 one day later.

Col. 4 - 24 hours beginning 1500 one day later.

Col. 5 - 24 hours beginning 0800 of date shown.

Col. 6 - 24 hours beginning 1600 of date shown.

Col. 7 = Col. 2 + Col. 3 + Col. 4 in response to direction (Col. 1).

Col. 8 = Col. 2 + Col. 3 + Col. 4 - Col. 7.

Col. 9 = Col. 5 + Col. 6.

Col. 10 = Col. 11 - Col. 7 - Col. 8 - Col. 9.

Col. 11 = 24 hours of calendar day shown.

Col. 12 = Col. 11 - Col. 8 - 1,750 ft³/s computed arithmetically, but not greater than Col. 7; except that part of Col. 8 contributing to the excess-release increment of Col. 11.

Controlle	ed Releases	s from Nev	v York City Re	eservoirs		ontrolled Releas n Power Reserv			Segregatio	on of Flow	v, Delawa	re River at N	lontague, No	ew Jersey	
Dire	cted	Pepac- ton	Cannons- ville	Never- sink	Date	Lake Wallenpau-	Rio Reservoir	Date	Contro New Yo Reserv	-	Power-	Computed uncon-	Total		Release dits
Date	Amount					pack			Directed	Other	plants	trolled		Daily	Cumul.
2005	Col. 1	Col. 2	Col. 3	Col. 4	2005	Col. 5	Col. 6	2005	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11	Col. 12	Col. 13
Feb. 26 27 28 Mar. 1 2	0 0 0 0 0	464 463 463 464	45 45 45 45 45	25 25 25 25 25 25	Feb. 28 Mar. 1 2 3 4	544 696 701 531 691	287 287 309 305 117	Mar. 1 2 3 4 5	0 0 0 0 0	534 534 533 533 534	831 983 1,010 836 808	3,675 3,523 3,427 3,051 3,018	5,040 5,040 4,970 4,420 4,360	0 0 0 0 0	5,209 5,209 5,209 5,209 5,209 5,209
3 4 5 6 7	0 0 0 0 0	464 464 463 464 464	79 138 173 183 156	25 25 25 25 25 25	5 6 7 8 9	430 576 615 630 589	71 67 362 578 387	6 7 8 9 10	0 0 0 0 0	568 627 661 672 645	501 643 977 1,208 976	3,051 3,090 3,972 4,550 4,009	4,120 4,360 5,610 6,430 5,630	0 0 0 0 0	5,209 5,209 5,209 5,209 5,209 5,209
8 9 10 11 12	0 0 0 0 0	464 464 464 464 464	90 60 62 62 62	25 25 25 25 25 25	10 11 12 13 14	627 339 0 4 419	266 443 443 379 348	11 12 13 14 15	0 0 0 0 0	579 549 551 551 551	893 782 443 383 767	3,648 3,469 3,766 3,466 3,102	5,120 4,800 4,760 4,400 4,420	0 0 0 0 0	5,209 5,209 5,209 5,209 5,209 5,209
13 14 15 16 17	0 0 0 0 0	464 463 320 158 155	62 77 114 127 127	25 25 25 25 25 25	15 16 17 18 19	371 444 387 400 0	82 85 82 82 0	16 17 18 19 20	0 0 0 0 0	551 565 459 310 307	453 529 469 482 0	3,106 2,966 2,912 2,978 3,213	4,110 4,060 3,840 3,770 3,520		
18 19 20 21 22	0 0 0 0 0	155 155 155 155 155	127 122 124 130 155	25 25 25 25 25 25	20 21 22 23 24	12 346 464 529 440	96 181 85 202 266	21 22 23 24 25	0 0 0 0 0	307 302 304 310 330	108 527 549 731 706	3,455 3,661 4,357 4,579 4,464	3,870 4,490 5,210 5,620 5,500		
23 24 25 26 27 28	0 0 0 0 0 0	124 118 77 77 70 36	156 111 93 84 50 45	25 25 25 25 25 25 25	25 26 27 28 29 30	379 0 363 657 712	390 174 227 1,429 1,234 1,443	26 27 28 29 30 31	0 0 0 0 0 0	305 254 195 186 145 106	769 174 227 1,792 1,891 2,155	4,146 4,422 7,478 55,022 53,964 37,939	5,220 4,850 7,900 57,000 56,000 40,200		
Total	0	9,789	2,994	775		12,896	10,707		0	13,558	23,603	251,479	288,640		

[Mean discharge in cubic feet per second for 24 hours; Col., Column; Cumul., Cumulative]

Col. 2 - 24 hours beginning 1200 of date shown.

Col. 3 - 24 hours ending 2400 one day later.

Col. 4 - 24 hours beginning 1500 one day later.

Col. 5 - 24 hours beginning 0800 of date shown.

Col. 6 - 24 hours beginning 1600 of date shown.

Col. 8 = Col. 2 + Col. 3 + Col. 4 - Col. 7.

Col. 7 =Col. 2 +Col. 3 +Col. 4 in response to direction (Col. 1).

Col. 9 = Col. 5 + Col. 6.

Col. 10 = Col. 11 - Col. 7 - Col. 8 - Col. 9.

Col. 11 = 24 hours of calendar day shown.

Col. 12 = Col. 11 - Col. 8 - 1,750 ft³/s computed arithmetically, but not greater than Col. 7; except that part of Col. 8 contributing to the excess-release increment of Col. 11.

Control	led Releas	es from New	York City Rese	ervoirs		Controlled Release om Power Reservo		Segre	gation of Flow	v, Delawa	re River at I	Montague, Nev	/ Jersey
Direc	ted	Pepacton	Cannons-	Never-	Date	Lake	Rio	Date	New Yo		ases Power-	Computed uncon-	Total
	A		ville	sink		Wallenpaupack	Reservoir		Reserv	1	plants	trolled	
Date 2005	Amount Col. 1	Col. 2	Col. 3	Col. 4	2005	Col. 5	Col. 6	2005	Directed Col. 7	Other Col. 8	Col. 9	Col. 10	Col. 11
2000	GOI. I	GUI. 2	601. 5	001. 4	2003	601. 5	601. 0	2003	601.7	601.0	601. 5	601.10	UUI. 11
Mar. 29	0	48	45	25	Mar. 31	1,528	1,472	Apr. 1	0	118	3,000	32,882	36,000
30	0	678	45	25	Apr. 1	1,665	1,720	2	0	748	3,385	46,867	51,000
31	0	415	45	25	2	1,664	6,000	3	0	485	7,664	167,851	176,000
Apr. 1	0	36	45	25	3	1,667	4,426	4	0	106	6,093	104,801	111,000
2	0	36	45	25	4	1,721	2,759	5	0	106	4,480	50,114	54,700
3	0	36	45	25	5	1,721	1,550	6	0	106	3,271	34,223	37,600
4	0	36	45	25	6	1,719	1,901	7	0	106	3,620	25,574	29,300
5	0	36	45	25	7	1,714	1,443	8	0	106	3,157	20,337	23,600
6	0	36	45	25	8	1,714	1,082	9	0	106	2,796	16,798	19,700
7	0	36	45	25	9	1,721	1,082	10	0	106	2,803	13,791	16,700
8	0	36	45	25	10	1,701	961	11	0	106	2,662	10,932	13,700
9	0	36	45	25	11	1,719	947	12	0	106	2,666	9,028	11,800
10	0	36	45	25	12	1,724	968	13	0	106	2,692	7,702	10,500
11	0	36	45	25	13	1,683	979	14	0	106	2,662	6,822	9,590
12	0	36	45	25	14	1,728	936	15	0	106	2,664	5,880	8,650
13	0	36	45	29	15	1,165	1,447	16	0	110	2,612	4,308	7,030
14	0	36	45	68	16	0	947	17	0	149	947	4,434	5,530
15	0	36	45	87	17	0	571	18	0	168	571	4,311	5,050
16	0 0	36	45	93	18	867	170	19	0	174	1,037	4,029	5,240
17	0	37	45	105	19	901	152	20	0	187	1,053	3,820	5,060
18	0	68	45	105	20	967	191	21	0	218	1,158	3,574	4,950
19	0	93	45	93	21	802	174	22	0	231	976	3,463	4,670
20	0	93	45	97	22	348	0	23	0	235	348	3,517	4,100
21	0	96	45	108	23	0	121	24	0	249	121	7,280	7,650
22	0	108	45	65	24	4	154	25	0	218	158	11,424	11,800
23	0	84	45	25	25	857	121	26	0	154	978	8,838	9,970
24	0	36	46	25	26	887	121	27	0	107	1,008	8,045	9,160
25	0	36	45	25	27	613	103	28	0	106	716	10,078	10,900
26 27	0	36 36	46 46	25 25	28 29	458 234	241 241	29 30	0 0	107 107	699 475	9,594 8,178	$10,400 \\ 8,760$
21	0			25	29		241			107	4/3	8,178	8,700
Total	0	2,440	1,353	1,350		33,492	32,980		0	5,143	66,472	648,495	720,110

[Mean discharge in cubic feet per second for 24 hours; Col., Column; Cumul., Cumulative]

Col. 2 - 24 hours beginning 1200 of date shown.

Col. 3 - 24 hours ending 2400 one day later.

Col. 4 - 24 hours beginning 1500 one day later.

Col. 5 - 24 hours beginning 0800 of date shown.

Col. 6 - 24 hours beginning 1600 of date shown.

Col. 7 =Col. 2 +Col. 3 +Col. 4 in response to direction (Col. 1).

Col. 8 = Col. 2 + Col. 3 + Col. 4 - Col. 7.

Col. 9 = Col. 5 + Col. 6.

Col. 10 = Col. 11 - Col. 7 - Col. 8 - Col. 9.

Col. 11 = 24 hours of calendar day shown.

Control	led Release	es from New	York City Reso	ervoirs		Controlled Release om Power Reservo		Segre	gation of Flow	v, Delawaı	re River at N	/lontague, New	Jersey
Direc	ted	Pepacton	Cannons- ville	Never- sink	Date	Lake Wallenpaupack	Rio Reservoir	Date	Contro New Yor Reserv		ases Power-	Computed uncon-	Total
Date	Amount	-	VIIIC	JIIK		Wanenpaapaek	neservon		Directed	Other	plants	trolled	
2005	Col. 1	Col. 2	Col. 3	Col. 4	2005	Col. 5	Col. 6	2005	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11
Apr. 28 29 30 May 1 2	0 0 0 0 0	36 36 36 36 36	46 46 45 45 46	25 25 25 25 25 25	Apr. 30 May 1 2 3 4	0 4 246 250 359	241 190 190 261 422	May 1 2 3 4 5	0 0 0 0 0	107 107 106 106 107	241 194 436 511 781	7,932 7,659 6,828 6,263 5,592	8,280 7,960 7,370 6,880 6,480
3 4 5 6 7	0 0 0 0 0	36 36 36 36 36	46 46 45 45	39 40 56 67 71	5 6 7 8 9	385 311 0 0 0	1,443 1,018 989 986 780	6 7 8 9 10	0 0 0 0 0	121 122 138 148 152	1,828 1,329 989 986 780	4,691 4,279 4,183 3,836 3,438	6,640 5,730 5,310 4,970 4,370
8 9 10 11 12	0 0 0 0 0	39 62 90 110 114	45 45 45 45 87	71 71 79 82 93	10 11 12 13 14	0 0 0 0 0	500 422 450 528 574	11 12 13 14 15	0 0 0 0 0	155 178 214 237 294	500 422 450 528 574	3,405 3,160 2,766 2,405 2,452	4,060 3,760 3,430 3,170 3,320
13 14 15 16 17	0 0 0 0 0	124 124 124 124 130	166 209 207 196 192	93 93 93 101 104	15 16 17 18 19	0 0 0 0 0	454 454 634 319 106	16 17 18 19 20	0 0 0 0 0	383 426 424 421 426	454 454 634 319 106	2,693 2,370 2,062 1,980 1,828	3,530 3,250 3,120 2,720 2,360
18 19 20 21 22	$0 \\ 0 \\ 240 \\ 0 \\ 285$	119 121 124 124 124	193 198 200 200 196	110 114 116 116 108	20 21 22 23 24	0 0 0 0 0	0 0 0 124 0	21 22 23 24 25	$ \begin{array}{c} 0 \\ 0 \\ 240 \\ 0 \\ 285 \end{array} $	422 433 200 440 143	$\begin{array}{c} 0\\ 0\\ 0\\ 124\\ 0\end{array}$	1,798 1,737 1,700 1,646 1,722	2,220 2,170 2,140 2,210 2,150
23 24 25 26 27 28	$0 \\ 63 \\ 223 \\ 237 \\ 0 \\ 210$	124 124 125 139 139 138	193 193 206 209 209 209	108 108 108 108 102 77	25 26 27 28 29 30	0 0 0 0 0		26 27 28 29 30 31	0 63 223 237 0 210	425 362 216 219 450 211	$ \begin{array}{c} 61 \\ 17 \\ 35 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	1,694 1,708 1,656 1,824 1,870 1,749	2,180 2,150 2,130 2,280 2,320 2,170
Total	1,258	2,802	3,896	2,453		1,555	11,198		1,258	7,893	12,753	98,926	120,830

[Mean discharge in cubic feet per second for 24 hours; Col., Column; Cumul., Cumulative]

Col. 2 - 24 hours beginning 1200 of date shown.

Col. 3 - 24 hours ending 2400 one day later.

Col. 4 - 24 hours beginning 1500 one day later.

Col. 5 - 24 hours beginning 0800 of date shown.

Col. 6 - 24 hours beginning 1600 of date shown.

Col. 10 = Col. 11 - Col. 7 - Col. 8 - Col. 9.

Col. 8 = Col. 2 + Col. 3 + Col. 4 - Col. 7.

Col. 9 = Col. 5 + Col. 6.

Col. 7 =Col. 2 +Col. 3 +Col. 4 in response to direction (Col. 1).

Col. 11 = 24 hours of calendar day shown.

Controlle	ed Releases	s from Nev	v York City Re	eservoirs		ontrolled Releas n Power Reserv			Segregatio	on of Flov	v, Delawa	re River at M	ontague, N	ew Jersey	
Dire	cted	Pepac- ton	Cannons- ville	Never- sink	Date	Lake Wallenpau-	Rio Reservoir	Date	Contro New Yo Reser	-	Power-	Computed uncon-	Total		Release dits
Date	Amount					pack			Directed	Other	plants	trolled		Daily	Cumul.
2005	Col. 1	Col. 2	Col. 3	Col. 4	2005	Col. 5	Col. 6	2005	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11	Col. 12	Col. 13
May 29 30 31 June 1 2	0 135 170 250 372	124 125 139 139 139	201 212 218 218 221	80 94 108 108 116	May 31 June 1 2 3 4	0 0 0 0 0	0 0 32 0 0	June 1 2 3 4 5	0 135 170 250 372	405 296 295 215 104	$ \begin{array}{c} 0 \\ 0 \\ 32 \\ 0 \\ 0 \end{array} $	1,585 1,569 1,373 1,335 1,294	1,990 2,000 1,870 1,800 1,770		
3 4 5 6 7	447 326 345 526 499	145 145 145 145 139	283 504 560 373 309	116 116 114 108 116	5 6 7 8 9	0 0 18 362	0 0 358 386 376	6 7 8 9 10	447 326 345 526 499	97 439 474 100 65	0 0 358 404 738	1,096 1,255 1,333 1,320 1,168	1,640 2,020 2,510 2,350 2,470		
8 9 10 11 12	89 0 0 0 0	145 142 136 170 164	393 484 459 450 323	116 116 139 116 118	10 11 12 13 14	312 0 4 975 579	387 387 387 383 354	11 12 13 14 15	89 0 0 0 0	565 742 734 736 605	699 387 391 1,358 933	1,217 1,241 1,185 1,046 1,102	2,570 2,370 2,310 3,140 2,640	0	0
13 14 15 16 17	$0 \\ 0 \\ 0 \\ 467 \\ 495$	155 155 147 147 131	305 277 240 221 241	124 131 131 131 124	15 16 17 18 19	406 446 269 0 23	387 387 387 387 387 379	16 17 18 19 20	$0 \\ 0 \\ 0 \\ 467 \\ 496$	584 563 518 32 0	793 833 656 387 402	923 964 1,036 1,044 992	2,300 2,360 2,210 1,930 1,890	50 3 50 148 140	50 53 103 251 391
18 19 20 21 22	113 207 643 687 734	131 133 139 147 145	215 217 374 410 453	116 116 131 131 131	20 21 22 23 24	420 600 480 514 406	376 337 0 0 0	21 22 23 24 25	113 207 644 688 729	349 259 0 0 0	796 937 480 514 406	972 887 836 788 785	2,230 2,290 1,960 1,990 1,920	113 207 210 240 170	504 711 921 1,161 1,331
23 24 25 26 27	1,089 1,106 585 501 468	147 170 178 139 145	767 772 377 257 260	173 155 131 124 87	25 26 27 28 29	0 13 551 580 502	$ \begin{array}{c} 0 \\ 32 \\ 106 \\ 46 \\ 32 \end{array} $	26 27 28 29 30	1,087 1,097 585 501 468	0 0 101 19 24	0 45 657 626 534	683 708 1,087 1,274 1,754	1,770 1,850 2,430 2,420 2,780	20 100 579 501 468	1,351 1,451 2,030 2,531 2,999
Total	10,254	4,351	10,594	3,617		7,460	5,906		10,241	8,321	13,366	33,852	65,780		

[Mean discharge in cubic feet per second for 24 hours; Col., Column; Cumul., Cumulative]

Col. 2 - 24 hours beginning 1200 of date shown.

Col. 3 - 24 hours ending 2400 one day later.

- Col. 4 24 hours beginning 1500 one day later.
- Col. 5 24 hours beginning 0800 of date shown.

Col. 6 - 24 hours beginning 1600 of date shown.

Col. 7 = Col. 2 + Col. 3 + Col. 4 in response to direction (Col. 1).

Col. 8 = Col. 2 + Col. 3 + Col. 4 - Col. 7.

- Col. 9 = Col. 5 + Col. 6.
- Col. 10 = Col. 11 Col. 7 Col. 8 Col. 9.
- Col. 11 = 24 hours of calendar day shown.

Col. 12 = Col. 11 - Col. 8 - 1,750 ft³/s computed arithmetically, but not greater than Col. 7; except that part of Col. 8 contributing to the excess-release increment of Col. 11.

Col. 13 = Season limit of cumulative credit beginning June 15, 2005 = 11,418 (ft³/s)·d. A total of 5,718 (ft³/s)·d is available for release.

Controlle	d Releases	s from Nev	v York City Re	eservoirs		ontrolled Releas n Power Reserv			Segregatio	on of Flow	v, Delawa	re River at M	ontague, No	ew Jersey	
Dire	cted	Pepac- ton	Cannons- ville	Never- sink	Date	Lake Wallenpau-	Rio Reservoir	Date	Contro New Yo Reserv		Power-	Computed uncon-	Total		Release dits
Date	Amount					pack			Directed	Other	plants	trolled		Daily	Cumul.
2005	Col. 1	Col. 2	Col. 3	Col. 4	2005	Col. 5	Col. 6	2005	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11	Col. 12	Col. 13
June 28 29 30 July 1 2	0 271 674 797 566	145 145 118 145 139	316 277 476 588 340	68 40 85 65 80	June 30 July 1 2 3 4	$\begin{array}{c} 302\\ 441\\ 0\\ 0\\ 0\\ 0\end{array}$	$ \begin{array}{r} 168 \\ 60 \\ 0 \\ 0 \\ 46 \end{array} $	July 1 2 3 4 5	0 271 679 798 559	529 191 0 0 0	$470 \\ 501 \\ 0 \\ 0 \\ 46$	1,591 1,547 1,131 1,032 985	2,590 2,510 1,810 1,830 1,590	0 271 60 80 -160	2,999 3,270 3,330 3,410 3,250
3 4 5 6 7	326 216 230 0 0	139 155 141 97 104	246 246 229 209 114	93 87 80 51 31	5 6 7 8 9	460 416 513 497 0	106 121 60 0 0	6 7 8 9 10	326 216 230 0 0	152 272 220 357 249	566 537 573 497 0	986 1,365 1,967 2,376 2,031	2,030 2,390 2,990 3,230 2,280	128 216 230 0 0	3,378 3,594 3,824 3,824 3,824
8 9 10 11 12	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 197 \\ 425 \end{array} $	88 99 118 131 131	101 152 215 246 278	28 51 124 150 124	10 11 12 13 14	0 505 743 513 594	60 106 106 121 135	11 12 13 14 15	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 197 \\ 425 \end{array} $	217 302 457 330 108	60 611 849 634 729	1,773 1,347 1,204 1,149 1,038	2,050 2,260 2,510 2,310 2,300	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 197 \\ 425 \end{array} $	3,824 3,824 3,824 4,021 4,446
13 14 15 16 17	270 708 0 0 0	131 135 139 139 139	248 446 238 234 234	124 124 90 80 85	15 16 17 18 19	703 0 1 663 711	78 0 32 106 135	16 17 18 19 20	270 705 0 0 0	233 0 467 453 458	781 0 33 769 846	1,006 865 1,080 998 936	2,290 1,570 1,580 2,220 2,240	270 -180 -170 33 18	4,716 4,536 4,366 4,399 4,417
18 19 20 21 22	256 430 433 1,213 1,041	142 169 186 186 186	254 255 252 910 738	88 114 116 116 116	20 21 22 23 24	542 632 632 0 0	28 96 0 0 0	21 22 23 24 25	256 430 433 1,212 1,040	228 108 121 0 0	570 728 632 0 0	906 754 874 548 620	1,960 2,020 2,060 1,760 1,660	50 162 suspe	4,467 4,629 ended
23 24 25 26 27 28	704 778 787 728 769 1,297	186 186 186 186 178 178	404 447 449 416 466 1,002	116 144 147 124 124 116	25 26 27 28 29 30	534 313 294 373 546 0	60 103 0 0 0 0 0	26 27 28 29 30 31	706 777 782 726 768 1,296	0 0 0 0 0 0	594 416 294 373 546 0	660 627 684 661 576 404	1,960 1,820 1,760 1,760 1,890 1,700		
Total	13,116	4,547	11,026	2,981		10,928	1,727		13,102	5,452	12,655	33,721	64,930		

[Mean discharge in cubic feet per second for 24 hours; Col., Column; Cumul., Cumulative]

Col. 2 - 24 hours beginning 1200 of date shown.

Col. 3 - 24 hours ending 2400 one day later.

- Col. 4 24 hours beginning 1500 one day later.
- Col. 5 24 hours beginning 0800 of date shown.

Col. 6 - 24 hours beginning 1600 of date shown.

Col. 7 = Col. 2 + Col. 3 + Col. 4 in response to direction (Col. 1). Col. 8 = Col. 2 + Col. 3 + Col. 4 - Col. 7.

Col. 9 = Col. 5 + Col. 6.

- Col. 10 = Col. 11 Col. 7 Col. 8 Col. 9.
- Col. 11 = 24 hours of calendar day shown.

- Col. 12 = Col. 11 Col. 8 1,750 ft³/s computed arithmetically, but not greater than Col. 7; except that part of Col. 8 contributing to the excess-release increment of Col. 11.
- Col. 13 = Season limit of cumulative credit beginning June 15, 2005 = 11,418 (ft³/s)·d. A total of 5,718 (ft³/s)·d is available for release.

Controlle	ed Releases	s from Nev	v York City Re	eservoirs		ontrolled Releas n Power Reserv			Segregatio	on of Flov	v, Delawa	re River at M	ontague, No	ew Jersey	
Dire	cted	Pepac- ton	Cannons- ville	Never- sink	Date	Lake Wallenpau-	Rio Reservoir	Date	Contro New Yo Reserv	-	Power-	Computed uncon-	Total	1	Release dits
Date	Amount					pack			Directed	Other	plants	trolled		Daily	Cumul
2005	Col. 1	Col. 2	Col. 3	Col. 4	2005	Col. 5	Col. 6	2005	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11	Col. 12	Col. 13
	1 201	170							1 200		,			1	1
July 29	1,291	178	996	116	July 31	0	0	Aug. 1	1,290	0	0	460	1,750		
30	1,086	183	794	110	Aug. 1	158	0	2	1,087	0	158	575	1,820		
31	1,107	161	828	116	2	140	0	3	1,105	0	140	585	1,830		
Aug. 1	1,027	183	724	124	3	151	0	4	1,031	0	151	558	1,740		
2	1,085	186	753	147	4	133	0	5	1,086	0	133	501	1,720		
3	953	186	640	124	5	378	0	6	950	0	378	482	1,810		
4	1,313	186	979	124	6	0	0	7	1,289	0	0	401	1,690		
5	1,385	186	1,091	116	7	0	0	8	1,393	0	0	367	1,760		
6	1,410	186	1,108	116	8	0	0	9	1,410	0	0	590	2,000		
7	1,410	186	1,097	124	9	0	0	10	1,407	0	0	603	2,010		
8	1,437	186	1,128	124	10	0	0	11	1,438	0	0	422	1,860		
9	1,308	186	992	124	11	378	45	12	1,302	0 0	423	395	2,120		
10	1,017	186	715	116	12	357	14	13	1,017	Ő	371	832	2,220		
11	1,342	186	1,030	122	13	0	0	13	1,338	0	0	752	2,090		
12	1,327	186	1,015	122	14	0 0	0	15	1,325	0	0	935	2,260		
13	947	186	637	124	15	0	11	16	947	0	11	832	1,790		
13	926	186	631	108	15	0	43	10	925	0	43	592	1,560		
15	1,102	186	811	108	10	0	43 14	17	1,105	0	43 14	521	1,500		
16	1,1102	186	818	110	18	0		10	1,114	0		476	1,590		
17	1,188	186	891	116	10	0	0	20	1,193	0	0	437	1,630		
18	1,209	193	897	116	20	0	0	21	1,206	0	0	434	1,640		
19	1,196	193	888	116	21	0	0	22	1,197	0	0	423	1,620		
20	1,374	193	1,061	116	22	0	0	23	1,370	0	0	350	1,720		
21	1,411	193	1,101	116	23	0	0	24	1,410	0	0	340	1,750		
22	1,431	193	1,118	116	24	0	0	25	1,427	0	0	303	1,730		
23	1,143	193	832	116	25	257	32	26	1,141	0	289	350	1,780		
24	1,182	193	873	118	26	1,097	103	27	1,184	0	1,200	326	2,710		
25	1,494	193	1,171	124	27	595	46	28	1,488	0	641	471	2,600		
26	1,489	193	1,168	124	28	0	0	29	1,485	0	0	475	1,960		
27	1,415	193	1,095	124	29	15	Õ	30	1,412	Õ	15	443	1,870		
28	1,209	193	905	108	30	0	0	31	1,206	0	0	924	2,130		
Total	38,330	5,804	28,787	3,687		3,659	308		38,278	0	3,967	16,155	58,400		

[Mean discharge in cubic feet per second for 24 hours; Col., Column; Cumul., Cumulative]

Col. 2 - 24 hours beginning 1200 of date shown.

Col. 3 - 24 hours ending 2400 one day later.

Col. 4 - 24 hours beginning 1500 one day later.

Col. 5 - 24 hours beginning 0800 of date shown.

Col. 6 - 24 hours beginning 1600 of date shown.

Col. 7 = Col. 2 + Col. 3 + Col. 4 in response to direction (Col. 1).

Col. 8 =Col. 2 +Col. 3 +Col. 4 -Col. 7.

Col. 9 = Col. 5 + Col. 6.

Col. 10 =Col. 11 -Col. 7 -Col. 8 -Col. 9. Col. 11 = 24 hours of calendar day shown. Col. 12 = Col. 11 - Col. 8 - 1,750 ft³/s computed arithmetically, but not greater than Col. 7; except that part of Col. 8 contributing to the excess-release increment of Col. 11.

Col. 13 = Season limit of cumulative credit beginning June 15, 2005 = 11,418 (ft³/s)·d. A total of 5,718 (ft³/s)·d is available for release.

Controlle	ed Release:	s from Nev	v York City Re	eservoirs		ontrolled Releas n Power Reserv			Segregatio	on of Flov	v, Delawa	re River at M	ontague, Ne	ew Jersey	
Dire	cted	Pepac- ton	Cannons- ville	Never- sink	Date	Lake Wallenpau-	Rio Reservoir	Date	Contro New Yo Reser	-	Power-	Computed uncon-	Total		Release dits
Date	Amount					pack			Directed	Other	plants	trolled		Daily	Cumul.
2005	Col. 1	Col. 2	Col. 3	Col. 4	2005	Col. 5	Col. 6	2005	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11	Col. 12	Col. 13
Aug. 29 30 31 Sept. 1 2	679 430 642 832 1,100	193 178 178 178 193	377 234 357 529 783	108 108 108 124 124	Aug. 31 Sept. 1 2 3 4	0 306 279 0 0	0 0 0 0 0	Sept. 1 2 3 4 5	678 430 643 831 1,100	0 90 0 0	$ \begin{array}{c} 0 \\ 306 \\ 279 \\ 0 \\ 0 \end{array} $	1,282 1,144 968 679 500	1,960 1,970 1,890 1,510 1,600		
3 4 5 6 7	1,242 971 1,017 1,047 1,114	193 193 173 172 173	925 657 718 750 815	124 124 124 124 124	5 6 7 8 9	0 205 345 296 245	0 0 0 0 0	6 7 8 9 10	1,242 974 1,015 1,046 1,112	0 0 0 0 0	0 205 345 296 245	428 471 480 458 443	1,670 1,650 1,840 1,800 1,800		
8 9 10 11 12	1,233 1,452 1,257 1,270 1,248	173 193 193 193 193	937 1,137 937 954 930	124 124 124 124 124	10 11 12 13 14	284 0 174 215 136	0 0 0 0 0	11 12 13 14 15	1,234 1,454 1,254 1,271 1,247	0 0 0 0 0	284 0 174 215 136	432 306 352 384 407	1,950 1,760 1,780 1,870 1,790		
13 14 15 16 17	1,137 737 1,035 1,287 1,206	193 193 193 193 193	871 433 726 978 897	124 116 116 116 116	15 16 17 18 19	171 288 0 0 185	0 0 0 0 0	16 17 18 19 20	1,188 742 1,035 1,287 1,206	0 0 0 0 0	$ \begin{array}{r} 171 \\ 288 \\ 0 \\ 0 \\ 185 \end{array} $	481 560 265 263 309	1,840 1,590 1,300 1,550 1,700		
18 19 20 21 22	1,210 1,219 1,272 1,270 1,240	193 193 193 193 193	900 907 961 959 930	116 116 116 116 116	20 21 22 23 24	201 159 245 204 266	0 0 0 0 0	21 22 23 24 25	1,209 1,216 1,270 1,268 1,239	0 0 0 0 0	201 159 245 204 266	360 355 325 328 335	1,770 1,730 1,840 1,800 1,840		
23 24 25 26 27	1,512 1,175 908 1,229 1,303	193 201 201 201 201	1,193 846 588 903 982	124 124 124 124 124 116	25 26 27 28 29	0 0 0 0 0	0 0 0 0 0	26 27 28 29 30	1,510 1,171 913 1,228 1,299	0 0 0 0 0	0 0 0 0 0	260 379 457 412 421	1,770 1,550 1,370 1,640 1,720		
Total	33,324	5,696	24,114	3,592		4,204	0		33,312	90	4,204	14,244	51,850		

[Mean discharge in cubic feet per second for 24 hours; Col., Column; Cumul., Cumulative]

Col. 2 - 24 hours beginning 1200 of date shown. Col. 3 - 24 hours ending 2400 one day later.

Col. 4 - 24 hours beginning 1500 one day later.

Col. 5 - 24 hours beginning 0800 of date shown.

Col. 6 - 24 hours beginning 1600 of date shown.

Col. 7 =Col. 2 +Col. 3 +Col. 4 in response to direction (Col. 1).

Col. 8 = Col. 2 + Col. 3 + Col. 4 - Col. 7.

Col. 9 = Col. 5 + Col. 6.

Col. 10 = Col. 11 - Col. 7 - Col. 8 - Col. 9.

Col. 11 = 24 hours of calendar day shown.

- Col. 12 = Col. 11 Col. 8 1,750 ft³/s computed arithmetically, but not greater than Col. 7; except that part of Col. 8 contributing to the excess-release increment of Col. 11.
- Col. 13 = Season limit of cumulative credit begin-ning June 15, 2005 = 11,418 (ft³/s)·d. A total of 5,718 (ft³/s)·d is available for release.

Controlle	ed Releases	s from Nev	v York City Re	eservoirs		ontrolled Releas n Power Reserv			Segregatio	on of Flov	v, Delawa	re River at M	ontague, No	ew Jersey	
Dire	cted	Pepac- ton	Cannons- ville	Never- sink	Date	Lake Wallenpau-	Rio Reservoir	Date	Contro New You Reserv		Power-	Computed uncon-	Total		Release dits
Date	Amount					pack			Directed	Other	plants	trolled		Daily	Cumul.
2005	Col. 1	Col. 2	Col. 3	Col. 4	2005	Col. 5	Col. 6	2005	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11	Col. 12	Col. 13
Sept. 28 29 30 Oct. 1 2	1,308 1,376 1,446 1,463 1,481	193 193 195 193 193	998 1,067 1,139 1,154 1,170	116 118 116 116 116	Sept. 30 Oct. 1 2 3 4	0 0 0 0 0	0 0 0 0 0	Oct. 1 2 3 4 5	1,307 1,378 1,450 1,463 1,479	0 0 0 0 0	0 0 0 0 0	383 342 290 287 281	1,690 1,720 1,740 1,750 1,760		
3 4 5 6 7	1,490 1,466 1,411 1,116 0	193 201 201 201 195	1,180 1,149 1,091 787 325	116 116 116 116 26	5 6 7 8 9	0 0 0 0 0	0 0 212 391	6 7 8 9 10	1,489 1,466 1,408 1,104 0	0 0 0 546	0 0 212 391	261 274 4,042 14,284 10,363	1,750 1,740 5,450 15,600 11,300		
8 9 10 11 12	0 0 0 0 0	136 190 183 172 105	155 218 179 127 48	80 36 25 25 25	10 11 12 13 14	0 0 0 31	188 369 571 688 734	11 12 13 14 15	0 0 0 0 0	371 444 387 324 178	188 369 571 688 765	5,881 6,847 23,742 23,488 19,557	6,440 7,660 24,700 24,500 20,500		
13 14 15 16 17	0 0 0 0 0	36 36 36 36 36	48 48 48 48 46	25 25 25 25 25 25	15 16 17 18 19	0 0 176 88 0	741 745 741 918 826	16 17 18 19 20	0 0 0 0 0	109 109 109 109 107	741 745 917 1,006 826	15,350 10,546 8,074 6,125 4,977	16,200 11,400 9,100 7,240 5,910		
18 19 20 21 22	0 0 0 0 0	54 84 128 138 107	59 105 139 124 65	37 37 25 25 25	20 21 22 23 24	319 332 430 447 530	740 730 716 709 720	21 22 23 24 25	0 0 0 0 0	150 226 292 287 197	1,059 1,062 1,146 1,156 1,250	4,261 3,742 9,262 13,657 12,753	5,470 5,030 10,700 15,100 14,200		
23 24 25 26 27 28	0 0 0 0 0 0	36 36 36 36 36 36	46 43 46 45 46 46	25 25 25 25 25 25 26	25 26 27 28 29 30	417 597 652 780 747 837	716 730 723 734 766 738	26 27 28 29 30 31	0 0 0 0 0 0	107 104 107 106 107 108	1,133 1,327 1,375 1,514 1,513 1,575	22,660 16,569 11,818 9,180 7,610 6,437	23,900 18,000 13,300 10,800 9,230 8,120		
Total	12,557	3,651	11,789	1,688		6,383	15,146		12,544	4,584	21,529	273,343	312,000		

[Mean discharge in cubic feet per second for 24 hours; Col., Column; Cumul., Cumulative]

Col. 2 - 24 hours beginning 1200 of date shown.

Col. 3 - 24 hours ending 2400 one day later.

Col. 4 - 24 hours beginning 1500 one day later.

Col. 5 - 24 hours beginning 0800 of date shown.

Col. 6 - 24 hours beginning 1600 of date shown.

Col. 7 = Col. 2 + Col. 3 + Col. 4 in response to direction (Col. 1).

Col. 8 =Col. 2 +Col. 3 +Col. 4 -Col. 7. Col. 9 =Col. 5 +Col. 6.

Col. 9 = Col. 3 + Col. 0.

Col. 10 =Col. 11 -Col. 7 -Col. 8 -Col. 9. Col. 11 = 24 hours of calendar day shown. Col. 12 = Col. 11 - Col. 8 - 1,750 ft³/s computed arithmetically, but not greater than Col. 7; except that part of Col. 8 contributing to the excess-release increment of Col. 11.

Col. 13 = Season limit of cumulative credit beginning June 15, 2005 = 11,418 (ft³/s)·d. A total of 5,718 (ft³/s)·d is available for release.

Controlle	ed Releases	s from Nev	v York City R	eservoirs		ontrolled Releas n Power Reserv			Segregatio	on of Flov	v, Delawa	re River at N	lontague, No	ew Jersey	
Dire	cted	Pepac- ton	Cannons- ville	Never- sink	Date	Lake Wallenpau-	Rio Reservoir	Date	Contro New Yo Reserv		Power-	Computed uncon-	Total		Release edits
Date	Amount					pack			Directed	Other	plants	trolled		Daily	Cumul.
2005	Col. 1	Col. 2	Col. 3	Col. 4	2005	Col. 5	Col. 6	2005	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11	Col. 12	Col. 13
Oct. 29 30 31 Nov. 1	0 0 0 0	37 36 36 36	48 48 45 45	25 25 25 25	Oct. 31 Nov. 1 2 3	890 825 681 845	732 727 738 266	Nov. 1 2 3 4	0 0 0 0	110 109 106 106	1,622 1,552 1,419 1,111	5,468 4,879 4,845 4,393	7,200 6,540 6,370 5,610	0	4,629
2 3 4 5 6 7	0 0 0 0 0 0	36 45 63 76 91 91	43 45 46 45 45 45	25 25 25 25 25 25 25	4 5 6 7 8 9	754 823 759 541 521 743	351 0 0 40 344	5 6 7 8 9 10	0 0 0 0 0 0	104 115 134 146 161 161	1,105 823 759 541 561 1,087	3,781 3,502 3,397 3,503 3,258 3,562	4,990 4,440 4,290 4,190 3,980 4,810	0 0 0 0 0 0	4,629 4,629 4,629 4,629 4,629 4,629 4,629
8 9 10 11 12	0 0 0 0 0	91 84 68 48 36	45 46 46 46 46	25 25 25 25 25 25	10 11 12 13 14	637 433 0 0 481	344 390 387 252 0	11 12 13 14 15	0 0 0 0 0	161 155 139 119 107	981 823 387 252 481	4,728 4,182 3,704 3,389 3,242	5,870 5,160 4,230 3,760 3,830	0 0 0 0 0	4,629 4,629 4,629 4,629 4,629
13 14 15 16 17	0 0 0 0 0	45 73 50 36 36	46 46 45 46	25 25 25 25 25 25	15 16 17 18 19	386 483 491 387 0	64 163 96 330 89	16 17 18 19 20	0 0 0 0 0	116 144 121 106 107	450 646 587 717 89	3,944 7,960 9,692 6,977 6,064	4,510 8,750 10,400 7,800 6,260	0 0 0 suspe	4,629 4,629 4,629 4,629 ended
18 19 20 21 22	0 0 0 0 0	36 36 36 36 36	46 46 46 46 46	25 25 25 25 25 25	20 21 22 23 24	0 503 210 172 303	177 163 284 486 645	21 22 23 24 25	0 0 0 0 0	107 107 107 107 107	177 666 494 658 948	5,306 5,337 6,069 5,365 4,645	5,590 6,110 6,670 6,130 5,700		
23 24 25 26 27	0 0 0 0 0	36 36 51 79 97	46 46 48 63 60	25 25 25 25 25 25	25 26 27 28 29	282 0 0 157 213	567 411 305 0 103	26 27 28 29 30	0 0 0 0 0	107 107 124 167 182	849 411 305 157 316	4,124 3,662 3,551 3,676 14,502	5,080 4,180 3,980 4,000 15,000		
Total	0	1,593	1,406	750		12,520	8,454		0	3,749	20,974	150,707	175,430		

[Mean discharge in cubic feet per second for 24 hours; Col., Column; Cumul., Cumulative]

Col. 2 - 24 hours beginning 1200 of date shown. Col. 3 - 24 hours ending 2400 one day later.

Col. 4 - 24 hours beginning 1500 one day later.

Col. 5 - 24 hours beginning 0800 of date shown.

Col. 6 - 24 hours beginning 1600 of date shown.

Col. 7 =Col. 2 +Col. 3 +Col. 4 in response to direction (Col. 1).

Col. 8 = Col. 2 + Col. 3 + Col. 4 - Col. 7.

Col. 9 = Col. 5 + Col. 6.

Col. 10 = Col. 11 - Col. 7 - Col. 8 - Col. 9.

Col. 11 = 24 hours of calendar day shown.

- Col. 12 = Col. 11 Col. 8 1,750 ft³/s computed arithmetically, but not greater than Col. 7; except that part of Col. 8 contributing to the excess-release increment of Col. 11.
- Col. 13 = Season limit of cumulative credit begin-ning June 15, 2005 = 11,418 (ft³/s)·d. A total of 5,718 (ft³/s)·d is available for release.

Date 2004	East Delaware Tunnel	West Delaware Tunnel	Neversink Tunnel	Average June 1, 2004, to date	Date 2005	East Delaware Tunnel	West Delaware Tunnel	Neversink Tunnel	Average June 1, 2004, to date
Dec. 1	0	0	0	517	Jan. 1	446	0	0	493
2	0	0	0	514	2	446	0	0	493
3	0	0	0	511	3	446	0	0	493
4	0	ů 0	0	509	4	446	ů 0	ů 0	493
5	0	0	0	506	5	446	0	0	493
6	0	0	0	503	6	446	0	0	492
7	0	0	0	501	7	446	0	0	492
8	0	0	189	499	8	446	0	0	492
9	0	0	303	498	9	446	0	0	492
10	0	0	313	497	10	446	0	0	491
11	0	0	324	496	11	446	0	0	491
12	0	0	321	495	12	446	0	0	491
13	0	0	324	494	13	447	0	0	491
14	0	0	386	494	14	444	0	0	491
15	0	0	387	493	15	442	0	0	490
16	0	0	387	493	16	310	0	0	490
17	0	0	338	492	17	0	0	0	488
18	0	0	386	491	18	0	0	270	487
19	0	0	387	491	19	0	0	384	486
20	0	0	357	490	20	242	0	26	485
21	229	0	378	491	21	286	0	0	484
22	283	0	389	492	22	297	0	0	484
23	294	0	389	493	23	294	0	0	483
24	288	0	388	494	24	297	0	0	482
25	287	0	387	494	25	298	0	0	481
26	289	0	386	495	26	428	0	0	481
27	303	0	387	496	27	445	0	0	481
28	0	0	388	496	28	222	0	0	480
29	0	0	382	495	29	0	299	0	479
30	0	0	388	495	30	0	301	0	478
31	1	0	276	494	31	0	301	0	478
Total	1,974	0	8,540			9,804	901	680	

Date 2005	East Delaware Tunnel	West Delaware Tunnel	Neversink Tunnel	Average June 1, 2004, to date	Date 2005	East Delaware Tunnel	West Delaware Tunnel	Neversink Tunnel	Average June 1, 2004 to date
Feb. 1	0	301	0	477	Mar. 1	312	300	0	487
	0	300	0	476	2	277	300	0	487
2	0	300	0	470	$\frac{2}{3}$	261	297	0	487
2 3 4 5	0	301	0	475	4	201	300	0	487
4	0		0		4 5			0	
Э	0	300	0	474	5	260	300	0	488
6 7	0	300	0	473	6	299	300	0	488
7	0	300	0	473	7	262	300	0	489
8	0	300	0	472	8	292	300	0	489
9	227	300	0	472	9	264	300	0	489
10	444	301	0	473	10	282	300	0	489
11	448	301	0	474	11	258	300	0	490
12	448	301	Ő	475	12	298	300	Ő	490
13	448	301	0	477	13	341	300	0 0	491
14	443	298	Ő	478	13	218	13	Ő	490
15	448	300	0	479	15	203	296	0	490
16	449	300	0	480	16	269	297	0	490
17	449	300	Ő	481	10	445	300	Ő	491
18	448	300	0 0	482	18	447	293	Ő	492
19	443	300	0	483	10	447	300	0	493
20	448	300	0	484	20	447	300	0	494
21	448	300	0	485	21	447	300	0	494
21	448	300	0	486	21	447	300	0	495
23	447	300	0	487	23	445	300	0	496
23	447	300	0	487	23	450	275	0	490
24	180	300	0	488	24	182	200	0	496
			Ũ						
26	0	300	0	487	26	200	200	0	496
27	0	300	0	486	27	200	200	0	496
28	208	300	0	486	28	0	0	0	494
					29	0	0	0	493
					30	0	0	0	491
					31	0	0	0	489
Total	7,321	8,404	0			8,529	7,471	0	

Date 2005	East Delaware Tunnel	West Delaware Tunnel	Neversink Tunnel	Average June 1, 2004, to date	Date 2005	East Delaware Tunnel	West Delaware Tunnel	Neversink Tunnel	Average June 1, 2004, to date
Apr. 1	0	0	0	488	May 1	450	0	272	482
2	Ő	Ő	Ő	486	2	450	Ő	271	482
3	Ő	Ő	Ő	485	3	450	Ő	271	483
3 4	Ő	Ő	Ő	483	4	449	Ő	328	484
5	Ő	Ő	Ő	481	5	449	Ő	215	485
6	0	0	0	480	6	450	0	209	485
7	0	0	0	478	7	450	0	0	485
8	0	0	0	477	8	450	0	0	485
9	0	0	0	475	9	450	0	0	485
10	72	0	0	474	10	450	269	0	485
11	0	0	244	473	11	450	427	174	487
12	0	0	277	473	12	450	490	197	489
13	371	0	21	472	13	449	490	212	491
14	447	0	326	473	14	449	490	0	492
15	480	0	294	474	15	332	490	0	493
16	501	0	274	475	16	281	305	0	493
17	501	0	274	476	17	429	300	0	494
18	501	0	269	477	18	300	300	0	494
19	455	0	273	478	19	273	300	0	495
20	297	0	273	478	20	440	299	0	495
21	303	0	273	478	21	448	300	0	496
22	450	0	75	479	22	448	299	0	497
23	450	0	0	478	23	448	299	0	497
24	445	0	0	478	24	447	299	0	498
25	445	0	0	478	25	447	300	0	499
26	450	0	0	478	26	461	300	0	499
27	451	0	248	479	27	446	300	0	500
28	450	0	273	480	28	450	300	0	501
29	445	0	273	480	29	450	300	0	502
30	450	0	271	481	30	445	297	0	502
					31	298	300	263	503
Total	7,964	0	3,938			13,139	7,454	2,412	

Date 2005	East Delaware Tunnel	West Delaware Tunnel	Neversink Tunnel	Average June 1, 2005, to date	Date 2005	East Delaware Tunnel	West Delaware Tunnel	Neversink Tunnel	Average June 1, 2005, to date
June 1	301	300	112	713	July 1	347	1	385	709
	280	299	0	646	2	246	0	384	706
3	297	299	Ő	629	3	339	ő	326	705
2 3 4	278	299	Ő	616	4	340	Ő	325	704
5	290	296	ů 0	610	5	339	0	341	703
6	283	300	0	606	6	343	0	345	703
7	312	300	0	607	7	339	0	346	702
8	290	300	0	605	8	211	0	346	698
9	289	300	0	603	9	339	0	346	698
10	282	300	0	601	10	335	0	346	698
11	303	300	0	601	11	427	0	346	699
12	304	299	0	601	12	452	0	343	702
13	305	291	0	601	13	452	0	268	702
14	441	297	0	611	14	452	0	381	705
15	448	298	9	620	15	447	0	391	708
16	489	301	0	631	16	447	0	396	711
17	501	300	0	641	17	452	0	397	714
18	501	300	0	650	18	452	0	358	716
19	500	300	0	658	19	452	0	355	718
20	500	300	0	665	20	447	0	352	719
21	501	300	0	671	21	451	0	352	721
22	495	297	0	677	22	446	0	338	722
23	495	297	0	682	23	446	0	332	723
24	495	296	0	686	24	120	0	336	718
25	500	299	0	691	25	0	288	337	717
26	494	296	0	695	26	275	300	337	720
27	494	296	0	698	27	448	300	343	727
28	499	299	0	702	28	448	300	355	733
29	499	299	0	705	29	448	299	357	739
30	498	291	0	708	30 31	448 422	299 286	355 0	745 745
Total	12,164	8,949	121			11,610	2,073	10,519	

Date 2005	East Delaware Tunnel	West Delaware Tunnel	Neversink Tunnel	Average June 1, 2005, to date	Date 2005	East Delaware Tunnel	West Delaware Tunnel	Neversink Tunnel	Average June 1, 2005 to date
Aug. 1	448	299	0	745	Sept. 1	449	300	0	748
2	450	299	0	745	2	449	301	ů 0	748
3	448	299	0	745	3	449	300	0	748
3 4	450	299	0	745	4	448	299	ů 0	748
5	450	299	0	745	5	448	299	0	748
6	448	298	0	745	6	447	298	0	748
7	448	298	0	745	7	443	297	0	748
8	448	300	0	745	8	447	299	2	748
9	447	300	0	745	9	447	126	164	747
10	447	299	0	745	10	446	0	216	747
11	447	299	0	745	11	269	46	198	744
12	447	298	0	745	12	261	146	132	742
13	447	298	0	745	13	437	240	218	744
14	447	298	0	745	14	441	245	219	745
15	446	299	0	745	15	440	242	130	746
16	446	299	0	745	16	444	269	0	746
17	445	299	0	745	17	446	298	0	746
18	444	299	0	745	18	446	299	0	746
19	444	299	0	745	19	449	298	0	746
20	444	299	0	745	20	497	255	0	746
21	444	299	0	745	21	496	263	0	746
22	444	300	0	745	22	496	264	279	748
23	445	300	0	745	23	496	119	236	749
24	446	296	0	745	24	495	0	221	749
25	490	298	0	746	25	498	0	221	749
26	498	299	0	746	26	499	117	185	749
27	498	298	0	747	27	499	118	188	750
28	492	297	0	747	28	499	0	217	749
29	492	297	0	748	29	497	200	370	752
30	450	299	0	748	30	498	201	334	754
31	450	299	0	748					
Total	14,090	9,259	0			13,576	6,139	3,530	

Date 2005	East Delaware Tunnel	West Delaware Tunnel	Neversink Tunnel	Average June 1, 2005, to date	Date 2005	East Delaware Tunnel	West Delaware Tunnel	Neversink Tunnel	Average June 1, 2005, to date
Oct. 1	497	50	328	755	Nov. 1	0	0	213	629
2	498	4	329	756	2	0	0	272	627
3	497	201	332	758	3	0	0	272	625
4	492	33	333	759	4	0	0	273	623
5	497	0	333	759	5	0	0	272	620
6	184	0	89	756	6	0	0	272	618
7	0	0	0	750	7	248	0	272	618
8	0	0	0	744	8	283	0	272	617
9	0	0	0	738	9	282	0	272	617
10	0	0	0	733	10	321	0	272	617
11	0	0	0	727	11	377	0	269	617
12	0	0	0	722	12	393	0	269	617
13	0	0	0	716	13	393	0	269	617
14	0	0	0	711	14	398	0	272	618
15	0	0	0	706	15	399	0	272	618
16	0	0	0	701	16	399	0	271	618
17	0	0	0	696	17	399	0	271	619
18	0	0	0	691	18	261	0	271	618
19	0	0	0	686	19	262	0	272	618
20	0	0	0	681	20	264	0	271	617
21	0	0	0	676	21	267	0	271	617
22	0	0	0	672	22	268	0	271	616
23	0	0	0	667	23	268	0	271	616
24	0	0	0	663	24	268	0	271	615
25	0	0	0	658	25	260	0	271	615
26	0	0	0	654	26	0	0	271	613
27	0	0	0	649	27	0	0	271	611
28	0	0	0	645	28	0	0	271	609
29	0	0	0	641	29	0	0	17	606
30	0	0	0	636	30	0	0	0	603
31	0	0	0	632					
Total	2,665	288	1,744			6,010	0	7,555	

Table 11. Daily mean discharge, East Branch Delaware River at Downsville, New York (station number 01417000), for report year ending November 30, 2005.

 (U.S. Geological Survey published record)

DAY	DEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	0CT	NOV
1	40	708	719	446	2,460	560	139	119	151	168	192	43
1	40 60	364	719	445	5,920	454	139	128	172	180	192	43
2 3	797	237	718	446	16,600	377	143	125	172	180	193	43
4	1,370	395	719	447	8,530	282	143	131	173	189	195	53
5	1,370	414	719	447	4,700	191	148	131	173	190	201	69
5	1,570	717	/10	/	4,700	171	140	155	175	170	201	07
6	1,270	456	726	448	3,090	125	145	96	173	169	200	81
7	1,180	406	726	447	2,490	81	139	94	169	168	201	90
8	1,240	360	729	448	2,320	47	139	88	169	169	159	90 88
9	1,150	319	729	447	1,970	51	143	76	169	168	165	90
10	1,320	227	728	448	1,610	69	143	96	170	188	188	69
11	2,660	174	562	448	1,340	95	159	111	172	188	174	62
12	2,730	176	92	448	1,180	105	170	115	175	192	143	45
13	2,380	503	56	449	961	112	150	114	174	193	64	43
14	1,910	e3,600	48	448	515	116	150	113	174	193	43	58
15	1,530	e6,000	42	408	274	116	144	119	174	193	43	64
16	1,280	e3,700	39	201	123	116	138	119	175	193	43	45
17	1,110	2,430	39	143	54	120	130	119	174	193	43	43
18	975	1,840	260	145	47	122	122	119	179	188	46	40
19	858	1,390	440	145	72	115	122	134	182	188	73	40
20	723	1,240	400	146	82	122	126	157	183	188	104	41
21	532	831	213	146	83	122	132	162	186	187	136	40
22	336	541	109	146	94	122	132	162	187	188	128	40
23	629	440	51	133	98	122	135	158	187	192	65	39
24	2,360	345	173	115	52	123	136	158	188	197	43	40
25	1,880	296	360	104	203	123	168	158	188	200	43	42
20	1,000	200	500	101	200	120	100	100	100	200	15	12
26	1,380	498	446	71	353	133	142	158	188	201	43	57
27	1,060	728	446	71	561	139	128	159	188	200	42	86
28	807	720	445	53	788	139	131	160	183	196	43	85
29	916	720		41	738	131	132	160	183	192	43	59
30	913	718		366	636	125	116	161	176	192	43	44
31	841	718		1,260		135		165	168		42	
Total	37,607	31,494	11,451	9,956	57,944	4,790	4,192	4,067	5,475	5,631	3,336	1,682
Mean	1,213	1,016	409	321	1,931	155	140	131	177	188	108	56.1

[All values except total are in cubic feet per second, ft³/s; total in cubic feet per second days, (ft³/s)-d; e, estimated]

Year total 177,625 (ft³/s)-d

Mean 487 ft³/s

Table 12. Daily mean discharge, West Branch Delaware River at Stilesville, New York (station number 01425000), for report year ending November 30, 2005.(U.S. Geological Survey published record)

DAY	DEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV
1	3,410	1,180	254	e230	5,420	1,340	214	440	857	340	1,140	46
		1,180	234 194	e230 e190	5,420 5,890			535	837 771			
2 3	4,230					1,270	217	222		488	1,150	46
3	3,810	1,080	146	e170	13,300	1,220	218	325	774	767	1,160	42
4	3,210	1,290	140	e160	11,700	1,130	265	246	628	920	1,170	42
5	2,650	1,460	137	e190	7,570	1,030	467	245	1,010	634	1,150	44
6	2,170	1,520	150	e190	5,330	930	539	230	1,100	711	1,090	45
7	1,840	1,550	161	e190	4,010	856	377	217	1,130	735	768	45
8	1,810	1,540	e180	e200	3,280	782	297	125	1,120	813	323	44
9	1,710	1,510	e180	e160	2,680	715	368	109	1,150	936	151	45
10	1,720	1,390	e190	e120	2,190	601	458	142	1,030	1,150	213	48
11	2,690	1,280	e190	e130	1,790	415	420	211	798	941	173	47
12	3,180	1,250	e170	e130	1,510	245	414	237	1,050	958	157	40
13	3,070	1,500	e190	e130	1,310	156	310	264	1,030	936	74	46
14	2,770	4,550	e300	e150	1,170	164	287	244	644	873	58	46
15	2,770 2,340	6,380	e560	e200	1,030	206	268	416	607	409	57	48
15	2,340	0,380	6300	6200	1,050	200	208	410	007	409	57	40
16	1,940	5,210	e1,000	e190	914	203	239	243	823	659	55	49
17	1,670	4,030	e1,600	e170	822	193	223	233	828	989	54	49
18	1,460	3,020	e1,400	e150	748	188	234	231	908	903	52	48
19	1,280	2,170	e1,100	e130	679	190	218	250	916	910	55	48
20	1,140	1,740	e900	e140	611	194	215	250	911	914	91	47
21	943	1,530	e800	e130	597	198	346	252	1,090	962	131	47
$\frac{21}{22}$	858	1,250	e660	e130	566	199	389	895	1,000	962	129	47
21 22 23	999	1,250	e640	156	563	196	428	727	1,130	933	95	47
23	2,190	989	e600	175	855	190	753	389	841	1,200	54	47
24 25	2,190 2,430	989	e500	167	1,180	191	733	424	875	846	54	47
23	2,430	922	6300	107	1,180	192	/91	424	873	840	34	4,
26	2,150	906	e410	133	1,220	201	351	422	1,180	557	55	47
27	1,890	842	e340	154	1,230	208	256	395	1,190	890	49	60
28	1,570	739	e270	494	1,410	208	255	442	1,100	975	47	70
29	1,410	601		3,780	1,450	204	293	999	921	991	46	52
30	1,330	423		6,070	1,400	200	268	989	365	1,080	46	63
31	1,220	327		5,870		207		807	237		46	
otal	65,090	54,409	13,362	20,579	82,425	14,232	10,378	11,934	28,154	25,382	9,893	1,448
lean	2,100	1,755	477	664	2,748	459	346	385	908	846	319	48

[All values except total are in cubic feet per second, ft³/s; total in cubic feet per second days, (ft³/s)-d; e, estimated]

Year total 337,286 (ft³/s)-d

Mean 924 ft³/s

Table 13. Daily mean discharge, Neversink River at Neversink, I	New York (station number 01436000), for report year ending November 30, 2005.

[All values except total are in cubic feet per second, ft³/s; total in cubic feet per second days, (ft³/s)-d]

DAY	DEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV
1 2 3 4 5	29 28 28 28 28 28	26 27 27 27 27 27	117 115 109 98 93	171 148 130 122 120	940 3,590 6,920 1,900 980	85 46 29 30 39	101 108 111 117 117	67 79 73 89 95	108 116 129 134 123	108 113 120 120 120	117 117 117 117 117 116	27 26 27 27 27
6 7 8 9 10	28 28 31 28 28	27 27 27 27 27 27	88 85 89 101 193	123 125 160 138 125	721 796 913 664 507	39 49 61 71 70	117 112 114 117 120	82 78 48 27 36	120 117 119 123 123	120 122 124 123 123	115 115 84 33 86	28 27 27 28 27
11 12 13 14 15	28 46 45 49 29	27 27 27 1,510 1,350	186 155 145 141 283	124 126 120 108 98	324 86 48 110 43	75 82 86 90 90	125 132 117 121 129	87 130 141 120 120	119 118 122 123 117	123 123 123 123 123 120	27 28 28 27 26	27 27 27 27 28
16 17 18 19 20	28 27 27 26 36	666 477 281 25 21	313 290 233 184 181	99 97 99 98 105	74 86 92 103 95	90 93 98 104 111	132 132 129 123 120	110 86 82 85 99	108 108 111 116 115	117 117 117 117 117 117	25 25 26 29 46	28 28 27 28 28
21 22 23 24 25	38 27 27 26 27	22 112 160 151 149	201 184 176 158 159	112 111 126 149 123	89 99 100 37 25	114 114 112 108 108	125 132 132 139 171	114 114 114 114 123	114 114 114 114 114	117 117 117 119 123	33 27 27 27 28	27 27 27 27 27 27
26 27 28 29 30 31	27 26 27 27 27 27 27	159 147 123 123 123 123 118	139 145 141 	112 112 338 2,010 1,470 1,050	78 369 301 101 43	108 110 111 91 80 88	144 129 117 81 50	142 133 120 117 114 113	120 123 123 117 108 108	123 122 120 116 117	26 27 27 26 26 27	27 27 27 28 29
Total Mean	931 30.0	6,067 196	4,502 161	8,149 263	20,234 674	2,582 83.3	3,614 120	3,052 98.5	3,638 117	3,581 119	1,605 51.8	819 27.

Year total 58,774 (ft³/s)-d

Mean 161 ft³/s

Table 14. Daily mean discharge, Wallenpaupack Creek at Wilsonville, Pennsylvania (station number 01432000), for report year ending November 30, 2005.(Record furnished by PPL Corporation. Record no longer published by USGS after September 30, 2005)

DAY	DEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV
1	1,070	597	645	647	1,650	0	0	453	158	306		
2	1,070	582	674	694	1,670	238	0	455	138	279		
3	1,210	268	684	592	6,260	250	Ő	Ő	151	0		
4	1,190	375	866	594	3,170	336	ŏ	ŏ	133	ŏ		
5	1,080	548	467	582	3,430	401	Ő	458	378	Ő		
(1,090	689	400	509	3,600	328	0	418	0	205		
6 7	1,090	689 799	400 497	509 660	3,600 2,950	528 0	0	418 513	$\begin{array}{c} 0\\ 0\end{array}$	205 345		
8	1,170	878	497 430	564	2,930	0	0	497	0	296		
8 9	1,000	887	430 526	617	1,910	0	371	497	0	290 245		
10	1,120	1,060	558	574	1,720	0	371	0	0	243		
10	1,000	1,000	558	574	1,720	0	524	0	0	204		
11	779	1,130	570	526	1,720	0	0	505	378	0		
12	704	1,060	2	45	1,720	0	0	731	357	168		
13	1,080	1,050	0	0	1,720	0	847	490	0	222		
14	1,060	1,070	277	404	1,730	0	710	615	0	136		
15	1,180	1,000	321	375	1,720	0	389	637	0	171		
16	1,200	1,000	266	452	20	0	449	81	0	288		
17	1,150	1,390	329	383	0	0	280	0	0	0		
18	676	1,310	274	414	510	0	0	650	0	0		
19	839	1,390	0	0	942	0	0	712	0	180		
20	707	1,320	0	0	965	0	433	530	0	207		
21	606	1,340	0	349	804	0	582	634	0	159		
21	737	1,390	494	464	667	0	490	649	0	241		
23	662	1,460	763	521	0	Ő	520	5	ŏ	209		
24	671	1,430	646	447	ŏ	Ő	419	0	ŏ	266		
25	422	1,350	477	393	546	ŏ	0	534	257	0		
				_		_	_			_		
26	847	1,360	558	0	904	0	0	313	623	0		
27	869	1,290	597	0	708	0	545	292	1,070	0		
28	954	1,410	547	353	635	0	575	375	0	0		
29	833	1,470		400	260	0	517	546	0	0		
30	930	1,370		731	0	0	295	0	15	0		
31	903	877		1,250		0		0	0			
Total	28,999	33,150	11,868	13,540	43,651	1,553	7,746	10,638	3,660	4,207		
Mean	935	1,069	424	437	1,455	50.1	258	343	118	140		

[All values except total are in cubic feet per second, ft³/s; total in cubic feet per second days, (ft³/s)-d]

Table 15. Daily mean discharge, Delaware River at Montague, New Jersey (station number 01438500), for report year ending November 30, 2005.(U.S. Geological Survey published record)

DAY	DEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV
1	18,700	7,590	5,680	5,050	36,000	8,260	1,910	2,600	1,740	1,950	1,680	7,200
	26,800	7,460	5,500	5,050	51,000	7,920	1,920	2,500	1,810	1,970	1,000	6,550
2 3	19,500	6,890	5,350	4,980	176,000	7,320	1,800	1,790	1,820	1,880	1,730	6,380
4	15,700	9,990	5,310	4,420	111,000	6,820	1,730	1,810	1,740	1,500	1,740	5,620
5	13,600	12,000	4,740	4,360	54,900	6,410	1,700	1,560	1,710	1,590	1,740	5,000
6	12,100	11,200	4,390	4,120	37,500	6,580	1,680	1,980	1,810	1,670	1,740	4,470
7	11,000	10,900	4,680	4,360	29,000	5,650	2,060	2,330	1,680	1,640	1,740	4,320
8	12,400	10,200	4,470	5,610	23,200	5,230	2,560	2,920	1,760	1,830	5,370	4,210
9	12,700	10,500	4,550	6,440	19,300	4,890	2,390	3,160	1,990	1,790	16,000	4,010
10	13,500	9,710	5,920	5,630	16,200	4,280	2,520	2,290	2,000	1,790	11,400	4,830
11	22,600	9,320	7,870	5,120	13,900	3,970	2,620	2,040	1,850	1,950	6,450	5,880
12	22,800	8,950	6,650	4,800	12,000	3,660	2,410	2,260	2,110	1,770	7,720	5,180
13	19,000	9,090	5,360	4,760	10,700	3,340	2,350	2,530	2,210	1,800	25,300	4,250
14	16,200	32,800	4,730	4,390	9,720	3,070	3,180	2,330	2,080	1,890	25,100	3,800
15	13,600	55,300	6,270	4,420	8,750	3,220	2,680	2,360	2,250	1,820	21,000	3,860
16	12,000	33,800	9,600	4,110	7,090	3,440	2,340	2,320	1,780	1,860	16,600	4,530
17	10,800	24,400	11,500	4,060	5,560	3,160	2,400	1,600	1,550	1,620	11,600	8,810
18	9,250	e17,000	10,600	3,830	4,990	3,030	2,250	1,570	1,630	1,330	9,100	10,500
19	8,470	e13,500	8,870	3,770	5,200	2,630	1,970	2,210	1,580	1,570	7,240	7,800
20	e7,200	e12,500	8,270	3,530	5,010	2,270	1,930	2,240	1,630	1,730	5,920	6,270
21	e5,900	e9,900	7,500	3,870	4,870	2,140	2,270	1,950	1,630	1,790	5,490	5,600
22	e5,100	e7,800	7,010	4,490	4,580	2,080	2,330	2,010	1,610	1,760	5,050	6,120
23	6,590	e7,100	6,950	5,220	4,010	2,060	2,000	2,050	1,710	1,860	10,800	6,670
24	15,800	e6,900	6,340	5,630	7,610	2,130	2,040	1,750	1,750	1,820	15,500	6,150
25	15,600	e7,700	5,610	5,510	12,000	2,070	1,960	1,650	1,720	1870	14,600	5,720
26	12,500	e8,000	5,250	5,230	10,000	2,100	1,810	1,960	1,770	1,770	24,500	5,100
27	e10,500	e6,900	5,120	4,850	9,140	2,070	1,890	1,830	2,710	1,560	18,400	4,200
28	e9,500	e6,200	5,290	7,900	11,000	2,050	2,470	1,770	2,600	1,370	13,500	4,010
29	8,940	e6,500		57,000	10,400	2,200	2,450	1,780	1,950	1,640	10,700	4,030
30	8,520	e6,700		56,100	8,750	2,230	2,800	1,920	1,860	1,720	9,040	15,300
31	8,000	6,560		40,200		2,090		1,740	2,120		8,000	
Total	404,870	393,360	179,380	288,810	719,380	118,370	66,420	64,810	58,160	52,110	316,460	176,370
Mean	13,060	12,690	6,406	9,316	23,980	3,818	2,214	2,091	1,876	1,737	10,210	5,879

[All values except total are in cubic feet per second, ft³/s; total in cubic feet per second days, (ft³/s)-d; e, estimated]

Year total 2,838,500 (ft³/s)-d

Mean 7,777 ft³/s

Table 16. Diversions by New Jersey; daily mean discharge, Delaware and Raritan Canal at Port Mercer, New Jersey (station number 01460440), for report year ending November 30, 2005.

(U.S. Geological Survey published record)

DAY	DEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV
1	61	83	e68	89	91	74	88	88	e98	e92	80	e85
	76	84	e71	89	91 33	86	88	75	e96	e89	82	e84
2 3 4	78	83	e78	89	3.6	89	92	93	e96	e85	83	e85
4	77	86	e90	89	57	90	92 87	90	e97	e89	83	e85
5	81	84	e100	90	63	91	88	93	e99	e94	84	e84
6	83	78	102	89	67	91	90	97	e98	e94	89	e74
6 7	81	76	100	89	68	94	88	96	e98	e93	90	e80
8	71	79	99	88	48	93	86	85	e98	e92	61	e74
9	79	77	98	88	70	93	87	82	e98	e93	6.6	e83
10	64	80	90	88	77	94	90	89	e97	e90	86	e83
11	73	82	86	89	81	94	88	93	e98	e89	79	e69
12	76	80	86	90	81	94	90	95	e98	e89	e-13	e80
13	78	80	87	91	82	93	91	95	e98	e90	e36	e81
14	78	57	88	92	78	92	91	95	e100	e92	e56	e83
15	79	69	67	91	75	92	92	96	e96	e95	e71	e85
16	80	80	84	92	80	91	93	94	e95	e94	e89	e87
17	82	78	84	91	83	91	93	98	e94	e96	e91	e82
18	83	79	87	91	85	93	94	96	e94	e94	e90	e94
19	83	84	87	92	83 82	92	95 95	96	e93	e92	e90	87
20	81	89	87	93	82	91	95	96	e96	e88	e78	90
21	86	88	89	91	78	91	94	95	e96	e87	e94	87
22	86	85	89	91	73	89	92	95	e97	e85	e93	73
23	72	e81	88	92	74	92	94	94	e97	e86	e90	82
24	75	e78	90	81	75	90	91	94	e97	e87	e91	88
25	80	e74	90	84	76	90	89	e96	e96	e86	e87	88
26	82	e68	90	90	76	90	53	e98	e96	e83	e81	92
27	84	e65	90	91	82	92	62	e96	e96	e84	e84	92
28	85	e65	91	64	80	91	87	e98	e97	e84	e88	94
29	89	e68		53	80	90	80	e98	e96	e83	e87	94
30	84	e74		82	88	89	89	e98	e93	e83	e90	70
31	83	e71		87		90		e98	e92		e89	
Total	2,450	2,405	2,456	2,706	2,170	2,812	2,637	2,902	2,990	2,678	2,386	2,515
Mean	79.0	77.6	87.7	87.3	72.3	90.7	87.9	93.6	96.5	89.3	77.0	83.8

[All data except total are in million gallons per day, Mgal/d; total in Million gallons, Mgal; e, estimated]

Year total 31,106 Mgal

Mean 85.2 Mgal/d

QUALITY OF WATER IN THE DELAWARE ESTUARY

Introduction

This section describes the water-quality monitoring program for the Delaware Estuary during the River Master 2005 report year, December 1, 2004, to November 30, 2005. This program is conducted by the USGS, in cooperation with the DRBC. Selected data collected for this program are presented and water-quality conditions are summarized. The DRBC and others use these data to assess water-quality conditions and track the movement of the "salt front" in the Delaware Estuary.

Water-Quality Monitoring Program

As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, is monitored at various locations (fig. 6). Data on water temperature, specific conductance, dissolved oxygen, and pH were collected by electronic instruments at four sites—Trenton, Benjamin Franklin Bridge (Philadelphia), Chester, and Reedy Island Jetty. Water-quality monitors at Trenton and Reedy Island Jetty were operated continuously throughout the report year and seasonally at Benjamin Franklin Bridge and Chester.

The frequency of water-quality sampling was once monthly in March, June, July, and October, and twice monthly in April, May, August, and September 2005 at 19 sites between Biles Channel and Mahon River (sites A–T on fig. 6). These samples were collected and analyzed by the State of Delaware for the DRBC. At each of these sites, water samples were collected near the center of the channel at a depth of 3 ft below the surface and analyzed for selected physical properties and chemical constituents including, but not limited to, water temperature, chloride, alkalinity, specific conductance, dissolved oxygen, pH, selected nutrients, and trace metals. These analyses consist of field measurements and laboratory determinations.

From March to October, water-quality data were obtained on a once-monthly basis at three additional sites in the lower Delaware Bay (sites U–W on fig. 6). Water samples were analyzed for selected physical properties and chemical constituents.

Data obtained from the electronic water-quality monitors are processed and stored in the USGS National Water Information System database. These data are published annually by the USGS in water resources data reports for New Jersey and Pennsylvania. Water-quality data for the other sampling sites are not presented in this report but are available from DRBC and STORET, an environmental quality database operated by the U.S. Environmental Protection Agency.

Water Quality During the 2005 Report Year

Streamflow

Streamflow has a major effect on the quality of water in the Delaware Estuary. High freshwater flows commonly result in improved water quality by limiting the upstream movement of seawater and reducing the concentration of dissolved substances. High flows also aid in maintaining lower water temperatures during warm weather and in supporting higher concentrations of dissolved oxygen. Under certain conditions, however, high streamflows can transport large quantities of nutrients to the estuary, which may result in excessive levels of algae.

Streamflow from the Delaware River Basin upstream of Trenton, New Jersey, is the major source of freshwater inflow to the Delaware Estuary. During the report year, monthly mean streamflow measured at the USGS gaging station Delaware River at Trenton, New Jersey, was highest during April 2005

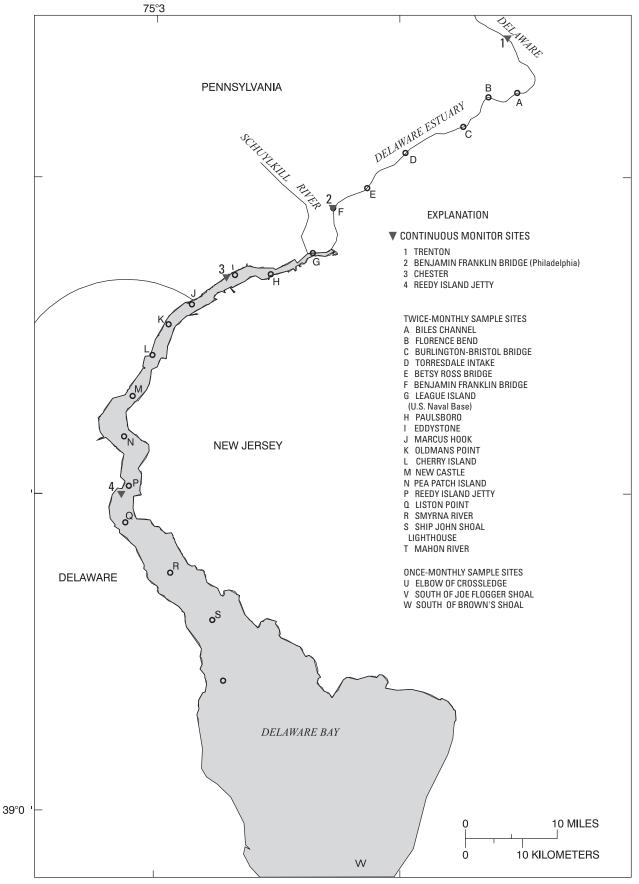


Figure 6. Location of water-quality monitoring sites on the Delaware Estuary.

(44,020 ft³/s) and lowest during September 2005 (3,017 ft³/s; table 17). Monthly mean streamflows were greater than long-term mean monthly flows in December 2004 and January, February, April, October, and November 2005 and less than the long-term flows in the other 6 months. The greatest percentage flow deficiency was in September 2005, when monthly mean streamflow was about 49 percent of the long-term mean monthly flow. Long-term mean monthly streamflow was computed on the basis of data for the period from 1913 to 2004. The highest daily mean streamflow during the report year was 230,000 ft³/s on April 4, 2005. The lowest daily mean streamflow was 2,520 ft³/s on September 20, 2005.

Water Temperature

Water temperature has an important influence on water quality, because it affects various physical, chemical, and biological properties of water. Generally, increases in water temperature have detrimental effects on water quality by decreasing the saturation level of dissolved oxygen and increasing the biological activity of aquatic organisms. Although the primary factors that affect water temperature in the Delaware Estuary are climatic, various kinds of water use, especially powerplant cooling, also can have substantial effects.

At the Benjamin Franklin Bridge, Philadelphia, Pennsylvania, water-temperature data were collected continuously from April to November 2005. Monthly mean water temperatures were greater than the long-term mean monthly temperatures in April 2005 and from June to September 2005. Long-term mean water temperatures were computed using data for the period from 1964 to 2004 (fig. 7). The maximum daily mean water temperature of 29.1°C was recorded on August 14, 2005.

Specific Conductance and Chloride

Specific conductance is a measure of the capacity of water to conduct an electrical current and is a function of the types and quantities of dissolved substances in water. As concentrations of dissolved ions increase, specific conductance of the water also increases. Specific conductance measurements are good indicators of dissolved solids content and total ion concentrations. Seawater and some man-made constituents can cause the specific conductance of estuary water to increase substantially. Dilution associated with high streamflows results in decreased levels of dissolved solids and lower specific conductance whereas low streamflows have the opposite effect.

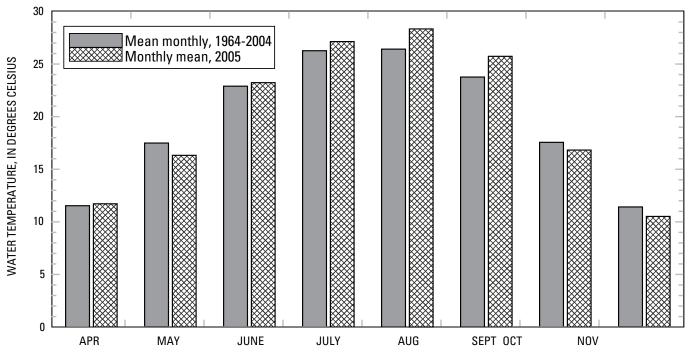


Figure 7. Water temperature in the Delaware Estuary at Benjamin Franklin Bridge at Philadelphia, Pennsylvania, April to November 2005.

The upstream movement of seawater and the accompanying increase in chloride concentrations is an important concern for water supplies obtained from the Delaware Estuary. Water with chloride concentrations greater than 250 milligrams per liter (mg/L) is considered undesirable for domestic use, and water with concentrations exceeding 50 mg/L is unsatisfactory for some industrial processes. Chloride concentrations in the estuary increase in a downstream direction, with proximity to the Atlantic Ocean.

Chloride concentration was not measured directly at the monitor site at Reedy Island Jetty, Delaware. Instead, a mathematical relation between specific conductance and chloride concentration, developed on the basis of long-term field measurements of specific conductance and laboratory analyses of chloride, was used to estimate chloride concentrations from specific conductance values. Chloride concentrations estimated from the relation are presented in table 18. The specific conductance-chloride relation is less reliable when chloride concentrations are less than 30 mg/L, because other chemical substances may be present in amounts large enough to affect the relation. Therefore, chloride concentrations estimated from the relation. Instead, estimated values less than 30 mg/L are reported as <30 mg/L. Chloride concentrations at Chester, Pennsylvania (table 19), were measured directly by Kimberly Clark Chester Operations and are not derived from specific conductance data.

At Chester, the highest daily maximum chloride concentration was 639 mg/L on October 8, 2005 (table 19). During the report year, daily maximum concentrations exceeded 50 mg/L on nearly 42 percent of the days. The lowest daily minimum chloride concentration was 21 mg/L on several days in October. Daily minimum concentrations exceeded 50 mg/L on about 31 percent of the days. Chloride concentrations were persistently high from August 9 to October 10, when daily minimum concentrations exceeded 50 mg/L on most days.

At Reedy Island Jetty, the highest daily maximum chloride concentration was 7,400 mg/L on September 28, 2005 (table 18). Daily maximum chloride concentrations during the report year exceeded 1,000 mg/L on 93 percent of the days. The lowest daily minimum chloride concentration for the report year was <30 mg/L on one day in December 2004 and several days in January and April 2005. Daily minimum chloride concentrations exceeded 1,000 mg/L on 59 percent of the days. From December to May, daily maximum chloride concentrations at Reedy Island Jetty ranged from <30 to 5,700 mg/L. From June to November, daily maximum chloride concentrations ranged from 1,600 to 7,400 mg/L.

Dissolved Oxygen

Dissolved oxygen in water is necessary for the respiratory processes of aquatic organisms and for chemical reactions in aquatic environments. Fish and many other clean-water species require relatively high dissolved-oxygen concentrations at all times. The major source of dissolved oxygen in the Delaware Estuary is diffusion from the atmosphere, and, to a lesser extent, photosynthetic activity of aquatic plants. The principal factors that affect dissolved-oxygen concentrations in the estuary are water temperature, biochemical oxygen demand, freshwater inflow, phytoplankton, turbidity, salinity, and tidal- and wind-driven mixing.

Concentrations of dissolved oxygen at several sites on the Delaware Estuary have been measured since 1962 by the USGS. Two of these sites, Delaware River at Benjamin Franklin Bridge at Philadelphia, Pennsylvania, and Delaware River at Chester, Pennsylvania, have nearly continuous records and are in the reach of the estuary most affected by effluent discharges. The mean and minimum daily mean dissolved-oxygen concentrations from July to September at these stations during the 1965–2005 report years are shown in figure 8. Although concentrations have increased considerably over this 41-year period, mean concentrations can vary considerably from year to year.

Concentrations of dissolved oxygen in the Delaware Estuary generally are greatest near Trenton and decrease in a downstream direction. In an area just downstream of the Benjamin Franklin Bridge, concentrations usually reach minimum levels. During the report year, daily mean concentrations of dissolved oxygen at the Benjamin Franklin Bridge monitor site were lowest in late July, and the lowest recorded

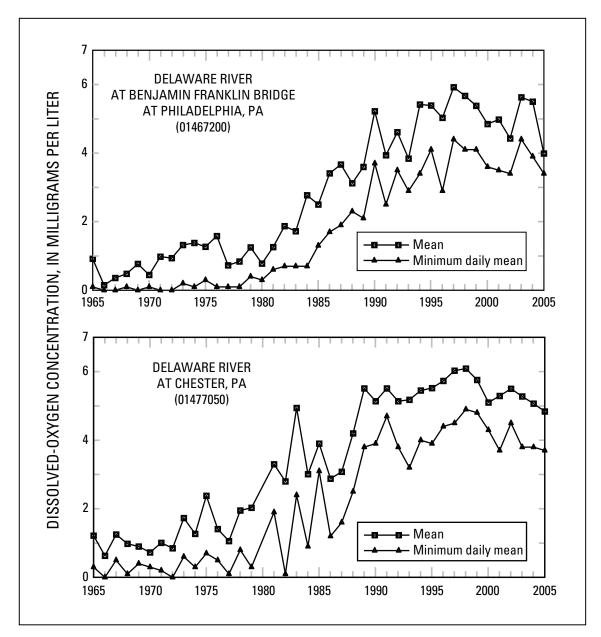


Figure 8. Mean and minimum daily mean dissolved-oxygen concentrations from July to September at two monitor sites on the Delaware Estuary, 1965–2005.

daily mean concentration was 3.4 mg/L on July 19 (table 20). Daily mean concentrations of dissolved oxygen were consistently 6.0 mg/L or greater on most days from April 1 to May 27 and from October 15 to November 28, 2005. At Chester, daily mean dissolved-oxygen concentrations were lowest during late July, and the lowest recorded daily mean concentration was 3.7 mg/L on July 19 and 20 (table 21).

Histograms of hourly dissolved-oxygen concentrations at the Benjamin Franklin Bridge and Chester monitor sites during the critical summer period—July to September 2005—are presented in figure 9. Hourly concentrations at the Benjamin Franklin Bridge were 4 mg/L or less during 75 percent of this period. At Chester, hourly dissolved-oxygen concentrations were 4 mg/L or less during 12.5 percent of the 2005 critical summer period. Dissolved-oxygen concentrations less than 4 mg/L can have adverse, and possibly lethal, effects on fish and other aquatic organisms.

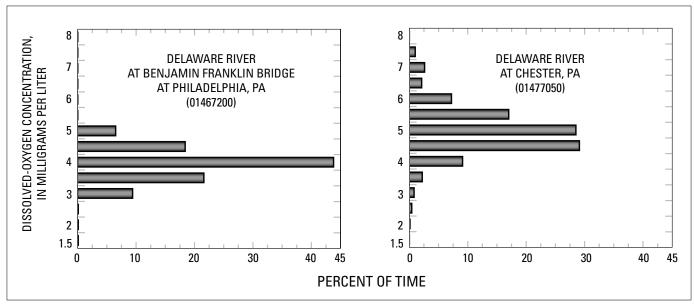


Figure 9. Distribution of hourly dissolved-oxygen concentrations at two monitor sites on the Delaware Estuary, July to September 2005.

Hydrogen-Ion Activity (pH)

The pH of a solution is a measure of the effective concentration (activity) of dissolved hydrogen ions. Solutions having pH less than 7 are characterized as acidic, whereas solutions with pH greater than 7 are considered basic or alkaline. The pH of uncontaminated surface water generally ranges from 6.5 to 8.5. Major factors affecting the pH of surface water include the geologic composition of the drainage basin and human inputs, including effluent discharges. In addition, photosynthetic activity, and dissolved gases including carbon dioxide, hydrogen sulfide, and ammonia can have a substantial effect on pH. During the report year, pH was measured seasonally at the Benjamin Franklin Bridge and Chester monitor sites, and continuously at the Reedy Island Jetty site. During this period, the ranges of median pH measured at these stations were as follows: Benjamin Franklin Bridge, 6.8 to 7.6; Chester, 6.9 to 7.4; and Reedy Island Jetty, 6.8 to 7.9. Generally, the pH of water in the Delaware Estuary is lowest near Trenton, New Jersey, and increases (that is, water becomes more alkaline) in a downstream direction. The pH of water in the Delaware Estuary between the Benjamin Franklin Bridge and Reedy Island Jetty is not a limiting factor for aquatic health or other beneficial uses of the water.

 Table 17. Daily mean discharge, Delaware River at Trenton, New Jersey (station number 01463500) for year ending November 30, 2005.

(U.S. Geological Survey published record)

DAY	DEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV
1	47,300	16,200	13,400	11,900	62,500	17,700	5,690	6,170	3,530	3,380	2,720	16,400
1	47,300 48,800	15,600	12,100	11,900	72,100	16,700	5,380	6,050	3,330 3,290	3,580 3,610	2,720 2,840	14,800
2 3	48,100	15,000	11,600	11,700	161,000	15,900	5,180	5,510	3,250	3,380	2,840	13,700
4	38,000	15,100	11,400	10,800	230,000	14,900	5,510	5,040	3,260	3,300	2,810	13,000
5	31,700	19,300	11,500	10,000	140,000	14,000	5,430	4,360	3,200	3,170	2,840	12,100
6	28,100	25,600	11,300	9,830	81,900	13,100	5,180	4,080	3,070	2,780	2,890	11,300
7	25,100	26,600	10,600	9,700	62,500	13,000	6,220	4,070	3,070	2,740	2,930	10,400
8	25,200	26,200	10,800	12,300	56,900	12,100	6,270	6,050	3,470	2,800	12,200	10,000
9	25,500	29,500	11,100	14,300	45,400	11,300	5,910	9,740	3,610	2,800	78,900	9,640
10	30,100	26,600	12,700	13,800	38,400	10,700	5,950	7,760	3,780	2,960	43,500	9,730
11	34,400	23,700	14,600	12,600	33,700	9,970	6,070	6,370	3,820	2,950	26,200	10,300
12	41,800	23,400	15,600	12,100	28,700	9,330	6,150	5,140	3,610	2,940	29,200	11,100
13	38,000	22,800	13,900	11,900	24,500	8,830	5,960	4,710	3,430	3,110	35,400	10,700
14	33,300	35,000	12,400	11,400	21,500	8,320	5,580	5,010	3,620	3,030	49,900	9,430
15	29,000	88,900	20,200	10,800	19,400	8,310	5,470	5,210	4,150	3,360	46,800	8,750
16	24,600	78,200	20,800	10,600	17,500	8,590	5,700	4,940	4,150	3,550	38,800	8,490
10	22,000	55,100	23,500	10,000	15,900	8,380	5,300	5,570	4,080	3,240	30,400	11,600
18	20,100	43,200	23,600	10,200	14,100	7,940	5,030	6,910	3,430	3,420	23,000	15,500
10	17,900	34,500	20,500	10,100	13,100	7,400	4,970	5,170	3,100	2,940	18,700	17,100
20	16,600	30,100	17,200	9,900	12,700	7,280	4,620	4,360	3,170	2,520	15,900	14,200
21	15,000	28,200	16,500	9,790	12,000	6,930	4,310	4,700	3,110	2,700	13,900	12,400
22	13,000	23,800	16,000	10,200	11,600	6,520	4,220	4,340	3,090	2,760	12,700	13,900
23	13,300	17,900	15,300	11,600	11,500	6,160	4,490	3,990	3,000	2,890	15,400	15,400
24	25,300	17,000	14,900	16,200	17,200	5,980	4,440	3,950	2,930	2,830	21,500	14,600
25	33,200	18,000	14,000	16,400	19,300	5,960	4,070	4,170	2,990	2,920	28,000	13,600
26	29,800	17,800	12,800	15,400	21,200	6,010	3,990	4,310	3,030	2,970	33,800	12,600
27	25,100	17,100	12,000	14,600	18,900	5,890	4,360	3,650	3,020	3,080	39,500	11,300
28	21,500	15,900	11,600	18,500	19,000	5,690	4,150	3,810	3,140	2,980	31,100	10,200
29	19,100	14,600	*	53,500	19,600	5,830	4,140	3,730	4,690	2,790	24,600	9,960
30	17,500	14,100		98,800	18,600	6,190	6,880	3,590	4,180	2,620	20,700	18,600
31	16,800	14,300		80,400	-	6,000	-	3,500	3,610	-	18,000	
Total	855,200	849,300	411,900	570,520	1,320,700	290,910	156,620	155,960	106,880	90,520	727,900	370,800
Mean	27,590	27,400	14,710	18,400	44,020	9,384	5,221	5,031	3,448	3,017	23,480	12,360

[All values, except total, in cubic feet per second ft³/s; total in cubic feet per second days, (ft³/s)-d]

Year total 5,907,210 (ft³/s)-d

Mean 16,180 ft³/s

Table 18. Daily maximum and minimum chloride concentrations estimated from values of specific conductance, Delaware River at Reedy Island Jetty, Delaware (station number 01482800), for report year ending November 30, 2005.

DAV	DI	EC	J	AN	FE	B	M	AR	AF	PR	M	AY	JU	NE	JU	JLY	A	UG	SE	PT	0	СТ	N	OV
DAY	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
1	1,300	290	1,800	440	4,600	1,700	4,600	1,700	310	110	950	310	4,600	2.400	5,300	2.700	5.200	2.400	5,800	2.700	6.300	3,800	4,700	1.400
2	390	98	2,100	380	4.200	1.600	3,000	1.000	430	99	1,100	270	4,500	2.300	5,000	2,700		2,600		3.100	6,400	3,700	3,700	1.300
3	430	92	2,200	380	4,400	1,700	2,300	840	180	<30	1,300	250	3,900	2,300	5,400	2,600	5,300	2,500	· ·	3,100	6,000	3,700	4,100	1,200
4	1,600	83	1,900	420	5,300	1,800	3,500	920	250	<30	1,300	240	4,300	2,200	5,400	2,600	5,800	2,600	6,200	3,300	6,100	3,800	3,200	920
5	1,900	85	2,500	520	5,400	1,800	5,000	1,200	170	<30	1,300	250	4,300	2,200	5,000	2,700	5,900	2,700	6,200	3,500	6,200	3,900	3,800	860
6	1,700	110	3,100	500	5,400		5,100	1,400			1,300	250	4,600	2,000	4,600	2,400	5,500	2,600	6,600	3,600	6,000	3,900	3,600	990
7	2,100	270	2,500	400	5,300	1,800	5,400	1,500			2,500	440	4,300	2,100	4,900	,	5,800	,	,	3,600	6,500	4,100	3,200	1,000
8	2,100	390	2,600	370	5,000	1,900	5,600	1,300			2,600	550	4,100	1,800	5,200	,	5,800	2,800	6,200	3,700	6,000	3,500	3,200	930
9	1,800	310	2,100	330	4,500	1,800						640	4,100	1,800	4,500	2,200	5,400	2,900	6,300	3,800	3,600	1,900	3,900	850
10	2,100	300	2,300	270	4,400	1,800						660	4,000	1,800	4,200	2,100	5,300	2,800	6,600	3,800	3,600	1,500	3,000	1,000
11	2,200	210	1,200	230	3,200	1,400	4,100	830			2,600	710	3,700	1,600	4,100	2,100	5,500	2,800	6,500	3,500	3,200	1,000	3,100	870
12	830	150	1,300	200	3,300	1,300	4,400	1,200			2,400	660	3,200	1,500	4,600	1,900	5,800	2,800	6,100	3,400	3,600	1,200	3,200	1,000
13	350	110	1,400	180	3,500	1,000	3,600	1,200			1,900	610	3,100	1,400	4,800	2,200	5,500	2,500			4,300	1,600	3,100	1,000
14	170	44	530	90	3,800	1,000	4,100	1,100			2,400	610	3,700	1,500	4,500	2,500	5,700	2,400	7,200	3,400	4,900	1,000	3,000	910
15	340	44	210	32	3,200	930	3,000	620	<30	<30	2,200	680	4,200	1,700	4,800	2,300	6,000	2,400	6,800	3,500	3,900	720	3,600	840
16	710	39	44	<30	1,900	770	3,400	960	420	<30	2,700	750	5,500	,	5,000	,	,		6,800	,	· ·	480	3,300	990
17	77	33	<30	<30	2,200	650	3,600	1,200	630	<30	3,400	860	5,600	2,400	4,900	2,400	· ·	2,900	,	3,900	1,600	550	2,200	720
18	640	32	750	<30	2,600	440	4,100	1,400	930	<30	3,900	1,100	6,200	2,400	4,700	2,200	5,900	2,900	6,800	3,900	3,100	590	3,000	720
19	910	39	2,000	43	3,700	480	4,400	1,700	1,800	220	4,900	1,500	6,500	2,400	4,900	2,000	,	3,100	6,600	3,800	3,000	570	3,300	690
20	1,100	<30	1,600	210	4,200	1,200	4,900	2,000	2,000	370	4,700	2,100	6,500	2,700	4,900	2,000	5,900	3,100	6,400	3,900	2,700	610	2,400	560
21	2,100	110	1,900	180	5,100	1,500		1,900	2,600		5,500	1,900	6,200		5,000			3,200	· ·	3,900	2,800	610	2,200	510
22	2,200	210	2,700	260	5,100	1,600	5,200	2,200	2,600	540	5,500	2,000	6,000	2,700	5,000	2,200		3,200	6,500	3,900	3,200	680	2,600	560
23 24	2,500 1,400	310 260	2,700 4,800	670 1,000	4,300 3,800	$1,600 \\ 1,700$	5,700 5,500	2,000 2,300	2,100 2,300	590	4,900 5,400	2,000 2,200	5,900 6,300	2,700	5,000 5,000	2,300	5,800 5,800	3,200 3,200	6,200 7,300	3,800 3,600	2,800 3,100	710 640	2,900 3,400	880 1,200
24 25	1,400	260 160	4,800	1,600	3,800 4,700	1,700	,	1,800	2,300		5,200	2,200	6,500 5,600	,	3,000 4,900	,	5,800	,	7,300 6,400	4.100	4.800	2.000	2,900	1,200 590
25	1,900	100	4,000	1,000	4,700	1,000	5,500	1,000	2,500	540	3,200	2,000	5,000	2,000	4,900	2,400	5,800	5,500	0,400	4,100	4,000	2,000	2,900	390
26	1,700	150	4,200	1,500	,	1,600	3,700	1,700	1,800		5,300		5,400		4,400			3,500	6,200	3,900	3,800	1,800	3,400	670
27	2,300	180	4,100	1,600	2,700	1,400	3,700	1,600	1,400	420	5,000	2,600	5,300	2,800	4,600	2,400		3,600	6,300	3,200	4,100	1,400	4,000	970
28	2,900	590 220	· ·	1,500	3,000	1,300			1,400	400		2,300	5,400	2,700	5,000	2,300	,	3,600	7,400	3,600	4,900	1,100	4,200	1,000
29 30	2,200 2,400	330 350	4,400 3,900	$1,600 \\ 1,500$					$1,600 \\ 1,400$	410 390		2,200 2,200	4,700 4,900	2,800 2,600	5,000 5,000	2,400 2,400		3,300 3,200	6,400 6,300	4,300 3,600	5,000 4,500	$1,400 \\ 1,400$	4,000 3,000	1,400 900
30 31	2,400	440	3,900 4,800	1,500					1,400	390		2,200	4,900	2,000	5,000	2,400	6,200	3,200	0,500	5,000	4,300	1,400	5,000	900
Mean	1,500	n.d.	4,800 n.d.	n.d.	4,000	1,400	4,300	1,400	n.d.	n.d.		1,200	4,900	2,300	4,900	2,300	5,800	2,900	6,400	3,600	4,300	1,300	3,300	910
Max	2,900	590	4,800	1,600	5,400	1,900	5,700	2,300	2,600	630	<i>,</i>	2,600	6,500	2,800	5,400	2,700	6,500	3,600	7,400	4,300	6,500	4.100	4,700	1,400
	2,900	<30	· · ·	,	<i>,</i>	<i>.</i>	,	,	· · ·	<30	<i>,</i>	· · ·	,	<i>,</i>	· ·	· · ·	,	<i>,</i>	<i>,</i>	,	·	,	,	510
Min	11	<30	<30	<30	1,900	440	2,300	620	<30	<30	950	240	3,100	1,400	4,100	1,900	5,200	2,400	5,700	2,700	1,000	480	2,200	510

[Concentrations in milligrams per liter; ---, missing data; Max, maximum value; Min, minimum value; <, less than; n.d., not determined]

 Table 19.
 Daily maximum and minimum chloride concentrations, Delaware River at Chester, Pennsylvania (station number 01477050), for report year ending November 30, 2005.

(Record furnished by Kimberly Clark Chester Operations)

DAV	DE	C	JA	N	FE	В	M	AR	A	PR	M	AY	JU	NE	JU	LY	Al	JG	SE	PT	0	СТ	N	DV VC
DAY	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
1 2 3 4 5	33 33 36 31 36	33 31 31 31 31	33 37 31 31 31	33 31 31 31 31	39 39 46 39 37	33 39 39 39 39	61 61 69 54 61	54 61 61 37 54	33 33 61 61 37	33 33 33 27 31	37 37 37 37 37	31 31 31 31 31	46 39 39 46 46	37 33 39 39 46	81 64 72 64 42	54 45 42 36 36	57 57 100 57 57	50 50 100 50 57	142 184 184 200 255	96 118 129 155 155	466 433 303 433 502	303 303 266 375 403	33 33 33 33 33	26 33 27 27 27
6 7 8 9 10	31 31 31 31 31	31 31 31 31 27	31 31 31 31 31	31 31 31 31 31	46 43 42 43 43	37 37 37 37 37	61 61 61 78	54 54 61 54 61	54 39 27 27 22	33 33 27 27 26	31 37 31 37 37	31 31 31 31 31	54 46 46 46	46 46 46 46	64 64 54 56 56	42 36 54 56 56	50 50 50 91 120	50 50 50 73 112	200 217 345 255 345	155 169 155 169 255	466 502 639 208 72	433 466 466 112 56	33 33 33 33 33	27 27 33 33 33
11 12 13 14 15	27 39 31 31 31	27 31 31 31 26	33 33 33 33 33 33	31 31 31 31 31	43 43 43 43 43	43 43 37 37 37	88 88 88 93 61	70 78 78 88 54	26 61 61 61 31	26 25 31 25 31	37 37 43 31 31	31 31 37 31 31	54 54 54 46 54	46 46 54 46 46	56 56 49 49 42	49 49 49 49 49	82 87 91 97 97	77 78 82 88 70	430 297 70 255 255	255 200 70 225 235	49 36 36 36 31	42 42 36 31 25	33 33 33 100 33	27 27 33 100 27
16 17 18 19 20	31 31 31 31 31	31 31 31 31 31	31 31 31 31 31	31 31 31 31 31	43 43 43 43 43	37 37 43 37 37	61 61 54 70 78	54 54 54 70 70	31 31 31 31 31	31 31 31 31 31	31 37 37 39 37	31 31 31 37 31	54 54 54 54 54	46 46 46 46 54	42 62 56 49 50	31 42 42 42 42	78 108 108 88 88	61 100 61 46 70	332 285 245 285 308	332 284 245 285 226	31 36 31 31 31	21 51 21 21 21	33 33 33 33 33 39	27 33 33 33 39
21 22 23 24 25	31 31 31 31 31	31 31 31 31 31	31 31 31 31 33	31 31 31 31 31 33	54 46 54 56 56	46 54 46 46 46	70 70 70 70 97	61 61 60 61 54	37 37 31 31 31	31 31 25 25 37	37 37 37 37 37	31 31 31 37 37	54 61 54 54 54	54 54 54 54 54	50 50 50 50 57	43 37 43 50 57	88 97 170 185 185	88 97 156 170 170	338 358 358 614 523	235 332 264 264 264	33 33 33 33 33	33 33 27 33 27	39 33 33 39	33 33 33 33
26 27 28 29 30 31	31 31 31 31 31 31 31	31 31 31 31 31 31 31	32 32 33 33 39 39	32 32 31 31 31 33	61 61 54	54 54 54	61 61 54 46 46	54 54 46 46 46	31 31 31 37 37	31 31 31 31 31	37 39 46 39 37 43	37 39 39 31 33 39	54 54 61 69 69	54 54 54 69 54	57 57 57 57 64 50	43 43 50 50 50 50	185 295 200 185 185 185	170 143 100 143 108 170	566 245 245 245 566	332 245 245 245 245 264	33 33 80 33 33 33 33	27 27 33 33 33 33 33	36 31 31 36 31	31 31 31 31 31
Mean Max Min	32 39 27	31 33 26	32 39 31	31 33 31	46 61 37	41 54 31	67 97 46	59 88 37	37 61 22	30 37 25	37 46 31	33 39 31	52 69 39	49 69 33	56 81 42	45 57 31	115 295 50	93 170 46	305 614 70	220 332 70	154 639 31	124 466 21	36 100 31	33 100 26

[Concentrations in milligrams per liter; Max, maximum value; Min, minimum value; ---, missing data]

Table 20. Daily mean dissolved-oxygen concentration, Delaware River at Benjamin Franklin Bridge at Philadelphia, Pennsylvania, (station number 01467200), April 1 to November 30, 2005.

(U.S. Geological Survey published record)

DAY	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV
I		1					1	
1	11.8	9.8	5.5	**	3.9	4.2	4.7	10.5
2	11.5	10.0	5.7	4.1	3.8	4.2	4.6	10.5
3	10.8	10.0	5.8	4.3	3.9	4.3	4.7	10.5
4	10.8	9.9	5.7	4.4	3.9	4.3	4.7	10.4
5	11.4	9.8	5.7	4.3	4.0	4.5	4.5	10.1
6	11.6	9.8	6.0	4.1	4.1	4.6	4.4	9.9
7	11.5	9.8	5.9	3.9	4.1	4.6	4.4	9.5
8		9.8	6.0	4.0	4.1	4.7	4.7	9.2
9		9.8	5.9	3.8	3.9	4.7	**	9.2
10		9.7	5.7	3.8	3.7	4.6	**	9.0
11		9.5	5.4	3.8	3.6	4.5	**	9.0
12	10.5	9.3	5.4	3.8	3.6	4.6	**	8.9
13	10.4	9.2	5.3	3.8	3.8	4.6	**	9.0
14	10.4	9.1	5.0	3.7	3.9	4.4	**	8.9
15	10.5	9.0	4.8	3.7	3.7	4.1	8.1	8.8
16	10.5	8.6	4.6	3.6	3.7	3.9	8.2	8.7
17	10.4	8.2	4.2	3.6	3.6	3.8	8.2	8.7
18	10.4	7.9	4.0	3.6	3.7	3.7	8.1	8.9
19	10.3	7.6	4.1	3.4	3.7	3.6	8.1	9.1
20	10.1	7.5	4.0	3.5	3.7	3.7	8.1	9.4
21	10.0	7.2	3.8	3.5	3.6	3.7	8.1	9.5
22	9.9	7.0		3.5	3.7	3.9	8.1	9.5
23	9.6	6.7		3.5		3.9	8.0	10.0
24	9.4	6.5	3.7	3.5		4.4	8.3	10.3
25	9.3	6.4	3.9	3.6	4.0	4.5	8.5	10.9
26	9.3	6.2	4.1	3.6	4.2	4.5	9.1	11.0
27	9.4	6.0	4.1	3.8	4.3	4.6	9.8	11.0
28	9.5	5.9	3.9	3.9		4.6	10.0	11.0
29	9.6	5.7	3.9	4.0		4.7	10.2	
30	9.8	5.6		4.0	3.9	4.7	10.4	
31		5.5		4.0	4.1		10.5	
Mean	10.3	8.2	4.9	3.8	3.9	4.3	7.5	9.7
Max	11.8	10.0	6.0	4.4	4.3	4.7	10.5	11.0
Min	9.3	5.5	3.7	3.4	3.6	3.6	4.4	8.7

[Concentrations in milligrams per liter; Max, maximum value; Min, minimum value; ---, missing data]

 Table 21. Daily mean dissolved-oxygen concentration, Delaware River at Chester, Pennsylvania (station number 01477050), April 1 to November 30, 2005.

(U.S. Geological Survey published record)

DAY	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV
1	10.2	7.4	5.9	4.6	4.7		6.7	8.6
2	10.1	7.5	6.1	4.3	4.8		6.6	8.7
3	9.9	7.5	6.2	4.2	4.7			8.7
4	10.1	7.2	6.1	4.4	4.6			8.7
5	10.3	7.2	5.9	4.6	4.8			8.7
6	10.4	7.0	6.0	4.5	4.9			8.6
7	10.3	7.2	6.0	4.5	4.8			8.6
8	10.1	7.3	5.8	5.1	4.8			8.7
9	10.0	7.4	**	4.8	4.8	5.6		8.7
10	9.9	7.6	**	4.3	4.6	5.6		8.7
11	9.6	7.5	5.5	4.3	4.5	5.5		8.7
12	9.4	7.4	5.3	4.4	4.5	5.6	6.0	8.6
13	9.2	7.3	5.1	4.6	4.7	5.5	6.3	8.5
14	9.0	7.3	5.0	4.5	4.8	5.5	6.5	8.5
15	9.2	7.1	5.0	4.3	4.9	5.3	6.9	8.4
16	9.2	6.9	5.0	4.1	4.9	5.2	7.2	8.3
17	9.1	6.7		4.2	4.9	5.0	7.4	8.4
18	8.9	6.6		4.0	4.9	5.0	7.3	8.4
19	8.8	6.7		3.7	4.9	4.9	7.3	
20	8.6	6.8		3.7	4.9	5.0	7.2	
21	8.5	6.8	4.9	3.8	4.9	5.0	7.1	
22	8.4	6.5	4.8	3.9	5.0	5.1	7.2	
23	8.2	6.2	4.8	4.1	**	5.2	7.3	8.7
24	8.1	6.0	5.0	4.3	**	5.6	7.4	8.7
25	8.2	6.0	5.0	4.6	5.2	5.9	7.6	9.1
26	8.1	5.8	5.0	4.5	5.1	6.0	7.6	9.1
27	7.9	5.7	4.9	4.5	5.2	6.0	7.8	9.1
28	7.8	5.7		4.5	5.2	6.2	8.0	9.0
29	7.7	5.6		4.5		6.4	8.2	9.1
30	7.5	5.6		4.5		6.4	8.4	9.3
31		5.7		4.6			8.5	
Mean	9.1	6.7	5.4	4.4	4.8	5.5	7.3	8.7
Max	10.4	7.6	6.2	5.1	5.2	6.4	8.5	9.3
Min	7.5	5.6	4.8	3.7	4.5	4.9	6.0	8.3

[Concentrations in milligrams per liter; Max, maximum value; Min, minimum value; ---, missing data]

Appendix A

Pepacton Reservoir Temporary Spill Reduction Program January 24–March 31, 2005

Given the unusually high storage level of Pepacton Reservoir and the total storage conditions in the New York City (NYC) Delaware Basin Reservoirs for this time of the year, the temporary program described below is being implemented to reduce the volume of water spilled from Pepacton Reservoir. The program will attempt to manage a void in Pepacton Reservoir, based on snowpack in the reservoir's watershed, through supplemental releases above normal conservation rates from the East Delaware Release Chamber and maintain that void until March 31, 2005. This is a one-time temporary program implemented in response to extraordinary hydrologic conditions. The program is not part of any regular release program and does not establish a precedent for any future releases or actions.

Although the total volume of water spilled from Pepacton Reservoir will be reduced by this temporary program, it is unlikely that peak flows downstream will be significantly reduced. The spillway at Pepacton Reservoir provides substantial attenuation of peak flows downstream even when the reservoir is spilling. Pepacton Reservoir was not designed as a flood control reservoir; consequently, the Parties to the 1954 Supreme Court Decree strongly urge communities downstream of the reservoir to take all necessary and prudent actions to improve (1) awareness of flooding potential and (2) flood preparedness.

Temporary Pepacton Reservoir Spill Reduction Program:

- 1. Upon approval of this agreement by the Decree Parties, the City of New York will implement a temporary program to achieve limited reduction of Pepacton Reservoir storage through supplemental releases from the East Delaware Release Chamber.
- 2. The recommended rate of the supplemental release shall be established daily by NYC in consultation with the Delaware River Master. Releases above the normal conservation rate will be accounted for as "special releases" and be considered neither River Master directed nor conservation in accordance with DRBC Docket D-77-20 (Revision 7).
- 3. The River Master will manage the recommended supplemental releases in such a manner as to conserve the waters of the Delaware Basin in accordance with the following guidance—The flood stage for the East Branch Delaware River at Fishs Eddy is 15.0 ft. Accordingly, supplemental releases will not be made when the river stage for the East Branch Delaware River at Fishs Eddy is above 13.0 ft. or is forecast to be above 13.0 ft. within 48 hours of a planned supplemental release from Pepacton Reservoir. This procedure may be modified at any time if additional information demonstrates that a lower cautionary stage should be used to limit the supplemental releases.
- 4. Supplemental releases may be suspended if ice conditions threaten flood prone areas of the East Branch.
- 5. Supplemental releases will be designed so that the combined discharge from the East Delaware Release Chamber and the Downsville Dam spillway does not exceed 2,000 cubic feet per second (cfs). All supplemental releases will be discontinued when the spillway discharge exceeds 2,000 cfs.
- 6. Supplemental releases will be made as necessary to maintain to the extent practicable a void in Pepacton Reservoir not to exceed fifty percent (50%) of the water equivalent of the watershed snowpack above Pepacton Reservoir.
- 7. This program will expire on March 31, 2005. This program may be terminated at any time at the request of any Decree Party or may be modified with the unanimous consent of the Decree Parties.

Consent to Action by The City of New York

Consent of the Parties to the U.S. Supreme Court Decree in New Jersey v. New York, 347 U.S. 995 (1954), approving the Pepacton Reservoir Temporary Spill Reduction Program January 24–March 31, 2005 by the City of New York.

/s/ Samuel A. Wolfe		/s/ Fred Nuffer	
State of New Jersey	Date	State of New York	Date
/s/ John H. Talley		/s/ Cathy Curran Myers	
State of Delaware	Date	Commonwealth of Pennsylvania	Date
/s/ Kevin C. Donnelly		/s/ Michael A. Principe	
State of Delaware	Date	City of New York	Date

Appendix B

Temporary Suspension of the Downbasin Portion of the Excess Release Quantity Prepared by the Office of the Delaware River Master July 20, 2005

WHEREAS the City of New York operates Pepacton, Cannonsville, and Neversink Reservoirs in the upper Delaware River Basin ("the Reservoirs"); and

WHEREAS diversions of water from the Reservoirs by the City are authorized and compensating releases of water from the Reservoirs downstream are stipulated under the terms of the Amended Decree of the United States Supreme Court in New Jersey v. New York, 347 U.S. 995 (1954) ("the 1954 Decree"); and

WHEREAS the 1954 Decree requires releases of water from the Reservoirs at the direction and under the supervision of the Delaware River Master, which releases are designed to maintain a minimum basic rate of flow of 1,750 cubic feet per second at the U.S. Geological Survey gaging station Delaware River at Montague, New Jersey; and

WHEREAS the 1954 Decree provides, under Paragraph III B 1 (c), for the computation of an annual Excess Release Quantity, and under Paragraph III B 1 (d) for the release of the annual Excess Quantity; and

WHEREAS the Decree Parties, in recognition of the current level of storage in the Reservoirs and possible short- and long-term effects of the Spring 2005 Swinging Bridge Dam emergency on total basin storage, desire to suspend release to the downbasin of the remaining Excess Quantity not set aside for tailwaters fishery protection—a quantity of 1,089 cfs-days—for a consecutive two-week period beginning July 20, 2005 and ending on August 2, 2005 to allow for additional consideration among the Decree Parties of basinwide hydrologic and storage conditions:

NOW THEREFORE the undersigned Parties to the 1954 Decree unanimously agree to a two-week suspension of the release of the remaining downbasin ERQ and the Parties unanimously request the Delaware River Master to suspend release of this water from July 20, 2005 through August 2, 2005.

Consent of the Parties to the U.S. Supreme Court Decree in <u>New Jersey v. New York</u>, 347 U.S. 995 (1954), approving the Temporary Suspension of the Remaining Downbasin Portion of the Excess Release Quantity.

/s/ Samuel A. Wolfe		/s/ Fred Nuffer	
State of New Jersey	Date	State of New York	Date
/s/ John H. Talley		/s/ Cathleen Curran Myers	
State of Delaware	Date	Commonwealth of Pennsylvania	Date
/s/ Kevin C. Donnelly		/s/ Michael A. Principe	
State of Delaware	Date	City of New York	Date

Appendix C

Temporary Suspension of the Downbasin Portion of the Excess Release Quantity Prepared by the Office of the Delaware River Master August 2, 2005

WHEREAS the City of New York operates Pepacton, Cannonsville, and Neversink Reservoirs in the upper Delaware River Basin ("the Reservoirs"); and

WHEREAS diversions of water from the Reservoirs by the City are authorized and compensating releases of water from the Reservoirs downstream are stipulated under the terms of the Amended Decree of the United States Supreme Court in New Jersey v. New York, 347 U.S. 995 (1954) ("the 1954 Decree"); and

WHEREAS the 1954 Decree requires releases of water from the Reservoirs at the direction and under the supervision of the Delaware River Master, which releases are designed to maintain a minimum basic rate of flow of 1,750 cubic feet per second (cfs) at the U.S. Geological Survey gaging station Delaware River at Montague, New Jersey; and

WHEREAS the 1954 Decree provides, under Paragraph III B 1 (c), for the computation of an annual Excess Release Quantity, and under Paragraph III B 1 (d) for the release of the annual Excess Quantity; and

WHEREAS the Decree Parties, in recognition of the current level of storage in the Reservoirs and possible short- and long-term effects of the Spring 2005 Swinging Bridge Dam emergency on total basin storage, desire to suspend release to the downbasin of the remaining Excess Quantity not set aside for tailwaters fishery protection—a quantity of 1,089 cfs-days—for a consecutive period beginning August 3, 2005 and ending on August 31, 2005 to allow for additional consideration among the Decree Parties of basinwide hydrologic and storage conditions and to delay any possible entry into drought watch that may result from the current conditions; and

WHEREAS the Decree Parties recognize that suspension of Excess Quantity releases may on certain days result in additional drawdowns of the Habitat Protection Bank; and

WHEREAS the Decree Parties seek to preserve the Habitat Protection Bank to the extent practicable:

NOW THEREFORE the undersigned Parties to the 1954 Decree unanimously agree to a temporary suspension of the release of the remaining downbasin ERQ and the Parties unanimously request the Delaware River Master to suspend release of this water from August 3, 2005 through August 31, 2005; provided that on any day during such suspension, when releases in excess of 50 cfs may be required from the Habitat Protection Bank, at the request of the New York State Department of Environmental Conservation to the River Master's office, a release of 50 cfs may be made from the remaining downbasin ERQ for the purpose of preserving storage in the Habitat Protection Bank. A balancing adjustment will not be applied while this release program is in effect.

Consent of the Parties to the U.S. Supreme Court Decree in <u>New Jersey v. New York</u>, 347 U.S. 995 (1954), approving the continued Temporary Suspension of the Remaining Downbasin Portion of the Excess Release Quantity.

/s/ Samuel A. Wolfe		/s/ Fred Nuffer	
State of New Jersey	Date	State of New York	Date
/s/ John H. Talley		/s/ Cathy Curran Myers	
State of Delaware	Date	Commonwealth of Pennsylvania	Date
/s/ Kevin C. Donnelly		/s/ Michael A. Principe	
State of Delaware	Date	City of New York	Date

Appendix D

Temporary Suspension of the Downbasin Portion of the Excess Release Quantity Prepared by the Office of the Delaware River Master August 25, 2005

WHEREAS the City of New York operates Pepacton, Cannonsville, and Neversink Reservoirs in the upper Delaware River Basin ("the Reservoirs"); and

WHEREAS diversions of water from the Reservoirs by the City are authorized and compensating releases of water from the Reservoirs downstream are stipulated under the terms of the Amended Decree of the United States Supreme Court in New Jersey v. New York, 347 U.S. 995 (1954) ("the 1954 Decree"); and

WHEREAS the 1954 Decree requires releases of water from the Reservoirs at the direction and under the supervision of the Delaware River Master, which releases are designed to maintain a minimum basic rate of flow of 1,750 cubic feet per second (cfs) at the U.S. Geological Survey gaging station Delaware River at Montague, New Jersey; and

WHEREAS the 1954 Decree provides, under Paragraph III B 1 (c), for the computation of an annual Excess Release Quantity, and under Paragraph III B 1 (d) for the release of the annual Excess Quantity; and

WHEREAS the Decree Parties, in recognition of the current level of storage in the Reservoirs and possible short- and long-term effects of the Spring 2005 Swinging Bridge Dam emergency on total basin storage, desire to suspend release to the downbasin of the remaining Excess Quantity not set aside for tailwaters fishery protection—a quantity of 1,089 cfs-days—for a consecutive period beginning September 1, 2005 and ending on September 30, 2005 to allow for additional consideration among the Decree Parties of basin-wide hydrologic and storage conditions and to delay any possible entry into drought watch that may result from the current conditions; and

WHEREAS the Decree Parties recognize that suspension of Excess Quantity releases may on certain days result in additional drawdowns of the Habitat Protection Bank; and

WHEREAS the Decree Parties seek to preserve the Habitat Protection Bank to the extent practicable:

NOW THEREFORE the undersigned Parties to the 1954 Decree unanimously agree to a temporary suspension of the release of the remaining downbasin ERQ and the Parties unanimously request the Delaware River Master to suspend release of this water from September 1, 2005 through September 30, 2005; provided that on any day during such suspension, when releases in excess of 50 cfs may be required from the Habitat Protection Bank, at the request of the New York State Department of Environmental Conservation to the River Master's office, a release of 50 cfs may be made from the remaining downbasin ERQ for the purpose of preserving storage in the Habitat Protection Bank. A balancing adjustment will not be applied while this release program is in effect.

Consent of the Parties to the U.S. Supreme Court Decree in <u>New Jersey v. New York</u>, 347 U.S. 995 (1954), approving the continued Temporary Suspension of the Remaining Downbasin Portion of the Excess Release Quantity.

/s/ Samuel A. Wolfe		/s/ Fred Nuffer	
State of New Jersey	Date	State of New York	Date
/s/ John H. Talley		/s/ Cathy Curran Myers	
State of Delaware	Date	Commonwealth of Pennsylvania	Date
/s/ Kevin C. Donnelly		/s/ Michael A. Principe	
State of Delaware	Date	City of New York	Date

Appendix E

Temporary Suspension of the Downbasin Portion of the Excess Release Quantity Prepared by the Office of the Delaware River Master September 29, 2005

WHEREAS the City of New York operates Pepacton, Cannonsville, and Neversink Reservoirs in the upper Delaware River Basin ("the Reservoirs"); and

WHEREAS diversions of water from the Reservoirs by the City are authorized and compensating releases of water from the Reservoirs downstream are stipulated under the terms of the Amended Decree of the United States Supreme Court in New Jersey v. New York, 347 U.S. 995 (1954) ("the 1954 Decree"); and

WHEREAS the 1954 Decree requires releases of water from the Reservoirs at the direction and under the supervision of the Delaware River Master, which releases are designed to maintain a minimum basic rate of flow of 1,750 cubic feet per second (cfs) at the U.S. Geological Survey gaging station Delaware River at Montague, New Jersey; and

WHEREAS the 1954 Decree provides, under Paragraph III B 1 (c), for the computation of an annual Excess Release Quantity, and under Paragraph III B 1 (d) for the release of the annual Excess Quantity; and

WHEREAS the Decree Parties, in recognition of the current level of storage in the Reservoirs and possible short- and long-term effects of the Spring 2005 Swinging Bridge Dam emergency on total basin storage, desire to suspend release to the downbasin of the remaining Excess Quantity not set aside for tailwaters fishery protection, for a consecutive period beginning October 1, 2005 and ending on October 31, 2005, to allow for additional consideration among the Decree Parties of basinwide hydrologic and storage conditions and to delay any possible entry into drought watch that may result from the current conditions; and

WHEREAS the Decree Parties recognize that suspension of Excess Quantity releases may on certain days result in additional drawdown of the Habitat Protection Bank; and

WHEREAS the Decree Parties seek to preserve the Habitat Protection Bank to the extent practicable:

NOW THEREFORE the undersigned Parties to the 1954 Decree unanimously agree to a temporary suspension of the release of the remaining downbasin ERQ and the Parties unanimously request the Delaware River Master to suspend release of this water from October 1, 2005 through October 31, 2005; provided that on any day during such suspension, when releases in excess of 50 cfs may be required from the Habitat Protection Bank, at the request of the New York State Department of Environmental Conservation to the River Master's office, a release of 50 cfs may be made from the remaining downbasin ERQ for the purpose of preserving storage in the Habitat Protection Bank. A balancing adjustment will not be applied while this release program is in effect.

Consent of the Parties to the U.S. Supreme Court Decree in <u>New Jersey v. New York</u>, 347 U.S. 995 (1954), approving the continued Temporary Suspension of the Remaining Downbasin Portion of the Excess Release Quantity.

/s/ Samuel A. Wolfe		/s/ Fred Nuffer	
State of New Jersey	Date	State of New York	Date
/s/ John H. Talley		/s/ Cathy Curran Myers	
State of Delaware	Date	Commonwealth of Pennsylvania	Date
/s/ Harry W. Otto		/s/ Mark D. Hoffer	
State of Delaware	Date	City of New York	Date

Appendix F

Temporary Suspension of the Downbasin Portion of the Excess Release Quantity Prepared by the Office of the Delaware River Master October 31, 2005

WHEREAS the City of New York operates Pepacton, Cannonsville, and Neversink Reservoirs in the upper Delaware River Basin ("the Reservoirs"); and

WHEREAS diversions of water from the Reservoirs by the City are authorized and compensating releases of water from the Reservoirs downstream are stipulated under the terms of the Amended Decree of the United States Supreme Court in New Jersey v. New York, 347 U.S. 995 (1954) ("the 1954 Decree"); and

WHEREAS the 1954 Decree requires releases of water from the Reservoirs at the direction and under the supervision of the Delaware River Master, which releases are designed to maintain a minimum basic rate of flow of 1,750 cubic feet per second (cfs) at the U.S. Geological Survey gaging station Delaware River at Montague, New Jersey; and

WHEREAS the 1954 Decree provides, under Paragraph III B 1 (c), for the computation of an annual Excess Release Quantity, and under Paragraph III B 1 (d) for the release of the annual Excess Quantity; and

WHEREAS the Decree Parties, in recognition of the current level of storage in the Reservoirs and possible short- and long-term effects of the Spring 2005 Swinging Bridge Dam emergency on total basin storage, desire to suspend release to the downbasin of the remaining Excess Quantity not set aside for tailwaters fishery protection, for a consecutive period beginning November 1, 2005 and ending on December 15, 2005, to allow for additional consideration among the Decree Parties of basinwide hydrologic and storage conditions and to delay any possible entry into drought watch that may result from the current conditions; and

WHEREAS the Decree Parties recognize that suspension of Excess Quantity releases may on certain days result in additional drawdown of the Habitat Protection Bank; and

WHEREAS the Decree Parties seek to preserve the Habitat Protection Bank to the extent practicable:

NOW THEREFORE the undersigned Parties to the 1954 Decree unanimously agree to a temporary suspension of the release of the remaining downbasin ERQ and the Parties unanimously request the Delaware River Master to suspend release of this water from November 1, 2005 through December 15, 2005; provided that on any day during such suspension, when releases in excess of 50 cfs may be required from the Habitat Protection Bank, at the request of the New York State Department of Environmental Conservation to the River Master's office, a release of 50 cfs may be made from the remaining downbasin ERQ for the purpose of preserving storage in the Habitat Protection Bank. A balancing adjustment will not be applied while this release program is in effect.

Consent of the Parties to the U.S. Supreme Court Decree in <u>New Jersey v. New York</u>, 347 U.S. 995 (1954), approving the continued Temporary Suspension of the Remaining Downbasin Portion of the Excess Release Quantity.

/s/ Samuel A. Wolfe		/s/ Fred Nuffer	
State of New Jersey	Date	State of New York	Date
/s/ Stefanie J. Baxter		/s/ Cathy Curran Myers	
State of Delaware	Date	Commonwealth of Pennsylvania	Date
/s/ Kevin C. Donnelly		/s/ Michael A. Principe	
State of Delaware	Date	City of New York	Date

Appendix G

Interim Program for Pepacton Reservoir Spill Reduction

On April 21, 2004, the Parties to the 1954 U.S. Supreme Court Decree (Decree Parties) approved an interim program for managing releases from the New York City Delaware Basin reservoirs. That interim program was embodied in Delaware River Basin Commission (DRBC) Resolution No. 2004-3 Docket No. D-77-20 (Revision 7). In approving that resolution, the Decree Parties committed to continuing discussions to develop and implement by May 31, 2007 a long-term flexible program to manage releases from the City Delaware Basin reservoirs to better address fisheries in the tailwaters below those reservoirs; the Decree Parties agreed that implementation of such a program required consideration of other related issues.

On several occasions in the past, the Decree Parties have implemented temporary programs to manage spills from Pepacton Reservoir during periods of unusually high storage, combined with significant snow-pack or exceptionally wet hydrologic conditions, to reduce the potential volume of water spilled from Pepacton Reservoir during flood conditions.

The Decree Parties agree that reduction of Pepacton Reservoir spills during flood events is a related issue that should be considered in the development of the long-term flexible program. The Decree Parties also agree that reduction of Pepacton Reservoir spills should not be delayed until final approval of the long-term flexible program occurs. Therefore the Decree Parties hereby agree to implement an interim spill reduction program for Pepacton Reservoir that will expire on March 31, 2007.

During hydrological conditions resulting in full or near-full storage in Pepacton Reservoir individually and overall in the New York City (NYC) Delaware Basin Reservoirs, the interim spill reduction program described below will be implemented to reduce the volume of water spilled from Pepacton Reservoir. The program will attempt to manage a void in Pepacton Reservoir, based on snowpack in the reservoir's watershed, through supplemental releases above normal conservation rates from the East Delaware Release Chamber and maintain that void during the period November 1 through March 31 each water year. This interim program is not part of any regular release program and does not establish a precedent for any future releases or actions.

Although the total volume of water spilled from Pepacton Reservoir may be reduced by this interim program, it is unlikely that peak flows downstream will be significantly reduced. Pepacton Reservoir provides substantial attenuation of peak flows downstream even when the reservoir is spilling. Pepacton Reservoir was not designed as a flood control reservoir and does not contain release works capable of releasing water at rates necessary for effective flood management operation; consequently, the Decree Parties strongly urge communities downstream of the reservoir to take all necessary and prudent actions to improve flood preparedness and awareness of flood potential.

Interim Pepacton Reservoir Spill Reduction Program:

- 1. Upon approval of this agreement by the Decree Parties, the City of New York will implement an interim program to achieve limited reduction of Pepacton Reservoir storage through supplemental releases from the East Delaware Release Chamber.
- 2. During the period November 1 to March 31 of each water year, whenever a continuous snowpack monitoring program acceptable to the Decree Parties is in effect, supplemental releases will be made as necessary to maintain to the extent practicable a void in Pepacton Reservoir not to exceed fifty percent (50%) of the water equivalent of the watershed snowpack above Pepacton Reservoir.
- 3. The recommended rate of the supplemental release shall be established daily by NYC in consultation with the Delaware River Master. Releases above the normal conservation rate will be accounted for as

special releases and be considered neither River Master directed releases nor conservation releases in accordance with DRBC Docket D-77-20 (Revision 7).

4. The River Master will manage the recommended supplemental releases in such a manner as to conserve the waters of the Delaware Basin in accordance with the following guidance:

The flood stage for the East Branch Delaware River at Fishs Eddy is 13 feet. Accordingly, supplemental releases will not be made when the river stage for the East Branch Delaware River at Fishs Eddy is above 11 feet, or is forecast to be above 11 feet within 48 hours of a planned supplemental release from Pepacton Reservoir. This guidance may be modified at any time if additional information demonstrates that a lower cautionary stage should be used to limit the supplemental releases.

- 5. Supplemental releases may be suspended if ice conditions threaten flood prone areas of the East Branch.
- 6. Supplemental releases will be designed so that the combined discharge from the East Delaware Release Chamber and the Downsville Dam spillway does not exceed 2,000 cubic feet per second (cfs). All supplemental releases will be discontinued when the spillway discharge exceeds 2,000 cfs.
- 7. This interim program will expire on May 31, 2007 and may be terminated at any time at the request of any Decree Party or may be modified with the unanimous consent of the Decree Parties.

Consent to Action by The City of New York

Consent of the Parties to the U.S. Supreme Court Decree in <u>New Jersey v. New York</u>, 347 U.S. 995 (1954), approving the Pepacton Reservoir Interim Spill Reduction Program, November 1, 2005 through May 31, 2006, and November 1, 2006 through May 31, 2007, implemented by the City of New York

/s/ Samuel A. Wolfe		/s/ Fred Nuffer	
State of New Jersey	Date	State of New York	Date
/s/ Stefanie J. Baxter State of Delaware	Date	/s/ Cathleen Curran Myers Commonwealth of Pennsylvania	Date
/s/ Kevin C. Donnelly State of Delaware	Date	/s/ Michael A. Principe City of New York	Date

Appendix H

Interim Program for Neversink Reservoir Spill Reduction

On April 21, 2004, the Parties to the 1954 U.S. Supreme Court Decree (Decree Parties) approved an interim program for managing releases from the New York City Delaware Basin reservoirs. That interim program was embodied in Delaware River Basin Commission (DRBC) Resolution No. 2004-3 Docket No. D-77-20 (Revision 7). In approving that resolution, the Decree Parties committed to continuing discussions to develop and implement by May 31, 2007 a long-term flexible program to manage releases from the City Delaware Basin reservoirs to better address fisheries in the tailwaters below those reservoirs; the Decree Parties agreed that implementation of such a program required consideration of other related issues.

The Decree Parties agree that reduction of Neversink Reservoir spills during flood events is a related issue that should be considered in the development of the long-term flexible program. The Decree Parties also agree that reduction of Neversink Reservoir spills should not be delayed until final approval of the long-term flexible program occurs. Therefore the Decree Parties hereby agree to implement an interim spill reduction program for Neversink Reservoir that will expire on March 31, 2007.

During hydrological conditions resulting in full or near-full storage in Neversink Reservoir individually and overall in the New York City (NYC) Delaware Basin Reservoirs, the interim spill reduction program described below will be implemented to reduce the volume of water spilled from Neversink Reservoir. The program will attempt to manage a void in Neversink Reservoir, based on snowpack in the reservoir's watershed, through supplemental releases above normal conservation rates from the Neversink Release Chamber and maintain that void during the period November 1 through March 31 each water year. This interim program is not part of any regular release program and does not establish a precedent for any future releases or actions.

Although the total volume of water spilled from Neversink Reservoir may be reduced by this interim program, it is unlikely that peak flows downstream will be significantly reduced. Neversink Reservoir provides substantial attenuation of peak flows downstream even when the reservoir is spilling. Neversink Reservoir was not designed as a flood control reservoir and does not contain release works capable of releasing water at rates necessary for effective flood management operation; consequently, the Decree Parties strongly urge communities downstream of the reservoir to take all necessary and prudent actions to improve flood preparedness and awareness of flood potential.

Interim Neversink Reservoir Spill Reduction Program:

- 1. Upon approval of this agreement by the Decree Parties, the City of New York will implement an interim program to achieve limited reduction of Neversink Reservoir storage through supplemental releases from the Neversink Release Chamber.
- 2. During the period November 1 to March 31 of each water year, whenever the water equivalent of the watershed snowpack above Neversink Reservoir is equal to or greater than twice the quantity of water that can be released from the Neversink Release Chamber during a snowpack measurement interval or whenever a continuous snowpack monitoring program acceptable to the Decree Parties is in effect, supplemental releases will be made as necessary to maintain to the extent practicable a void in Neversink Reservoir not to exceed fifty percent (50%) of the water equivalent of the watershed snowpack above Neversink Reservoir.
- 3. The recommended rate of the supplemental release shall be established daily by NYC in consultation with the Delaware River Master. Releases above the normal conservation rate will be accounted for as special releases and be considered neither River Master directed releases nor conservation releases in accordance with DRBC Docket D-77-20 (Revision 7).

4. The River Master will manage the recommended supplemental releases in such a manner as to conserve the waters of the Delaware Basin in accordance with the following guidance:

The flood stage for the Neversink River at Bridgeville is 8 feet. Accordingly, supplemental releases will not be made when the river stage for the Neversink River at Bridgeville is above 6 feet, or is forecast to be above 6 feet within 48 hours of a planned supplemental release from Neversink Reservoir. This guidance may be modified at any time if additional information demonstrates that a lower cautionary stage should be used to limit the supplemental releases.

- 5. Supplemental releases may be suspended if ice conditions threaten flood prone areas of the Neversink.
- 6. Supplemental releases will be designed so that the combined discharge from the Neversink Release Chamber and the Neversink Dam spillway does not exceed 750 cubic feet per second (cfs). All supplemental releases will be discontinued when the spillway discharge exceeds 750 cfs.
- 7. This interim program will expire on May 31, 2007 and may be terminated at any time at the request of any Decree Party or may be modified with the unanimous consent of the Decree Parties.

Consent to Action by The City of New York

Consent of the Parties to the U.S. Supreme Court Decree in <u>New Jersey v. New York</u>, 347 U.S. 995 (1954), approving the Neversink Reservoir Interim Spill Reduction Program, November 1, 2005 through May 31, 2006, and November 1, 2006 through May 31, 2007, implemented by the City of New York.

/s/ Samuel A. Wolfe		/s/ Fred Nuffer	
State of New Jersey	Date	State of New York	Date
/s/ Stefanie J. Baxter		/s/ Cathy Curran Myers	
State of Delaware	Date	Commonwealth of Pennsylvania	Date
/s/ Kevin C. Donnelly		/s/ Michael A. Principe	
State of Delaware	Date	City of New York	Date

≊USGS

